Supplementary material

Experimental procedures for CircRNA detection

1. Sample preprocessing

The peripheral blood (about 5 ml) collected from pregnant women using EDTA anticoagulant tubes was immediately stored at $4^{\circ} \mathrm{C}$ and processed within 2 h . These samples were centrifuged twice at 3000 rpm at $4^{\circ} \mathrm{C}$ and the supernatant (i.e. plasma) was retained and stored at $-80^{\circ} \mathrm{C}$ until testing.

2. Total RNA

According to the manufacturer's instructions, the total RNAs of these samples were extracted using Trizol reagent (Invitrogen, Gaithersburg, MD, United States), and purified using a NucleoSpin RNA Clean-up kit (Macherey-Nagel, Germany). Then, a NanoDrop 2000 spectrophotometer (NanoDrop, USA) was used to quantify purified total RNA and an Agilent 2100 Bioanalyzer (Agilent Technologies, USA) was used to verify the RNA integrity.

3. RNase R treatment

For each sample, $5 \mu \mathrm{~g}$ of RNA, $2 \mu \mathrm{l}$ of RNase R 10X Reaction Buffer, and $0.5 \mu \mathrm{l}$ of RNase R were mixed in the $20 \mu \mathrm{l}$ reaction system, followed by instantaneous centrifugation. The digestion reaction was performed at $37^{\circ} \mathrm{C}$ for 30 min . Then, RNA was purified using a NucleoSpin RNA Clean-up kit (Macherey-Nagel, Germany).

4. cDNA synthesis

4.1 First strand cDNA

Total RNA 100-500 ng was added to the 0.2 ml nuclease-free microcentrifuge tube and then the appropriate volume of spike-in controls was added (Agilent Technologies, USA) according to the table below.

Starting amount of RNA	Serial dilutions		Spike- in mix		
Total RNa [ng]Max- imum volume of RNA [$\mu \mathrm{l}]$	First	Sec- ond	Third	volume to be used in each labeling reaction $[\mu l]$	
200	8.3	$1: 20$	$1: 25$	$1: 10$	2
300	7.3	$1: 20$	$1: 25$	$1: 10$	3
400	6.3	$1: 20$	$1: 25$	$1: 10$	4
500	5.3	$1: 20$	$1: 25$	$1: 10$	5

The reverse transcription Master Mix was prepared by gently mixing 4μ l of First Strand Buffer Mix and 1μ l of First Strand Enzyme Mix. It was instantaneously centrifuged and placed in an ice bath. The Master Mix ($5 \mu \mathrm{l}$) was added to the previously prepared 0.2 ml nuclease-free microcentrifuge tube containing total RNA and spike-in controls.

The solution was gently mixed, instantaneously centrifuged, and then reacted at $42^{\circ} \mathrm{C}$ for 2 h . After the reaction, it was instantaneously centrifuged and ice-bathed in sequence, and then the subsequent steps were performed immediately.

4.2 Second strand cDNA

The Second Strand Master Mix was prepared by gently mixing $13 \mu \mathrm{l}$ of Nuclease-free Water, $5 \mu \mathrm{l}$ of Second Strand Buffer Mix, and 2μ l of Second Strand Enzyme Mix. It was instantaneously centrifuged and placed in an ice bath. Then, $20 \mu \mathrm{l}$ of Second Strand Master Mix was added to the reacted system generated in step 4.1.

The solution was gently mixed and reacted at $16^{\circ} \mathrm{C}$ for 1 h , then at $65^{\circ} \mathrm{C}$ for 10 min .

5. cRNA synthesis

The In vitro Transcription Master Mix was prepared by gently mixing 4μ l of Nuclease-free Water, 20μ l of T7 Buffer Mix, and 6μ of T7 Enzyme Mix. It was instantaneously centrifuged and added to the reacted system generated in step 4.2.

The solution was gently mixed and reacted at $40^{\circ} \mathrm{C}$ for $8-14 \mathrm{~h}$. Following this, the cRNA was purified using a NucleoSpin RNA Clean-up kit (Mach-erey-Nagel, Germany).

6. cRNA reverse transcription

The purified cRNA ($5 \mu \mathrm{~g} / 7.5 \mu \mathrm{l}$) and Random Primer (4 ll) were added to a 0.2 ml nuclease-free centrifuge tube, mixed gently, and reacted at $65^{\circ} \mathrm{C}$ for 5 min , followed by an ice bath for 5 min .

The cRNA reverse transcription Master Mix was prepared by gently mixing 5μ of 4X Script II Buffer, $2 \mu \mathrm{l}$ of 0.1 M DTT , and $1.5 \mu \mathrm{l}$ of CbcScript II. It was instantaneously centrifuged and transferred to the solution generated in the last step.

The mixture was gently mixed, instantaneously centrifuged, and then reacted at $25^{\circ} \mathrm{C}$ for 10 min and $37^{\circ} \mathrm{C}$ for 1.5 h .

After the reaction, Terminate Solution ($5 \mu \mathrm{l}$) was added to the system and gently mixed. The mixture was reacted at $65^{\circ} \mathrm{C}$ for 10 min and stood at room temperature for 5 min . Neutralize Solution ($1 \mu \mathrm{l}$) was added to this mixture and gently mixed.

The cDNA was purified using NucleoSpin Extract II (Macherey-Nagel, Germany) following the
manufacturer's instructions. The purified cDNA was quantified using the spectrophotometer (1OD260 $=40 \mu \mathrm{~g} / \mu \mathrm{l}$).

7. Fluorescence labeling

The volume of the purified cDNA was concentrated to 14μ l. The Random Primer $4 \mu \mathrm{l}$ was added to it, mixed well, instantaneously centrifuged, denatured at $95^{\circ} \mathrm{C}$ for 3 min , and ice-bathed for 5 min . Then, $5 \mu \mathrm{l}$ of 5 X Klenow Buffer, $1 \mu \mathrm{l}$ of Cy5dCTP (or Cy3-dCTP), and 1.2μ l of Klenow Fragmen were added to it. The mixture was gently mixed, instantaneously centrifuged, and then reacted at $37^{\circ} \mathrm{C}$ for 1.5 h and $70^{\circ} \mathrm{C}$ for 5 min .

The labeled production of this step was purified using NucleoSpin Extract II (Macherey-Nagel, Germany) following the manufacturer's instructions and then quantified using the spectrophotometer (1OD260 = $50 \mu \mathrm{~g} / \mu \mathrm{l}$).

8. Microarray hybridization

The hybridization mixture was prepared according to the following table:

Reagent	Standard volume
2X GEx Hyb Buffer (HI-RPM)	$55.0 \mu \mathrm{l}$
Formamide	$27.5 \mu \mathrm{l}$
Sample	$27.5 \mu \mathrm{l}$
Total volume prepared	$110 \mu \mathrm{l}$

The hybridization mixture was added to the circRNA microarray (CapitalBio Corporation, Beijing, China), and hybridization was performed in the hybridization oven (Agilent Technologies, USA) at 20 rpm for 16 h .

9. Microarray washing and scanning

After hybridization, the circRNA microarray was washed in wash solution I containing 0.2% SDS and $2 \times$ SSC at $42^{\circ} \mathrm{C}$ for 5 min and wash solution II containing $0.2 \times$ SSC at room temperature for 5 min .

The washed microarray was scanned by a G2565CA Microarray Scanner (Agilent Technologies, USA) to obtain hybridization images.

10. Data extraction and analysis

Agilent Feature Extraction (v10.7) software was used to analyze the hybridization images and extract the data, which were then normalized using Agilent GeneSpring software.

All the processes of microarray analysis were conducted by the Bioassay Laboratory of CapitalBio Corporation (Beijing, China).

Supplementary Table SI. Clinical characteristics of pregnant women

Patients ID	Age	BMI	Primi- gravida	Primi- parity	Delivery modes	Delivery [gesta- tional weeks]	Sampling 1 [gestational weeks]	Interval from sam- pling 1 to delivery [h]	Sampling 2 [hours after delivery]
L281	27	28.2	Yes	Yes	Vaginal	38.3	38.1	16	5
L284	28	32.4	No	No	Caesarean	39.9	39.7	26	44
L302	31	33.3	No	No	Vaginal	30.6	30.3	51	15
L317	28	23.7	No	Yes	Vaginal	29.6	29.1	108	30
L325	27	25.2	Yes	Yes	Vaginal	34.9	34.4	69	12
L328	27	29.0	Yes	Yes	Caesarean	34.3	34.1	16	42
L332	38	24.4	No	No	Caesarean	32.4	32.3	29	40

莩 0.00000000
-
受愛感

这。管

-
\qquad $\because 0000000000$ －喜

 －-0
 \circ 党

\qquad －耝 $\cdots \because O$－嫘 0.000000.
\qquad － $\because \because$－峌愛。 Male －
綗

\qquad －長。

 0.0.
 －
綥
\qquad
咢
－．．．䇾
－

－○－
ale fem－0．0．0．0．．0.0 .00Female Female000000000．．．．．．．．．－。巣
－． 0$\circ 00000000000000$
$\overbrace{0}^{\circ}$－． 00.0－动 0皆－． 0.

．O．

$$
\because 0
$$

