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Abstract

Introduction: The extreme health and economic problems in the world due
to the SARS-CoV-2 infection have led to an urgent need to identify potential
drug targets for treating coronavirus disease 2019 (COVID-19). The present
state-of-the-art tool-based screening was targeted to identify drug targets
among clinically approved drugs by uncovering SARS-CoV-2 helicase inhibi-
tors through molecular docking analysis.

Material and methods: Helicase is a vital viral replication enzyme, which
unwinds nucleic acids and separates the double-stranded nucleic acids into
single-stranded nucleic acids. Hence, the SARS-CoV-2 helicase protein 3D
structure was predicted, validated, and used to screen the druggable tar-
gets among clinically approved drugs such as protease inhibitor, nucleoside
reverse transcriptase inhibitor, and non-nucleoside reverse transcriptase in-
hibitors, used to treat HIV infection using molecular docking analysis.
Results: Interaction with SARS-CoV-2 helicase, approved drugs, vapreotide
(affinity: —12.88; S score: —=9.84 kcal/mol), and atazanavir (affinity: —11.28;
S score: =9.32 kcal/mol), approved drugs for treating AIDS-related diarrhoea
and HIV infection, respectively, are observed with significantly low binding
affinity and MOE score or binding free energy. The functional binding pock-
ets of the clinically approved drugs on SARS-CoV-2 helicase protein molecule
suggest that vapreotide and atazanavir may interrupt the activities of the
SARS-CoV-2 helicase.

Conclusions: The study suggests that vapreotide may be a choice of drug for
wet lab studies to inhibit the infection of SARS-CoV-2.

Key words: COVID-19, SARS-CoV-2, clinically approved drugs, molecular
docking, helicase, antiretroviral agents.
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Introduction

Mysterious pneumonia has been reported during
December 2019. The causative agent for this pneu-
monia was identified to be a novel coronavirus
(nCoV) named earlier as 2019-nCoV and now termed
coronavirs 2. The disease caused by SARS-CoV-2 was
named as coronavirus disease 2019 (COVID-19).
This virus belongs to the subfamily Coronavirinae;
this group of viruses is known to cause respiratory
and gastrointestinal infections [1]. The first corona-
virus was reported in the 1960s because it caused
mild respiratory symptoms; these viruses were
given the names (i) human CoV 229E (HCoV-229E)
and (ii) HCoV-0OC43 [2]. In 2003, sever acute respi-
ratory syndrome-Cov (SARS-CoV) was identified as
the agent that caused a global pandemic [3]. As of
03:00 GMT+3, 9 April 2020, more than 200 countries
have been affected around the world, with a total of
1,436,198 diagnosed cases and 85,522 deaths [4].
Compared to the coronavirus reported to cause an
outbreak in the Middle East, so-called MERS-CoV,
the mortality rate for SARS-CoV-2 is relatively low;
however, the number of affected cases is extremely
high [2, 4, 5]. The latest SARS-CoV-2 was isolated by
Chinese scientists, and the genetic sequence of the
virus is now available [6]. The new outbreak is be-
lieved to be related to meat that derived from wild
or captive sources at a seafood market [7]. All of the
human CoV are known to have an animal source:
SARS-CoV, MERS-CoV, HCoV-NL63, and HCoV-229E
are considered to have originated from bats; HCoV-
0C43 and HKU1 probably originated from rodents
[8] The recurrent corona outbreaks pose a global
health threat as a new outbreak could not be avoid-
ed due to the interaction between human and ani-
mals, as well as human to human contact [1]. This
urges the need to develop new curative treatment
strategies and possible vaccines.

Helicase is a viral replication enzyme in corona-
virus, which has the characteristics of unwinding
DNA and RNA and separating them into two sin-
gle-stranded nucleic acids [9, 10]. These vital char-
acteristics of coronavirus helicase describe the im-
portance of helicase as a druggable target [9-11].
In the present study, SARS-CoV-2 helicase was
selected to identify helicase inhibitors by using
computational state-of-the-art tools to identify
drug targets among clinically approved drugs. The
study suggests the best active clinically approved
drugs against SARS-CoV-2 helicase through mo-
lecular docking analysis.

Material and methods

Amino acid sequence retrieval and
prediction of secondary structure

The ORFlab polyprotein sequence of SARS-
CoV-2 isolate 2019-nCoV/USA-WA1-F6/2020 (Gen-

Bank: QHU79203.1) was retrieved from NCBI data-
base on 12 Feb 2020 (Figure 1). The helicase region
was selected based on the amino acid sequence
alignment using MAFFT [12] and MEGA7 [13]
with Bat SARS, SARS-CoV, MERS-CoV, and other
sequences. Phylogeny was constructed (Figures 2
and 3). For the homology modelling, the sequences
of helicase were searched against the protein data-
base using BLAST-P [14]. The proteins having PDB
Id: 6jyt.2.A [15] and 5wwp.1.A [16] were selected
for use as templates for 3D modelling of helicase
protein of SARS-CoV-2.

Retrieval of SARS-CoV-2 helicase amino acid sequence
from NCBI

Y

Sequences retrieval PDB-BLAST alignment using MAFFT

Y

Similarity screening and confirmation of sequence
through phylogenetic analysis using MEGA7

Y

Finalising the template for 3D modelling of helicase
using SWISS MODEL server

Y

Visualized final 3D model using PYMOL

Y

Validating 3D model using PROCHECK & PDBsum

Retrieval of drug from DrugBank and PubChem
database in SDF format

A A

Energy minimization of Energy minimization of
ligand using MOE receptor using MOE

A Y

Molecular Docking and energy computation using MOE

Y

Prediction of binding interactions of drug-helicase using
default parameters MOE

Y

Selection of the best inhibitors for SARS-CoV-2 helicase
based on lowest binding affinity and binding free energy

Figure 1. Flow chart of the methodology for the se-
lection of the best inhibitor of SARS-CoV-2 helicase
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Figure 2. Phylogenetic analysis of SARS-CoV-2 helicase protein using RefSeq-protein BLAST results by maximum
likelihood method. “The evolutionary history was inferred by using the Maximum Likelihood method based on the
JTT matrix-based model [33]. The bootstrap consensus tree inferred from 500 replicates [34] is taken to represent
the evolutionary history of the taxa analysed [34]. Branches corresponding to partitions reproduced in less than 50%
bootstrap replicates are collapsed. Initial tree(s) for the heuristic search was/were obtained automatically by apply-
ing Neighbour-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then se-
lecting the topology with superior log likelihood value. The analysis involved 101 amino acid sequences. All positions
containing gaps and missing data were eliminated. There were a total of 74 positions in the final dataset. Evolution-
ary analyses were conducted in MEGA7 [13].” Sequence of COVID-19 helicase used for the phylogenetic analysis:
DAVVYRGTTTYKLNVGDYFVLTSHTVMPLSAPTLVPQEHYVRITGLYPTLNISDEFSSNVANYQKVGMQKYSTLQGPPGTGKSH-
FAIGLALYYPSARIVYTACSHAAVDALCEKALKYLPIDKCSRIIPARARVECFDKFKVNSTLEQYVFCTVNALPETTADIVVFDEISMAT-
NYDLSVVNARLRAKHYVYIGDPAQLPAPRTLLTKGTLEPEYFNSVCRLMKTIGPDMFLGTCRRCPAEIVDTVSALVYDNKLKAH-
KDKSAQCFKMFYKGVITHDVSSAINRPQIGVVREFLTRNPAWRKAVFISPYNSQNAVASKILGLPTQTVDSSQGSEYDYVI-
FTQTTETAHSCNVNRFNVAITRAKVGILCIMSDRDLYDKLQFTSLEIPRRNVATLQAENVTGLFKDCSKVITGLHPTQAPT
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Figure 3. Phylogenetic analysis by Maximum Likelihood method of SARS-CoV-2 helicase protein using PSI-BLAST
results. “The evolutionary history was inferred by using the Maximum Likelihood method based on the JTT ma-
trix-based model [34]. The tree with the highest log likelihood (-3764.53) is shown. Initial tree(s) for the heuristic
search were obtained automatically by applying Neighbour-Join and BioNJ algorithms to a matrix of pairwise dis-
tances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The anal-
ysis involved 501 amino acid sequences. All positions containing gaps and missing data were eliminated. There
were a total of 384 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [13]”

Ramachandran plot statistics using the PDBsum
structural analysis server was used to validate the

An automated SWISS MODEL server was used 3D models [18]. The best model among the gen-
to predict the structure by homology model- erated models was selected based on the criteria
ling [8]. The modelled PDB was visualised using  of having the minimum number of residues in the
PYMOL [17] and validated using PROCHECK [18].  gjsallowed region and the highest number of resi-

Prediction and validation of 3D structure
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dues in the allowed region, which was considered
as a suitable model for helicase protein of SARS-
CoV-2, and the same was used for further analysis.
In the validated model, 3D atomic coordinates of
the receptor were used to verify potential sites for
binding of clinically approved drugs and docking.

Clinically approved drugs and molecular
docking

Structure data of all the clinically approved
drugs (such as protease inhibitors, nucleoside re-
verse transcriptase inhibitors, and non-nucleoside
reverse transcriptase inhibitors) used to treat HIV
(human immunodeficiency virus) infection were
taken from the DrugBank and PubChem data-
bases (Table 1) [19, 20]. All the clinically approved
drugs screened in the study are listed in Table |
with the mechanism of action based on DrugBank
and others [19-21 http://www.myhealth.gov.my/
en/hiv-theraphy/]. The clinically approved drugs
were obtained from the PubChem database as
structure-data file (SDF) format, which were used
in MOE software. Energy minimisation was com-
pleted through MOE tools followed by protonation
the structure with default parameters [21, 22].
The selected approved drug molecules were sub-
jected to a Lipinski filter and used for further anal-
ysis. Helicase-approved drug interaction analysis
was done through flexible molecular docking by
3D protonation followed by energy minimisation
in MOE software [23].

Results

The amino acid sequences of 2019-nCoV/USA-
WA1-F6/2020 (GenBank: QHU79203.1) helicase
region were blasted against the PDB-BLAST data-
base to identify a proper template for homology
modelling. Helicase has been considered as a tar-
get by similarity screening through phylogenetic
analysis of SARS-CoV-2 protein sequence (420
amino acids) from the data retrieved through Ref-
Seq protein BLAST and PSI-BLAST, which revealed
that the helicase sequence is similar to helicase
protein of severe acute respiratory syndrome-re-
lated coronavirus and bat coronavirus (Figures 2
and 3). The proteins having PDB ID: 6jyt.2.A and
5wwp.1.A were checked initially as appropriate
templates for 3D modelling of helicase protein
region in SARS-CoV-2, and finally 6jyt.2.A was se-
lected as an appropriate template due to 99.78%
sequence identity between 6jyt.2.A and the que-
ry. The 3D structure of helicase protein was built
based on the target-template alignment using
ProMod3 by SWISS MODEL The best model of
helicase protein was selected with QMEAN-score
—1.71 and highest resolution 3.00A, and the mod-
el was validated using PDBsum structural anal-

ysis. The helicase protein modelled structure’s
stereochemical stability was estimated through
a Ramachandran plot, which indicated that the 3D
structure of SARS-CoV-2 helicase protein is a good
quality model with 89.4% amino acid residues of
predicted helicase structure in the favoured region
and the remaining amino acid residues in the al-
lowed region (10.6%); furthermore, none of the
residues are in the disallowed regions (Figure 4).

Molecular docking

The modelled helicase protein of SARS-CoV-2
was analysed by MOE software for the heli-
case-approved drug interaction, initially by 3D
protonation, energy minimisation and prediction
of active site and properties for the 21 clinically
approved drugs using default parameters. The
SARS-CoV-2 helicase protein docked with the
21 anti-HIV clinically approved drugs. Further-
more, the recently approved anti-influenza drug
(favipiravir) and widely used hydroxychloroquine
were docked separately in MOE (Figure 5, Table I).

The 23 input clinically approved drugs were
screened based on binding affinity, London dG
scoring function and MOE score or GBVI/WSA
binding free energy (S, kcal/mol). Table I is sort-
ed according to binding affinity and MOE score
(S, binding free energy kcal/mol). The helicase-ap-
proved drug interaction through molecular dock-
ing predicted that vapreotide (affinity: —12.88;
S score: —9.84 kcal/mol) and atazanavir (affin-
ity: —11.28; S score: —9.32 kcal/mol) are the
most potent inhibitors of helicase of SARS-CoV-2
amongst clinically approved drugs (Table I). Fur-
thermore, we visualised the interaction between
vapreotide and atazanavir and SARS-CoV-2 heli-
case, as shown in Figure 5. The residue position
of GLY79 and GLN331 of SARS-CoV-2 helicase pro-
tein showed the hydrogen bond with vapreotide
and atazanavir, respectively (Figures 5 A, C) and it
shows a strong affinity (Table I). The active residue
of helicase, GLY79, and GLN331 were satisfacto-
ry at a distance of 2.44A and 2.43 A from bound
vapreotide and atazanavir, respectively (Table I).
Furthermore, both predicted drugs satisfy the con-
dition of the Lipinski rule of five, such as partition
coefficient (logP), hydrogen bond acceptor, and
donor (Table I).

Discussion

Coronavirus disease 2019 (COVID-19) cased by
SARS-CoV-2 (previously 2019-nCoV) is a global
pandemic health threat [4, 7, 8, 24-26]. The pres-
ent rapid molecular docking study was carried
out considering the extreme health and economic
problems arising due to COVID-19 and the conse-
quent high mortality all over the world, to screen
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Figure 4. Homology model of helicase. A — Helicase homology model. B — Model-Template Alignment. C — Ramach-
andran plot of SARS-CoV-2 helicase from PDBsum

anti-SARS-CoV-2 drugs among approved drugs for
treating HIV infection. Characterisation and bio-
chemical properties of helicase in severe acute re-
spiratory syndrome CoV showed that it unwound
DNA and RNA [9, 11]. Helicase enzyme in coro-
navirus is a prominent viral replication enzyme.
Helicases are evolutionarily conserved proteins in
coronaviruses and Nidovirales [27]. Furthermore,
double-stranded nucleic acids are separated into
two single-stranded nucleic acids by helicases,
which catalyse the separation [10]. Earlier studies
have described the importance of coronavirus he-
licase on the therapeutic target [10]. Helicase can
hydrolyse all ribonucleotide triphosphates and de-
oxyribonucleotide triphosphates in the SARS coro-
navirus [9, 11]. Helicase enzyme in coronavirus in-
creases the unwinding of nucleic acid by twofold
[10]. Hence, SARS-CoV-2 helicase was selected to
identify helicase inhibitors through state-of-the-
art tool-based screening to reveal the anti-SARS-
CoV-2 drug targets. We used 23 clinically approved
drugs previously listed for the treatment of HIV
infection [19, 21]. The phylogenetic analysis of
SARS-CoV-2 helicase amino acid (420 amino acid)
sequence against various sequence data retrieved
through RefSeq protein BLAST and PSI-BLAST
revealed > 90% similarity with SARS CoV in mo-
lecular phylogenetic analysis by maximum likeli-

hood method with 500 replications in bootstrap
[13]. Furthermore, the selected (PDB Id: 6jyt.2.A)
template from severe acute respiratory syndrome
coronavirus [15] showed 99.78% sequence identi-
ty with the SARS-CoV-2 helicase.

Currently used drugs [28], favipiravir-SARS-
CoV-2 helicase interaction, and hydroxychloro-
quine-SARS-CoV-2 helicase interaction have less
binding affinity compared to most of the drugs
screened in the study. The SARS-CoV-2 helicase
and approved drug interaction using the modelled
and validated druggable helicase protein predict-
ed vapreotide and atazanavir as targets among
the 23 approved drugs, as medications for HIV in-
fection. Atazanavir is a protease inhibitor that is
used to treat HIV. It inhibits HIV-1 protease, which
is needed to cleave the viral polyprotein precur-
sors. The absence of cleavage results in immature
viral particles [29, 30]. Vapreotide was used for
treating patients with AIDS-related diarrhoea [31],
which showed the lowest binding free energy in-
teraction with SARS-CoV-2 helicase compared to
other drug molecules. The metabolism of ataza-
navir might decrease when used together with
vapreotide; hence, detailed studies are needed for
use of the combination [32]. The lack of wet labo-
ratory experimental works on the effect of drugs
on viruses is considered to be a major limitation
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of the study. It indicates that vapreotide is a po-
tent inhibitor of SARS-CoV-2 helicase and may be
an option for treating COVID-19 after detailed wet
lab studies.

In conclusion, this study identified vapreotide
as a potential drug with the lowest binding free
energy on interactions with SARS-CoV-2 helicase.
The designed drug selection pipeline will serve in
the future for novel usage of clinically approved
drugs. The prediction in the study may be bene-
ficial to determine the best drugs to manage the
fast spread of COVID-19.
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