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CALCOCO2 silencing represents a potential molecular 
therapeutic target for glioma
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Yuanyi Wang2*

A b s t r a c t

Introduction: Glioma is the most common primary intracranial tumour that 
is highly resistant to conventional therapeutic approaches including surgical 
resection, radiation therapy, and chemotherapy. As a promising alternative 
treatment, gene therapy has achieved variable degrees in both pre-clinical 
models and clinical trials. 
Material and methods: In our present research, the role of calcium binding 
and coiled-coil domain 2 (CALCOCO2) in the pathogenesis and progression 
of glioma was investigated in human glioma U87 and U251 cell lines. In both 
cell lines, CALCOCO2 is highly expressed. Targeted by lentivirus vectors, the 
CALCOCO2 gene was successfully silenced in U87 and U251 cell lines. Both 
cell counting and MTT assay showed the inhibition of cell growth and cell 
proliferation in CALCOCO2-silenced glioma cell lines. 
Results: Flow cytometry (FCM) and caspase3/7 measurements indicated 
that the silencing of CALCOCO2 gene could also promote cell apoptosis in 
both cell lines. The underlying mechanism was further explored by gene 
microarray and western blotting. The CALCOCO2 gene is strongly related to 
cancer by affecting the expression of hundreds of genes. Among which, the 
silencing of CALCOCO2 significantly upregulated the pro-apoptosis genes 
FAS and CASP1 and downregulated the autophagy-related gene BECN1. 
These data suggest that by regulating FAS, CASP1, and BECN1, the silencing 
of CALCOCO2 suppresses the growth and proliferation of U87 and U251 
glioma cell lines. 
Conclusions: The CALCOCO2 could be a potential target for glioma genetic 
therapy.
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Introduction

A glioma is a type of malignant tumour that occurs in the neuroecto-
derm of the central nervous system with high morbidity, mortality, and re-
currence rates [1]. It is the most common primary intracranial tumour, with 
an annual incidence of 3–10 per 100,000 in the United States, accounting 
for 46% of intracranial tumours and 2% of all malignant tumours [2, 3]. Cur-
rent predominant treatments are surgical resection, radiation therapy, and  
chemotherapy [4–6]. However, due to the invasion and metastasis proper-
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ties of gliomas, it is difficult to attain total removal 
by surgical resection [7]. In addition, the resistance 
to radiotherapy and chemotherapy frequently lead 
to the progression and recurrence of tumours [8]. 
The prognosis of patients with high-grade glio-
ma is still poor, with a  median survival time of  
14 months [9]. However, gene therapy has emerged 
as a promising treatment for glioma, with fewer side 
effects and greater specificity compared to those of 
traditional therapies. Therefore, it is necessary to 
identify therapeutic targets based on the molecu-
lar mechanisms underlying tumour occurrence and 
progression for effective glioma treatment. 

Autophagy is a  homeostatic process in which 
cellular metabolic waste is recycled to support 
cellular metabolism via autophagosomes [10, 11]. 
Recently, researchers have proven that autophagy 
can promote tumour growth. Activated autopha-
gy is a mechanism by which tumour cells adapt 
to extreme conditions, such as hypoxia and high 
metabolic demand [12]. Autophagy occurs during 
glioma chemoresistance after the use of temo-
zolomide, contributing to the failure of chemo-
therapy. Drugs targeting autophagy in glioma are 
urgently needed. CALCOCO2 encodes a coiled-coil 
domain-containing protein [13]. The protein can 
combine with ubiquitin-coated bacteria, recognise 
microtubule-associated protein 1 light chain 3  
(LC3) in autophagy, and deliver bacteria to auto-
phagosomes for elimination [14]. However, the 
role of CALCOCO2 in glioma is unclear.

In this study, the role of CALCOCO2 in the 
pathogenesis and progression of glioma was in-
vestigated. 

Material and methods

Cell culture

Human glioma U87 and U251 cell lines were 
obtained from the Shanghai Institute of Cell Biol-
ogy, Chinese Academy of Sciences. The cells were 
cultured in DMEM supplemented with 10% FBS 
and 1% antibiotics at 37°C with 5% CO2.

The present study was approved by the Ethics 
Committee of China-Japan Union Hospital of Jilin 
University and The First Hospital of Jilin University. 

CALCOCO2 expression in glioma cell lines

CALCOCO2 expression in four glioma cell lines, 
i.e., U87, U251, U373, and A-172, was assessed 
by quantitative real-time polymerase chain reac-
tion (RT-qPCR). Briefly, total messenger RNAs (mR-
NAs) of cells were extracted using TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA). The mature mR-
NAs (2 µg per sample) were reverse transcribed 
into cDNAs using Super MMLV reverse transcrip-
tase (BioTeke, Beijing, China). The mRNA levels of  
CALCOCO2 were determined by RT-qPCR using the 

Bio-Rad Connect Real-time PCR platform. RT-qPCR 
consisted of an initial denaturation step at 95°C 
for 15 s, 30 cycles of 95°C for 5 s, and 60°C for  
30 s. The mRNA expression levels were deter-
mined by a comparative CT (2–ΔΔCt) analysis. 

Construction of lentivirus vectors targeting 
CALCOCO2

A  short hairpin RNA (shRNA) was designed 
according to the sequence of CALCOCO2. The 
shRNA oligos were synthesised and inserted 
into the plasmid GV115 (GeneChem, Shanghai, 
China), and then recombinant lentiviruses were 
constructed by plasmid co-transfection of 293T 
cells according to the manufacturer’s instructions. 
The viral supernatant was collected and filtered 
through a 0.45-μm filter (Millipore, Billerica, MA, 
USA) at 72 h post-transfection, and the viral titre 
was determined. Subsequently, the viral superna-
tant was added to the U87 and U251 cell lines, 
and the expression of CALCOCO2 in cells was ob-
served under a fluorescence microscope at 48 h 
(Olympus America, Melville, NY, USA). The cells in-
fected with shCALCOCO2 and control shRNA were 
termed shCALCOCO2 and shControl, respectively.

Silencing efficiency assessment

The silencing efficiency of CALCOCO2 at the pro-
tein level was assessed by western blotting. Briefly, 
after U87 and U251 cells were infected with shCAL-
COCO2 or shControl for 5 days, they were collected  
and lysed with protein lysate (100 mM tris(hy-
droxymethyl)aminomethane hydrochloride (pH 6.8),  
10 mM ethylenediaminetetraacetic acid, and 4% 
sodium dodecyl sulphate) for 20 min. The lysates 
were centrifuged, and the supernatants were col-
lected. The total protein was measured by a BCA 
protein assay (HyClone-Pierce, Rockford, IL, USA), 
separated by 12.5% sodium dodecyl sulphate poly-
acrylamide gel electrophoresis, transferred to poly-
vinylidene difluoride membranes, and blocked for 
1 h at room temperature (25°C). The membranes 
were then incubated with rabbit anti-GAPDH or 
rabbit anti-CALCOCO2 primary antibodies (1 : 500; 
Santa Cruz Biotechnology, Santa Cruz, CA, USA) and 
incubated at 4°C overnight. The membranes were 
washed with Tris-buffered saline and Tween, and 
a  moderate volume of secondary antibody (goat 
anti-mouse IgG, 1 : 5000; Santa Cruz Biotechnol-
ogy) was added and incubated for 3 h at room 
temperature. The membranes were then detected 
using enhanced chemiluminescence (ECL) reagent 
(ECL-Plus/Kit; Amersham, Piscataway, NJ, USA).

Cell counting

Multiparametric high-content screening (HCS) 
was utilised to determine the cell growth status. 
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Briefly, U87 and U251 cells in the logarithmic 
phase in shCALCOCO2 or shControl groups were 
seeded on 96-well plates at a  density of 4000 
cells/well. Subsequently, the cells were incubated 
for 5 days, and every day the living cells exhibiting 
green fluorescence in each plate were recognised 
and counted using ArrayScan™ HCS software (Cel-
lomics Inc., Pittsburgh, PA, USA). 

MTT assay

A 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetra- 
zoniumbromide (MTT) assay was performed to as-
sess cell viability. Briefly, the exponential growth 
cells infected with shCALCOCO2 or shControl were 
seeded on 96-well plates at a  density of 4000 
cells/well and incubated for 1, 2, 3, 4, or 5 days. 
At a predetermined timepoint, 20 μl of MTT was 
added to the cells, followed by incubation for  
4 h. The supernatants were removed, and 100 μl 
of dimethyl sulphoxide (DMSO) was added to de-
compose formazan. The viability of cells was an-
alysed by detecting absorbance at 490 nm using 
a microplate reader (BioTek Instruments, Winoos-
ki, VT, USA).

Flow cytometry

U87 and U251 cells infected with shCALCOCO2 
or shControl were seeded on six-well plates after 
lentivirus infection for 5 days at a density of 3 × 
105 and cultured for 48 h. Subsequently, the cells 
were harvested, centrifuged, washed with PBS 
twice, and then resuspended using staining buf-
fer at a cell concentration of 1.0 × 106/ml. The cell 
suspensions were then stained with Annexin and 
PI at room temperature for 15 min in the dark and 
evaluated by flow cytometry (FCM, FACSCalibur; 
BD Biosciences, Franklin Lakes, NJ, USA).

Caspase-Glo 3/7 assay

Caspase-Glo 3/7 reagent was prepared by 
mixing caspase-Glo 3/7 with the substrate and 
was then stored at 4°C. Cells transfected with  
shCALCOCO2 or shControl at the logarithmic 
phase were seeded on 96-well plates at a density 
of 4000 cells/well and then cultured for 1, 2, 3, 4, 
or 5 days. The caspase-Glo 3/7 reagent was added 
to the cells at an amount equivalent to the vol-
ume of the culture, shaken for 30 s, and cultured 
for 0.5–3 h at room temperature according to cell 
conditions. The fluorescence of each well was as-
sessed using a microplate reader.

Gene microarray

The genome-wide effect of the silencing of 
CALCOCO2 in the U87 cell line was investigated 
using a GeneChip® PrimeView™ Human Gene Ex-

pression Array (Affymetrix; Thermo Fisher Scien-
tific, Inc., Waltham, MA, USA). Briefly, after cells 
were treated with shControl or shCALCOCO2 for 
72 h, the total mRNA was extracted, quantified, 
reverse-transcribed, and labelled with biotin using 
the GeneChip® 3’ IVT Express Kit (Thermo Fisher 
Scientific). Subsequently, the labelled cDNAs were 
used to hybridise the GeneChip® PrimeView™ Hu-
man Gene Expression Array consisting of 20,000 
genes according to the manufacturer’s protocol. 
After hybridisation, the gene chips were washed 
and scanned using a  GeneChip® Fluidics Station 
450, and images were acquired using GeneChip 
operating software. Data were summarised, and 
GeneSpring software was used for data analysis. 
Differentially expressed genes generated from the 
microarray analyses were analysed by the Ingenu-
ity Pathway Core Analysis (IPA®, QIAGEN, Redwood 
City, CA, USA) to interpret the underlying molecu-
lar mechanisms. The enrichment of gene networks 
was analysed based on the overlap score (p-value 
and z-score). Three main analyses were performed 
using IPA, i.e. analyses of diseases and functions, 
gene networks, and downstream targets.

Assessment of downstream target proteins

To investigate the role of CALCOCO2 in the 
pathogenesis of glioma, the expression levels of 
related proteins in U87 and U251 cells infected 
with shCALCOCO2 or shControl were assessed 
by western blotting. The specific methods were 
as described above, and the protein levels were 
measured.

Statistical analyis

All experiments were repeated thrice and the 
results expressed as means ± standard deviation. 
Statistical differences were evaluated using paired 
Student’s t-tests implemented in SPSS 23.0 (SPSS 
Inc., Chicago, IL, USA). P < 0.05 indicated statisti-
cal significance, and p < 0.01 and p < 0.001 were 
considered highly significant.

Results

CALCOCO2 expression in glioma cells and 
the silencing of CALCOCO2 in U87 and 
U251 cell lines

As shown in Figure 1 A, CALCOCO2 mRNA was 
overexpressed in all four cell lines, and the expres-
sion was highest in U87 and U251 cells. Moreover, 
as shown in Figures 1 B and C, most U87 and U251 
cells were positive for green fluorescent protein 
under a microscope, indicating the efficient silenc-
ing of CALCOCO2 in both cell lines. The relative 
CALCOCO2 mRNA levels for shCALCOCO2-treat-
ed cells were 0.138 ±0.014 and 0.375 ±0.025 for 
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Figure 1. CALCOCO2 silencing in the U87 and U251 cell lines. A – Expression of CALCOCO2 in glioma cell lines. 
qRT-PCR was performed to evaluate the expression levels of CALCOCO2 in four glioma cell lines (U87, U251, U373, 
and A-172). B, C – Microscopic images of U87 and U251 cell lines in the shControl and shCALCOCO2 groups.  
D, E – qRT-PCR analysis of the efficiency of CALCOCO2 silencing at the mRNA level. F, G – Western blot analysis of 
the efficiency of CALCOCO2 silencing at the protein level

Data are shown as means ± SD (n = 5; *p < 0.05, **p < 0.01, and ***p < 0.001).
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the U87 and U251 cell lines, respectively, which 
were significantly lower than those of shControl 
cells (1.002 ±0.071 and 1 ±0.032, respectively, 
p < 0.001; Figures 1 D, E). Consistent with these 
findings, the protein levels of CALCOCO2 were sig-
nificantly downregulated compared with those in 
shControl U87 and U251 cells (Figures 1 F, G). 

Effects of CALCOCO2 silencing on cell growth

As shown in Figure 2 A, CALCOCO2 silencing 
significantly inhibited U87 cell growth compared 
to that of the shControl group (p < 0.05). The cell 
counting results showed that the proliferation 
fold change values for the shCALCOCO2 group in 
the U87 cell line at days 4 and 5 were 2.8 ±0.07 
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Figure 2. Silencing of CALCOCO2 inhibited the proliferation of both U87 and U251 cells. A – Representative images 
of HCS analysis of U87 cell lines in the shControl and shCALCOCO2 groups at various timepoints after lentivirus 
infection. B, C – Statistical analysis of cell numbers for the U87. D – Representative images of HCS analysis of U251 
cell lines in the shControl and shCALCOCO2 groups at various timepoints after lentivirus infection. E, F – Statistical 
analysis of cell numbers for the U87 cell lines

HCS – multiparametric high-content screening.
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Figure 2. Cont. G–J – Cell viability of the U87 and U251 cell lines in the shControl and shCALCOCO2 groups was 
analysed by MTT assay

HCS – multiparametric high-content screening.
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and 4.1 ±0.11, respectively, which were obviously 
lower than those for shControl cells (4.13 ±0.05 
and 6.42 ±0.2, respectively). Similarly, there was 
a significant difference in cell counts between the 
shCALCOCO2 and shControl groups in the U251 
cell line, especially on days 4 and 5, indicating 
the inhibitory effect of CALCOCO2 silencing on 
cell growth. An MTT assay also showed that both 
U87 and U251 cells exhibited slower prolifera-
tion and growth after the silencing of CALCOCO2, 
and these effects were even more pronounced 
on day 5, when the proliferation fold changes in 
the shCALCOCO2 group were 2.163 ±0.0068 and 
1.696 ±0.0672 in U87 and U251 cells, respectively, 
while the proliferation fold changes in the shCon-
trol group were 3.882 ±0.0547 and 3.117 ±0.0793, 
respectively. 

	
Effects of CALCOCO2 silencing on cell 
apoptosis

As shown in Figures 3 A–D, the percentages 
of cell apoptosis in shCALCOCO2-infected U87 
and U251 cell lines, as detected by FCM, were 

11.44 ±0.1178% and 9.32 ±0.0955%, respec-
tively, on day 4 post-CALCOCO2 silencing, while 
the shControl group exhibited significantly de-
creased apoptotic percentages of 4.13 ±0.1308% 
and 4.3 ±0.1%, respectively (p < 0.001). In ad-
dition, caspase3/7 measurements showed that 
the expression levels of caspase3/7 were ap-
proximately 1.72 and 2.07 times greater than 
those in the shControl group for U87 and U251 
cells after infection with shGATAD2A for 3 days 
(Figures 3 E, F). 

Molecular mechanisms underlying the 
effects of CALCOCO2 in gliomas

In the gene microarray analysis, there were 586 
differentially expressed genes, including 357 genes 
that were downregulated and 229 genes that were 
upregulated (Figure 4 A). These discriminative 
genes were functionally analysed by IPA. As shown 
in Figure 4 B, 17 CALCOCO2-related functions and 
diseases were detected by IPA, and infectious dis-
eases, cancer, organismal injury, and abnormalities 
were the highest ranked categories. The gene in-
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Figure 3. Silencing of CALCOCO2 promoted apop-
tosis in both U87 and U251 cells. A – Cell apoptosis 
in U87 was analysed by FCM. B – Quantified results 
of A were presented

Data are shown as mean ± SD (n = 3; *p < 0.05, **p < 0.01, 
and ***p < 0.001).

teraction network confirmed these results (Fig- 
ure 4 C). The silencing of CALCOCO2 markedly up-
regulated CASP1, FMR1, GSK3B, BECR5, CHEK1, 
and FAS and downregulated the other loci (Fig- 
ure 4 D). The expression levels of BBECN1, CASP1, 
FAS, GSK3B, BIRC5, and IL-1β were further anal-
ysed by western blotting (Figure 4 E). 

Discussion

CALCOCO2 is a  coiled-coil domain-containing 
protein-coding gene with an important role in au-
tophagy [15]. It serves as an autophagy receptor 
that interacts with targets and transfers them to 
autophagosomes by binding to LC3. The abnormal 
expression of CALCOCO2 is related to inflamma-
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Figure 3. Cont. C – Cell apoptosis in U251 was ana-
lysed by FCM. D – Quantified results of A were pre-
sented. E, F – Caspase 3/7 activity assays of U87 
and U251 cells

Data are shown as mean ± SD (n = 3; *p < 0.05, **p < 0.01, 
and ***p < 0.001).



Arch Med Sci 6, December / 2025� 2567

A

Figure 4. Molecular mechanism underlying the effect of CALCOCO2 in glioma pathogenesis and progression.  
A–D – IPA analysis of differentially expressed genes obtained from the microarray analysis. A – Heat map of differ-
entially expressed genes. B – Z-scores of related functions and diseases

Data are shown as mean ± SD (n = 3; *p < 0.05, **p < 0.01, and ***p < 0.001).
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Figure 4. Cont. C – Interaction network. Upregulated genes are shown in red, and downregulated genes are shown 
in green. D – Potential downstream genes influenced by CALCOCO2 by IPA. E – Western blotting analysis

Data are shown as mean ± SD (n = 3; *p < 0.05, **p < 0.01, and ***p < 0.001).
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tion and Crohn’s disease [16]. However, its poten-
tial role in tumours, especially gliomas, remains 
a mystery. U87, U373, U251, and A-172 are com-
mon glioma cell lines in the cellular experiments. 
In the present study, we chose these four cell lines 
and selected the most abnormally expressed ones 
to verify the following experiments. Our results 
showed that CALCOCO2 is overexpressed in these 
four glioma cell lines, and the expression was 
highest in U87 and U251 cells, suggesting that it 
may be an important tumour-associated factor in 
the pathogenesis and progression of glioma. In 
the present study, CALCOCO2 was successfully 
silenced using a  lentiviral vector, and the role of 
CALCOCO2 in cell growth and apoptosis was eval-
uated in U87 and U251 cell lines. Cell counting 
and MTT assays demonstrated that the silencing 
of CALCOCO2 significantly inhibited cell growth 
and proliferation. These results suggested that 
CALCOCO2 silencing had antitumor effects via its 
anti-proliferation functions.

In addition to proliferation, apoptosis also has 
a profound impact on the pathogenesis and pro-
gression of tumours. Apoptosis accomplishes pro-
grammed cell death via cell shrinkage and nucle-
ar and DNA fragmentation [17]. Further, multiple 
human diseases are influenced by apoptosis, in-
cluding tumours, immunological diseases, sepsis, 
and neurodegenerative changes [18–21]. Previous 
studies have demonstrated an important role of 
apoptosis in glioma; promoting apoptosis of glio-
ma cells is a potential strategy for tumour therapy 
[22, 23]. In this study, FCM and caspase-glo 3/7 
assays indicated that tumour apoptosis increased 
significantly after CALCOCO2 silencing. Thus, apo- 
ptosis is a crucial mechanism by which CALCOCO2 
influences gliomas.

To further assess the molecular mechanisms 
underlying CALCOCO2-associated glioma, the U87 
glioma cell line was evaluated by a  microarray 
analysis, and the results were analysed by IPA. 
The silencing of CALCOCO2 influenced the expres-
sion of hundreds of genes associated with vari-
ous functions and diseases. CALCOCO2 was most 
strongly associated with cancer, supporting the 
important role of CALCOCO2 in gliomas. Other rel-
evant functions, such as cell cycle, cell death and 
survival, cell growth, and proliferation, are also 
correlated with pathogenesis and progression [24, 
25]. To further clarify the downstream biological 
alterations, several genes involved in cancer de-
velopment were chosen, and a  core CALCOCO2 
network including multifarious genes related to 
cancer was mapped. Several cancer-related genes 
exhibited significant differential expression after 
the silencing of CALCOCO2. In particular, the well-
known pro-apoptosis genes FAS and CASP1 were 
significantly upregulated and the autophagy-re-

lated gene BECN1 was markedly downregulated 
by CALCOCO2 silencing.

We then used western blotting to investigate 
the expression of BECN1, CASP1, FAS, GSK3B, 
BIRC5, and IL-1β at the protein level. FAS is a key 
death receptor; when combined with FasL, the con-
formation of FAS is altered, which then triggers the 
cascade reaction of apoptosis [26, 27]. Interleukin 
(IL)-1β (IL-1β) is a cytokine in the family of chemo-
kines, also known as lymphocyte stimulating factor 
[28]. In the cellular process, it is mainly produced by 
activated mononuclear macrophages and is related 
to immune response [29, 30]. CASP1 plays a crucial 
role in innate immunity by activating the proinflam-
matory cytokine IL-1β [31]. GSK3β is a proline-guid-
ed serine/threonine protein kinase involved in 
energy metabolism, nerve cell development, and 
body morphogenesis [32]. BIRC5 is a  member of 
the inhibitor of apoptosis (IAP) gene family, which 
encodes negative regulatory proteins that prevent 
apoptotic cell death [33, 34]. It has been report-
ed that activating CASP1, FAS, GSK3B, BIRC5, and  
IL-1β may induce cell apoptosis [35–39]. In this 
study, the protein levels of CASP1, FAS, GSK3B, 
BIRC5, and IL-1β were upregulated by the silencing 
of CALCOCO2, in accordance with the microarray 
results. These results suggested that the up-reg-
ulation of CASP1, FAS, GSK3B, BIRC5, and IL-1β 
induced by the inhibition of CALCOCO2 result in 
increased tumour apoptosis. In addition, we detect-
ed the significant downregulation of BECN1 after  
CALCOCO2 silencing. BECN1 is a  key autopha-
gy-promoting gene that maintains the balance 
between cell death and survival [40, 41]. The ac-
tivation of tumour autophagy is decreased using 
a BECN1-targeted microRNA [42]. Additionally, the 
size and number of breast carcinoma cells decrease 
after the knockdown of BECN1 [43]. Autophagy 
in tumour cells is activated in response to cellu-
lar stress [12]. The silencing of autophagy-related 
genes can decrease tolerance to extreme exter-
nal conditions and even contribute to tumour cell 
death [44–46]. Previous studies have shown that 
there is a  relationship between CALCOCO2 and 
autophagy [13, 15]. The results of western blotting 
and gene microarray analyses in this study suggest 
that the mechanisms underlying CALCOCO2-medi-
ated glioma pathogenesis and progression are also 
associated with autophagy.

In conclusion, the results of this study demon-
strated that the knockout of CALCOCO2 could in-
hibit glioma by influencing autophagy and promot-
ing apoptosis via the activation of FAS and CASP1.
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