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A b s t r a c t

Introduction: Inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) 
is an effective therapeutic tool for lowering low-density lipoprotein cholester-
ol (LDL-C). There is no available evidence on the efficacy and safety of PCSK9 
inhibitors in non-cardiovascular diseases, particularly cancer. The present 
study aimed to evaluate the effect of PCSK9 inhibition on cancer endpoints 
in mice bearing colon carcinoma, using a nanoliposomal antiPCSK9 vaccine. 
Material and methods: The prepared nanoliposomal antiPCSK9 vaccine was 
subcutaneously inoculated in BALB/c mice four times with a biweekly inter-
val. Two weeks after the last booster, the vaccinated and unvaccinated mice 
were subcutaneously inoculated with CT26 colon cancer cells into the right 
flank. After the tumor mass became palpable, the mice were randomly divid-
ed into three groups: (1) PBS (untreated control), (2) vaccine group, and (3) 
pegylated liposomal doxorubicin (PLD; positive control) group. Body weight, 
tumor size and survival of mice were monitored for 50 days. 
Results: The nanoliposomal antiPCSK9 vaccine could efficiently provoke spe-
cific antibodies against PCSK9 in BALB/c mice and thereby reduced the plas-
ma level and function of PCSK9. Tumor volume was 77% and 87.7% lower 
(p < 0.0001) in the vaccinated mice when compared with Doxil (liposomal 
doxorubicin) and control mice, respectively. Tumor size analysis showed that 
time to reach the endpoint of the vaccine group (47 ±11 days) was slightly 
but not significantly higher than PLD (46 ±2.6 days) and the control (43 ±12 
days) groups. The tumor growth rates in the vaccine and PLD groups were re-
duced by 9.3% and 7.3, respectively, when compared with the control group. 
The vaccinated mice survived slightly but not significantly longer than PLD 
and the control mice. The median survival of the vaccine, PLD and control 
groups were 51, 45, and 41 days, respectively. The vaccinated mice’s life 
was prolonged by 24.4% as compared with the control mice, while it was 
increased by 9.8% in the PLD group.
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Introduction 

Abnormal levels of plasma lipids have been 
shown to be significantly associated with colon car-
cinoma risk [1–8]. Higher levels of low-density lipo-
protein (LDL) cholesterol (LDL-C) have been reported 
to correlate with higher prevalence [9, 10] and risk 
[11, 12] of colon cancer. LDL-C is mainly cleared from 
the bloodstream by the liver’s LDL receptors (LDLRs). 
Regulation of LDLR expression has an important role 
in LDL-C hemostasis. Proprotein convertase subtili-
sin/kexin 9 (PCSK9) is a liver secretory protein that 
acts as a key regulator of protein levels of LDLRs, by 
which plasma levels of LDL-C in the body can be con-
trolled. The secreted PCSK9 circulates in the blood-
stream and binds to the cell surface LDLR. PCSK9 
binding leads to internalization and degradation of 
LDLR in the lysosomal compartment and thereby re-
duces recycling of LDLR to the cell surface [13, 14]. 
Consequently, there are not enough LDLRs to remove 
plasma LDL-C when the circulating level of PCSK9 is 
increased as a result of gain-of-function mutations 
[15], whereas low levels of plasma PCSK9, due to 
loss-of function mutations, will lead to more intact 
LDLRs which in turn take up more plasma LDL-C [15]. 
Therefore, PCSK9 inhibition has emerged as a ther-
apeutic tool and is currently used as an effective 
LDL-lowering approach in hypercholesterolemic pa-
tients [16–23]. Although the safety of PCSK9 inhib-
itors in hypercholesterolemic conditions has been 
approved, there is scant information on the safety of 
PCSK9 inhibition in other conditions such as cancer. 
To date, several human studies have been conduct-
ed to evaluate a possible link between PCSK9 gene 
variants and cancer risk, but the results have been 
inconsistent. One of the studies showed that there 
is a significant association between LDL-increasing 
PCSK9 mutations and a higher risk of cancer [24], 
while another human study could not show any as-
sociation between PCSK9 loss-of-function mutations 
and incidence of cancer [25]. Conversely, a  recent 
Mendelian randomization study showed that PCSK9 
with LDL-increasing mutations is strongly correlated 
with higher cancer risk, whereas LDL-lowering vari-
ants mimicking PCSK9 inhibitors were found to be 
significantly associated with a  lower risk of cancer 
occurrence [26]. These contradictory reports call 
for further investigations to assess the safety and 
efficacy of PCSK9 inhibitors in cancer. Anti-PCSK9 
vaccines are a new generation of PCSK9 inhibitors, 
whose LDL-lowering effect is frequently verified in 

preclinical studies [27–30]. In a previous study, we 
reported a nanoliposomal anti-PCSK9 vaccine with 
long-lasting, specific and safe inhibitory effects on 
plasma PCSK9 in BALB/c mice [31]. 

In the current study, we aimed to investigate 
the effects of PCSK9 inhibition using the a nanoli-
posomal anti-PCSK9 vaccine in BALB/c mice bear-
ing CT26 colon carcinoma. 

Material and methods

Vaccine preparation and characterization

Preparation and characterization  
of the liposome nanoparticles

The thin film-lipid hydration method was used to 
synthesize a nanoliposome formulation containing 
1,2-dimyristoyl-sn-glycero-3-phosphoryl choline 
(DMPC), 1,2-dimyristoyl-sn-glycero-3-phosphoryl- 
glycerol (DMPG), and cholesterol (Chol) (Avanti  
Polar Lipid; Alabaster, USA) at a final concentra-
tion of 40 mM (total phospholipids and Chol). In 
brief, DMPC, DMPG, and Chol were mixed in chlo-
roform at the molar ratios of 75 : 10 : 15, respec-
tively. Lipid solution was dried to a thin lipid film 
under reduced pressure using rotary evaporation 
(Heidolph, Germany), and then the organic sol-
vent was completely eliminated using over-night 
freeze drying (VD-800F, Taitech, Japan). Afterward, 
the dried lipids were dispersed using hydration 
with 10 mM HEPES buffer (pH 7.2) containing 5% 
dextrose, followed by vortexing and bath-sonicat-
ing to be completely homogenized. The obtained 
multilamellar vesicles (MLVs) were serially extrud-
ed using a  mini extruder (Avestin, Canada) with 
polycarbonate membranes of 600, 400, 200, and 
100 nm pore size, respectively, to prepare small 
unilamellar vesicles (SUVs) with a uniform size of 
100 nm. Particle size (diameter, nm), zeta poten-
tial (surface charge, mV) and polydispersity index 
(PDI) of the prepared nanoliposomal formulation 
were evaluated using dynamic light scattering 
(DLS) technique on a Zetasizer (Nano-ZS, Malvern, 
UK) at room temperature (RT). The prepared li-
posome nanoparticles were stored at 4°C under 
argon.

Preparation of immunogenic peptide 

The Immunogenic Fused PCSK9-Tetanus (IFPT) 
peptide with a purity grade of > 95% was synthe-

Conclusions: Our results revealed that PCSK9 inhibition not only exerted 
no harmful effects but also could moderately inhibit tumor growth, and im-
prove lifespan and survival in mice bearing colon cancer.

Key words: colon carcinoma, immunization, liposome, nanoparticle, PCSK9, 
vaccine.
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sized and high performance liquid chromatogra-
phy (HPLC)-purified by ChinaPeptides Co., Ltd. 
(Shanghai, China). The already designed IFPT con-
struct [31] contains a PCSK9 peptide, as a B cell 
epitope inspired from the AFFiRiS group [27, 32], 
and a  T-helper cell epitope belonging to tetanus 
toxin included as a standard adjuvant carrier [33] 
(Table I). To link the IFPT epitope on the surface 
of liposome nanoparticles, it was bound to DSPE-
PEG-Mal (1,2-distearoyl-sn-glycero-3-phosphoeth-
anolamine-N-[maleimide(PEG)-2000]) lipid (Lipoid 
GmbH, Germany) via an N-terminal cysteine resi-
due inserted in IFPT peptide (Figure 1). 

Manufacturing of DSPE-PEG-IFPT micelles

DSPE-PEG-Maleimide lipid was used to link 
the IFPT peptides on the surface of liposome 
nanoparticles as an adjuvant delivery system. The 
N-terminal cysteine residue of the IFPT peptide 
provides a thiol group that reacts with the pyrrole 
group maleimide and generates a thioether bond, 
whereby the peptide covalently conjugates with 
the DSPE-PEG-Maleimide linker. The IFPT peptide 
and DSPE-PEG-Mal at the molar ratios of 1.2 : 1, 
respectively, were dissolved in DMSO/chloroform 
solution at the volume ratio of 1 : 1, and then 

gently stirred at RT for 48 h. The linkage was con-
firmed using the TLC (thin layer chromatography) 
method with the mobile phase containing chlo-
roform, methanol, and water at the volume ratio 
of 90 : 18 : 2. After that, the DMSO/chloroform 
solution was dried by a  rotary evaporator and 
freeze-drying followed by hydration with sterile 
deionized water (pH 7.2) at 30°C to prepare DSPE-
PEG-IFPT micelles. The efficiency of the linkage in 
the constructed micelles was estimated by HPLC 
analysis. The true value of the linked micelles was 
measured using efficiency of linkage and content 
of total lipid determined by the Bartlett phos-
phateassay method [34].

HPLC analysis of linkage efficiency

The efficinecy of linkage between the IFPT pep-
tide and the DSPE-PEG-Mal linker was indirect-
ly estimated by HPLC quantification of the free 
peptide content of the prepared DSPE-PEG-IFPT 
micelles. The HPLC apparatus was equipped with 
a  Smart line HPLC Pump 1000, a  PDA Detector 
2800 (set at 220 nm), and a Degasser5000, all from 
Knauer (Berlin, Germany). Each sample (20 µl)  
was injected through a  Smart line auto sampler 
and data were obtained and processed with 

Table I. Sequence of immunogenic peptides used in the present study

Peptide name Sequence Immunogenicity  

PCSK9 S-I-P-W-N-L-E-R-I-T-P-V-R B cell epitope 

Tetanus A-Q-Y-I-K-A-N-S-K-F-I-G-I-T-E-L T cell epitope 

IFPT *CGGGSIPWNLERITPVRKKAQYIKANSKFIGITEL

*The bold amino acid codes are a linker sequence for conjugating with DSPE-PEG-Mal. IFPT – immunogenic fused PCSK9-tetanus.

Figure 1. Schematic view of linking between peptide and DSPE-PEG-maleimide
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ChromGate software (version 3.3.1) from Knauer 
(Berlin, Germany). Chromatographic separation 
was performed on a  C18 reverse-phase column, 
4.6 mm × 25 cm (Shimadzu, Japan), using an iso-
cratic mobile phase of (0.1% TFA in water)/(0.1% 
TFA in acetonitrile) at gradient ratios of 55/45 to 
45/55 in 10 min, at a flow rate of 1 ml/min. 

The IFPT peptide with HPLC purity > 95% was 
used as a standard solution. The free peptide peak 
within the chromatogram of the micelle sample 
was identified and assigned based on the reten-
tion time (2.2 min) of the standard solution, fol-
lowed by sample spiking. 

To quantify the free peptide content of the mi-
celle sample, a calibration curve was constructed by 
injecting standard solution at five concentrations 
(50–500 µg/ml), which was linear with a correlation  
coefficient (r2) of 0.9954. Using linear regression 
analysis of the calibration curve appearing in the 
standard chromatogram, the free peptide content 
of the micelle sample was measured. Linkage effi-
ciency in the constructed DSPE-PEG-IFPT micelles 
was calculated by subtracting the free peptide 
amount within the micelles quantified by HPLC 
from the amount of the IFPT peptide initially added.

Construction and cahraacterization  
of nanoliposomal IFPT vaccine

Nanoliposomes were used as a  delivery adju-
vant to enhance immunogenicity of the peptide. 
Since many IFPT peptides can be conjugated to 
the surface of liposome nanoparticles, we pro-
pose that IFPT-linked nanoliposomes can elicit 
a high-titer antibody against self-antigen PCSK9, 
maybe through elevating peptide valency. To at-
tach the IFPT peptide on the nanoliposome sur-
face, the post-insertion approach was performed, 
in which the prepared DSPE-PEG-IFPT micelles 
(100 µg, based on the linked peptide) and lipo-
some nanoparticles (1 ml) were mixed and then 
gentely shaken at 45°C for 3 h. The micelles were 
inserted in the nanoliposome bilayer via the DSPE 
phospholipid moiety, and exposed IFPT peptides 
on the nanoliposome surface through the PEG 
chains. Particle size, surface charge and PDI of the 
prepared nanoliposomal IFPT particles were evalu-
ated using DLS technique on a Zetasizer (Nano-ZS, 
Malvern, UK) at RT. The IFPT-conjugated nanoli-
posomes were adsorbed to 0.4% Alum adjuvant 

(Sigma-Aldrich) at a 1 : 1 (v : v) ratio in a total vol-
ume of 400 µl and stored at 4°C under argon. Pri-
or to injection, the nanoliposomal IFPT plus Alum 
vaccine, hereafter called L-IFPTA+, was brought to 
RT and carefully mixed.

Animal and cell line

A total of 15 female BALB/c mice (4–6 weeks 
old) were purchased from Pasteur Institute of Teh-
ran, Iran and fed with ad libitum access to puri-
fied water and a commercial stock diet. All mice 
were housed in a pathogen-free animal house at 
a  temperature of 22 ±1°C with a 12 : 12 h light 
: dark cycle and maintained under a relative hu-
midity of 50 ±10%. Animal care was performed in 
accordance with welfare guidelines established by 
the Institutional Ethical Committee and Research 
Advisory Committee of Mashhad University of 
Medical Sciences. At the end of the experiment all 
animals were euthanized by CO2 inhalation.

The CT26 colon carcinoma cell line was provided 
from Pasteur Institute of Tehran, Iran and cultured 
in RPMI-1640 medium containing 10% FBS and sup-
plemented with penicillin (100 IU/ml)/streptomycin 
(100 mg/ml). The cells were incubated at 37°C with 
a 5% CO2/95% air humidified atmosphere.

Vaccination schedule

Following one week of taming prior to the ex-
perimental procedures, the mice were randomly 
arranged into two groups: a vaccine group (n = 5) 
and an untreated group (n = 10) group. The vacci-
nation was subcutaneously primed at week 0 (W0) 
and followed by three boosters (W2, W4, and W6), 
in bi-weekly intervals (Figure 2), while untreated 
mice simultaneously received phosphate-buffered 
saline (PBS). Tail vein bleeding was performed two 
weeks after each vaccination for the titration of 
plasma anti-PCSK9 antibody. 

Evaluation of plasma anti-PCSK9 antibody 

To measure the titer of anti-PCSK9 antibodies, 
plasma samples were collected and assayed by the 
ELISA method. Briefly, PCSK9 peptide at the con-
centration of 5 µg/ml in 0.1 M NaHCO3 (pH 9.2–9.4) 
was coated overnight in a 96-well Nunc-MaxiSorp 
plate. Free binding sites were then blocked by in-
cubation with blocking buffer (1× PBS, 1% BSA) for  

Figure 2. Study design
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1 h at 37°C. Diluted plasma (1 : 400 in 1× PBS/0.1% 
BSA/0.05% Tween-20) was added, serially diluted 
1 : 4, and incubated for 1 h at 37°C. Each ELISA 
plate contained a standard antibody as an internal 
control. For detection, biotinylated anti-mouse IgG 
(H + L) (Sigma-Aldrich; 1 : 1000) in 1× PBS/0.1 % 
BSA/0.1% Tween-20 was applied and incubated for 
1 h at 37°C. Then, horseradish peroxidase coupled 
to streptavidin (Roche) was added (30 min, 37°C) 
followed by the addition of the substrate 2,2′-az-
inobis [3-ethylbenzothiazoline-6-sulfonic acid]- 
diammonium salt (ABTS) (Sigma-Aldrich) (15 min, 
RT). The optical density (OD) at 450 nm was mea-
sured with a Microwell plate reader (Sunrise, Te-
can, Switzerland) and the titers were defined as 
the dilution factor referring to 50% of the maximal 
optical density (ODmax/2). The mean titers ± SD of 
all animals per group are presented. 

Plasma PCSK9 quantification 

Plasma PCSK9 concentration in the vaccinated 
mice was measured by CircuLex rat PCSK9 ELISA 
(CircuLex, Cy-8078, MBL, Woburn, MA) according 
to the manufacturer’s instructions. Briefly, 100 µl 
of the diluted 1 : 100 plasma samples was added 
to a 96-well microplate and incubated for 1 h at 
RT. A  HRP-conjugated anti-PCSK9 antibody was 
added for 1 h followed by the substrate reagent 
and stop solution, all at RT. Optical density was 
detected at 450 nm with a Microwell plate read-
er (Sunrise, Tecan, Switzerland). A standard curve 
provided by the supplier was defined to measure 
PCSK9 concentration. 

PCSK9 inhibition analysis 

To assay inhibition of mice PCSK9 by vac-
cine-induced antibodies, interaction of induced 
antibodies with PCSK9 was evaluated. For this 
purpose, the same kit CircuLex rat PCSK9 ELISA 
was used, but for HRP-conjugated anti-PCSK9 an-
tibody, detection was performed with HRP-conju-
gated anti-mouse IgG (H + L) (Sigma Aldrich; dilu-
tion 1 : 5000) incubated for 1 h at RT, followed by 
the substrate reagent and stop solution provided 
by the supplier. The OD was detected at 450 nm 
with the Microwell plate reader. 

In vitro evaluation of PCSK9-LDLR binding 

CircuLex PCSK9-LDLR in vitro binding assay 
kit (CircuLex, Cy-8150, MBL, Woburn, MA) was 
used to evaluate the ability of vaccine-induced 
antibodies to inhibit the PCSK9-LDLR interaction 
in vitro. Briefly, 100 µl of vehicle control or the 
plasma samples of vaccinated mice was added to 
a 96-well microplate pre-coated with a  recombi-
nant LDLR-AB domain, which contains a binding 
site for PCSK9. Immediately after that, the reac-

tion was initiated by adding a “His-tagged PCSK9 
wiled type” solution incubated for 2 h followed by 
adding a biotinylated anti-His-tag monoclonal an-
tibody for 1 h at RT. Then, HRP-conjugated strepta-
vidin was coated for 1 h at RT followed by the sub-
strate reagent and stop solution. In this method, 
the higher amount of PCSK9-LDLR interaction is 
associated with higher ELISA OD, in which in the 
presence of anti-PCSK9 antibody this interaction 
is inhibited and consequently ELISA OD is de-
creased. A dose-response curve with appropriate 
serial dilutions of “His-tagged PCSK9 wild type” 
solution was drawn to measure the accurate inhi-
bition percentage of test samples. 

Evaluation of in vivo anti-tumor efficacy 

Two weeks after the last booster, the vacci-
nated and unvaccinated BALB/c mice were sub-
cutaneously inoculated with CT26 colon carcino-
ma cells (5 × 105/50 µl PBS/mouse) into the right 
flank at day zero. Tumor growth was monitored in 
3-day intervals by calculating the tumor volume 
after measuring three orthogonal diameters with 
calipers according to the formula: tumor volume 
(mm3) = (length × height × width) × 0.52. After 
the tumor mass became palpable (approximately  
10 mm3) at day 10, the mice were randomly divid-
ed into three groups (5 mice/group) and subjected 
to different treatment protocols: (1) the vaccine 
group comprising vaccinated tumor-bearing mice 
that received a  single tail vein injection of PBS,  
(2) the Doxil (liposomal doxorubicin) (positive con-
trol) group comprising unvaccinated tumor-bear-
ing mice that received a single tail vein injection of 
Doxil (15 mg/kg), and (3) the control (PBS) group 
comprising unvaccinated tumor-bearing mice that 
received a single tail vein injection of PBS. 

To evaluate therapeutic efficacy, mouse body 
weight, tumor size, general health, and survival 
were monitored every other day for 50 days. An-
imals’ euthanasia (CO2 inhalation) was performed 
on those with 4T1 tumor due to the following eth-
ical considerations: body weight loss > 20% of ini-
tial mass, tumor volume greater than 2.0 cm in one 
dimension, or mice became sick and unable ambu-
late to reach food/water [35, 36]. For each mouse, 
the time to reach tumor volume above 1000 mm3 
or the time to reach the end point (TTE) as a re-
sponse variable was calculated from the equation 
of the line obtained by exponential regression of 
the tumor growth curve. For each group, the per-
cent of tumor growth delay (%TGD) was deter-
mined by calculating the difference between the 
average TTE of the treatment group (T) and the 
average TTE of the control group (C), (%TGD =  
[(T – C)/C] × 100) [37]. For each treatment group, 
the percent of increased life span (%ILS) was mea-
sured based on the following formula: [(average 
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survival time of treatment group / average survival 
time of control group × 100) – 100] [38]. 

Statistical analysis

Statistical analysis was performed using SPSS 
Statistics version 20 and GraphPad Prism version 
7.04 software. Survival data were analyzed using 
the log-rank (Mantel-Cox) test. Other compar-
isons were done using one-way ANOVA and the 
Tukey post-hoc multiple comparison test. Values 
were expressed as mean ± SD or median for nor-
mally and non-normally distributed data, respec-
tively. Results with p < 0.05 were considered as 
statistically significant.

Results 

Physical properties

Characterization of liposome nanoparticles 
showed a size of 145 nm and 180 nm for free and 
IFPT-linked nanoliposomes, respectively. Other 
characteristics including PDI and zeta potential 
are detailed in Table II. 

Analysis of DSPE-PEG-IFPT micelles

Attachment of the IFPT peptides to the DSPE-
PEG-Mal linker was confirmed qualitatively and 
quantitatively using TLC (Figure 3) and HPLC (Fig-
ure 4) methods, yielding an attachment yield of 
96% according to HPLC. 

L-IFPTA+ vaccine-induced PCSK9 antibody 
response in BALB/c mice 

The L-IFPTA+ vaccine induced a  strong IgG re-
sponse against PCSK9 peptide in BALB/c mice 
upon 4 immunizations in biweekly intervals. No-
tably, long-term analysis revealed that anti-PCSK9 
antibody titer peaked at week 8 and remained 
constant up to week 10, and then revealed a de-
creasing trend (Figure 5 A). 

Targeting of plasma PCSK9 by vaccine-
induced antibodies 

Vaccine-induced PCSK9 antibodies targeted 
plasma PCSK9 in vaccinated mice in a  specific 
manner. Plasma PCSK9 levels were 28 ±6 ng/ml 

Table II. Physical properties of nanoliposomal formulations

Formulation Z-average [nm]
Mean ± SD (n = 3)

Zeta potential [mV]
Mean ± SD (n = 3)

PDI
Mean ± SD (n = 3)

Empty nanoliposome 145 ±7.5 –38 ±3 0.07 ±0.01

IFPT-linked nanoliposome 180 ±5.5 –31 ±2 0.1 ±0.05

PDI – polydispersity index.

Figure 3. Assessment of conjugation between DSPE-PEG-Mal and the IFPT peptide at time zero and 48 h after start 
of reaction. Lipid (DSPE-PEG-Mal) is dissolved in the mobile phase and ascends to the top of the TLC plate (spots in 
the top of the left and middle lines) but peptide is bound to the silica and remains in the spotting point (the middle 
line). After 48 h, lipid bound to peptide and stayed at the point of spotting, and therefore the lipid spot on the top 
of the reaction mixture line disappeared, indicating the conjugation of the IFPT peptide and DSPE-PEG-Mal linker

Lipid spots Lipid spot

Lipid LipidMixture

Time 0 Time 48

MixturePeptide Peptide
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Figure 4. HPLC chromatogram of DSPE-PEG-IFPT micelles and reference standard IFPT peptide. The retention time 
of the reference standard was observed at 2.2 min and it was found to be the same with free peptide present in 
the micelle sample
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and 85 ±9 ng/ml in the vaccinated and control 
groups, respectively (Figure 5 B). Plasma PCSK9 
concentrations were decreased by 67% (–57 ±6 ng/ 
ml, p = 0.0008) in the vaccinated mice as com-
pared to control mice. The specificity of PCSK9 
targeting by vaccine-induced antibodies was test-
ed using an ELISA assay as described above and 
in our previous report [31]. A significantly higher 
OD450 signal was detected from the plasma of 
vaccinated mice, suggesting that vaccine-induced 
PCSK9 antibodies were able to directly bind to 
PCSK9 (Figure 5 C). 

PCSK9-LDLR interaction blockade by 
vaccine-induced PCSK9 antibodies

Using the above-mentioned in vitro assay, 
PCSK9 antibodies were found to inhibit the in-
teraction between PCSK9 and LDLR. Binding of 
PCSK9 to LDLR was reduced by 53% in the pres-
ence of plasma obtained from L-IFPTA+-vaccinated 
mice, as compared to control mice (Figure 5 D).

Efficacy of liposomal-antiPCSK9 in CT24 
colon carcinoma model treatment

To assay the effect of PSCK9 inhibition on 
breast cancer progression, a CT26 colon carcinoma 
model was developed in BALB/c mice previously 
immunized with liposomal antiPCSK9 vaccine. The 
protective effect of the vaccine on tumor-bearing 
mice was evaluated by monitoring body weight 
alterations, tumor growth rate in terms of mean 
tumor size (mm3), and survival. 

The weight monitoring curve showed that body 
mass was significantly reduced in the vaccinated 
mice after 25 days of tumor induction. As compared 
with the control group, vaccinated mice showed 
a  significantly higher body weight loss from 25 
days after tumor induction (p < 0.05) (Figure 6 A). 

Analysis of the integrated areas under the body 
weight curve (AUCbody weight) over 50 days showed 
that the body weight of vaccinated mice was de-
creased by 7.7% in comparison with the control 
mice, while there was no significant difference 
between vaccine and Doxil groups (Figure 6 B).  
To determine endpoint therapeutic modalities of 
antiPCSK9 vaccine in tumor-bearing BALB/c mice, 
time to reach endpoint (TTE) and percentage of 
tumor growth delay (%TGD), as well as median 
survival time (MST) and increase in life span (ILS), 
were measured (Table III). Monitoring the tumor 
size (Figure 7 A) revealed that three out of five 
vaccinated mice remained tumor-free, and tumor 
growth in the remaining two vaccinated mice was 
significantly lower than that in Doxil and the con-
trol mice. Data of the integrated areas under the 
tumor volume curve (AUCtumor volume) over 50 days 
demonstrated that tumor volume was 77% and 
87.7% lower (p < 0.0001) in the vaccinated mice 
than in the Doxil and the control mice, respec-
tively (Figure 7 B). TTE of the vaccine group (47 
±11 days) was slightly but not significantly higher 
than that of the Doxil (46 ±2.6 days) and control 
(43 ±12 days) groups. TGD as a widely accepted 
method for qualifying in-situ assessment of tumor 
treatment quality showed that the tumor growth 
rate in the vaccine and Doxil group was reduced 
by 9.3% and 7.3%, respectively, compared with 
the control group. Kaplan-Meier curves (Figure 8) 
showed that the vaccinated mice survived slight-
ly but not significantly longer than the Doxil and 
the control mice (p < 0.05, log-rank test). The MST 
of the vaccine, Doxil and control group was 51, 
45, and 41 days, respectively. Analysis of the ILS 
revealed that the vaccinated mice’s life was pro-
longed by 24.4% as compared with the control 
mice, while it was increased by 9.8% in the Doxil 
group (Table III).

Figure 6. The weight monitoring curve (A) shows point-by-point changes of the body weight during 50 days in the 
control, vaccine, and Doxil group. The integrated areas under the body weight curve (AUCbody weight) over 50 days (B) 
demonstrates overall weight changes. Data with p < 0.05  were considered as statistically significant. The body 
weight loss was significantly (p < 0.0001) higher in the vaccine and Doxil groups than in the control group. Animal 
body weight was measured every 3 days

Data are presented as the mean ± SD (n = 5).
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Table III. Therapeutic efficacy data of different treatments in BALB/c mice bearing CT26 colon carcinoma

Groups TTE [days] 
Mean ± SD

TGD (%) MST [days] ILS (%)

Control 43 ±12 – 41 –

Vaccine 47 ±11 9.3 51 24.4

Doxil 46 ±3 7.3 45 9.8

TTE – time to reach end point, TGD – tumor growth delay, MST – median survival time, ILS – increase life span.

Figure 7. The tumor growth curve (A) shows the in-
crease of tumor size during 50 days in the control, 
vaccine, and Doxil groups. Tumor volume (mm3) 
was measured every 3 days. The integrated areas 
under the tumor volume curve (AUCtumor volume) over 
50 days (B) demonstrates overall increase of tumor 
size. Measuring the time to reach endpoint (TTE) or 
the time to reach tumor volume above 1000 mm3 
(C) showed no significant difference between stud-
ied groups. Data with p < 0.05 were considered as 
statistically significant

Data are presented as the mean ± SD (n = 5).
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Figure 8. Kaplan-Meier curves exhibit the survival 
rate of the control, vaccine, and Doxil groups. There 
was no significant difference between the com-
pared groups

Data are presented as the mean ± SD (n = 5). P < 0.05 was 
considered as the level of statistical significance.
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Discussion

Recent Mendelian randomization studies an-
alyzing the correlation of PCSK9 polymorphisms 
with cancer occurrence have shown contradictory 
results with respect to the association of LDL-ris-
ing/lowering PCSK9 mutations and risk of cancer 
[24–26]. However, there have been no data on the 
effect of PCSK9 inhibition on cancer progression. 
Dyslipidemia, particularly an increased plasma lev-
el of LDL-C, has been reported to be significantly 
correlated with a higher risk and incidence of co-
lon cancer [9–12]. However, the effects of pharma-
cological LDL-C lowering on cancer has remained 
unclear. In this study, we explored whether PCSK9 
inhibition has any positive, negative or neutral 
effect on the endpoints of colorectal cancer. In-
terestingly, our results showed that the nanolipo-
somal anti-PCSK9 (L-IFPTA+) vaccine, as a PCSK9 
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inhibitor, could moderately inhibit tumor develop-
ment in mice bearing CT26 colon carcinoma. 

L-IFPTA+ vaccine induced generation of function-
al anti-PCSK9 antibodies (Figure 5 A) that reduce 
plasma level and activity of PCSK9 (Figures 5 B, D)  
through specific and direct targeting of PCSK9 
(Figure 5 C) in BALB/c mice. The vaccine-induced 
anti-PCSK9 antibodies were found to significantly 
reduce tumor growth (Figure 7), partially increase 
MST (Figure 8), and prolong lifespan (Table III) in 
the vaccinated mice bearing colorectal cancer, 
when compared with Doxil and control groups. 

The moderate anti-tumor effect of the tested 
anti-PCSK9 vaccine is underpinned by the recent 
Mendelian randomization study which revealed 
that LDL-lowering mutations of PCSK9 mimicking 
PCSK9 inhibitors were correlated with a lower risk 
of breast cancer occurrence, while PCSK9 with 
LDL-raising mutations has a  causal correlation 
with a higher risk of breast cancer [26]. It is fur-
ther supported by another human study analyzing 
a phenome-wide association of LDL-lowering ge-
netic variants in the PCSK9 locus mimicking PCSK9 
inhibitors, showing that these PCSK9 variants do 
not increase the risk of cancer [39]. However, a pro-
spective, population-based cohort study showed 
that there is no association between LDL-lowering 
PCSK9 polymorphisms and the risk of cancer [25].

In conclusion, the present data demonstrat-
ed that PCSK9 inhibition is potentially safe, and 
might moderately inhibit tumor progression in an 
experimental model of colon cancer. These find-
ings can support the potential safety of PCSK9 in-
hibition in cancer, though further preclinical and 
clinical trials taking into account different PCSK9 
inhibition approaches, longer term follow-up du-
rations and other cancer models are necessary to 
confirm the safety and possible efficacy of PCSK9 
inhibition in malignant conditions. 
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