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Abstract

Introduction
Osteoporotic spinal fracture, characterized by high morbidity and mortality, has become a health
burden for the aging population. The inactivation of the Wnt signaling has been proved to promote
osteoporotic fractures. Our study is to identify the key genes, miRNAs, and pathways that possibly
lead to osteoporosis and osteoporotic spinal fracture after the aberrant activation or mutation of Wnt
signaling pathway.

Material and methods
Impute R package was used to screen out the differently expressed genes (DEGs) and differently
expressed miRNAs in GEO datasets. STRING and Metascape were used to construct protein-protein
interactions (PPI) network, gene ontology (GO) enrichment and pathway enrichment. The relative
expression of ADCY2, ADCY5, and GRIA1 in bone tissues was measured by RT-qPCR.

Results
562 DEGs were screened out using Impute R package, and a PPI network involving the 562 DEGs
was constructed using STRING and Metascape. GO enrichment and pathway enrichment showed
that the 562 DEGs were associated with membrane protein-related signaling pathways. Then, 75
genes between the target genes of miR-18a-3p and 562 DEGs were overlapped using Venny 2.1.0.
Finally, the cAMP signaling pathway was identified as the key pathway, whilst ADCY2, ADCY5, and
GRIA1 were identified the key genes that possibly participate in osteoporotic spinal fracture after the
manipulation of Wnt signaling pathway, which was further proved by their excessive downregulation
in osteoporotic patients with spinal fracture.

Conclusions
The results demonstrated that ADCY2, ADCY5, and GRIA1 were the key genes to regulate the
cAMP signaling pathway in osteoporotic spinal fracture after abnormal Wnt signaling.
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Abstract 1 

Introduction: Osteoporotic spinal fracture, characterized by high morbidity and mortality, has 2 

become a health burden for the aging population. The inactivation of the Wnt signaling has 3 

been proved to promote osteoporotic fractures. Our study is to identify the key genes, miRNAs, 4 

and pathways that possibly lead to osteoporosis and osteoporotic spinal fracture after the 5 

aberrant activation or mutation of Wnt signaling pathway. 6 

Material and methods: Impute R package was used to screen out the differently expressed 7 

genes (DEGs) and differently expressed miRNAs in GEO datasets. STRING and Metascape 8 

were used to construct protein-protein interactions (PPI) network, gene ontology (GO) 9 

enrichment and pathway enrichment. The relative expression of ADCY2, ADCY5, and GRIA1 10 

in bone tissues was measured by RT-qPCR.  11 

Results: 562 DEGs were screened out using Impute R package, and a PPI network involving 12 

the 562 DEGs was constructed using STRING and Metascape. GO enrichment and pathway 13 

enrichment showed that the 562 DEGs were associated with membrane protein-related 14 

signaling pathways. Then, 75 genes between the target genes of miR-18a-3p and 562 DEGs 15 

were overlapped using Venny 2.1.0. Finally, the cAMP signaling pathway was identified as the 16 

key pathway, whilst ADCY2, ADCY5, and GRIA1 were identified the key genes that possibly 17 

participate in osteoporotic spinal fracture after the manipulation of Wnt signaling pathway, 18 

which was further proved by their excessive downregulation in osteoporotic patients with spinal 19 

fracture.   20 

Conclusions: The results demonstrated that ADCY2, ADCY5, and GRIA1 were the key genes 21 

to regulate the cAMP signaling pathway in osteoporotic spinal fracture after abnormal Wnt 22 

signaling.  23 

 24 
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Introduction 1 

Osteoporosis is a common disorder caused by the imbalance between osteoblastic bone 2 

formation and osteoclastic bone resorption [1]. Age is proportional to the risk of development 3 

of osteoporosis [2]. Due to the absence of estrogen, women after menopause were at the highest 4 

risk of getting osteoporosis according to a previous study [3]. Certainly, the absence of 5 

androgenic hormones could also cause osteoporosis in men [4]. Besides, other factors also led 6 

to osteoporosis such as metabolic diseases, anorexia nervosa, thyroid and renal dysfunctions or 7 

dietary as well as lifestyle habits like low calcium intake or immobilization [5]. 8 

Osteoporosis can lead to a reduction in bone mass, deterioration in bone microarchitecture, 9 

susceptibility to skeletal fragility, and increased risk of fracture [6, 7]. The patients suffering 10 

osteoporotic fractures particularly spinal fracture are characterized by high morbidity and 11 

mortality so that the quality of life is significantly decreased. It has been reported that up to 12 

one-third of patients will sustain a new fracture within 5 years after the initial fracture [8]. 13 

Although anti-osteoporosis drugs reduce the risk of osteoporotic fractures by 20-70% in clinical 14 

trials depending on the drug and fracture type, the persistence with osteoporosis therapy is poor, 15 

and the one-year persistence ranges from 18 to 78% between studies in the real-world [9-14]. 16 

In fact, the postmenopausal women over age 55 are sensitive to the osteoporosis-related spinal 17 

fracture [15]. Therefore, understanding the key mechanism of osteoporotic fractures is crucial 18 

for treating spinal fracture. 19 

Wingless-related integration site (Wnt)/β-catenin signaling pathway is the key pathway of bone 20 

metabolism to regulate bone mass. The defective Wnt signaling causes several monogenic 21 

skeletal disorders such as osteoporosis-pseudoglioma syndrome, van Buchem disease, and 22 

sclerosteosis [16-18]. For example, WNT7B enhanced the ability of bone formation by 23 

increasing osteoblast activity to increase bone mass [19]. Glucocorticoids depressed bone 24 

formation by inhibiting Wnt/β-catenin signaling pathway [20]. Laine CM et al. found that the 25 

mutation of Wnt1 could decrease the activity of the Wnt/β-catenin signaling pathway in bone 26 

leading to the decrease of the number of bone cells, damage of bone formation, low bone mass, 27 

and skeletal fragility [21]. If the skeletal fragility happened in vertebrae, the spinal fracture 28 

might be caused by simple movements such as coughing or sneezing. Mäkitie RE et al. also 29 
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proved that impaired WNT/β-catenin signaling progressively changed the the spinal structures, 1 

which increased the risk of compression fractures especially after the age of 50 [22].  2 

In this study, the expression profiles of mRNA and miRNA after manipulation of Wnt signaling 3 

were obtained from GEO DataSets. Then, the bioinformatic analysis including GO enrichment, 4 

KEGG enrichment, Reactome pathway, and PPI network was performed to analyze the key 5 

pathway, miRNAs, and genes after the mutation of the Wnt signaling pathway in osteoporosis 6 

and osteoporotic fractures. In the long term, our study should contribute to the treatment of 7 

osteoporotic fractures especially spinal fracture. 8 

 9 

Materials & Methods 10 

Clinical samples 11 

A total of 42 patients diagnosed with osteoporosis and spinal fracture between Sep 2018 and 12 

March 2020 and 45 age-matched healthy donors with unintentional spinal fractures (served as 13 

normal controls) were enrolled in this study. The small needle bone biopsies from spine were 14 

obtained from the subjects. All participants signed written informed consents before biopsy 15 

collection. This study has been approved by the Ethics Committee of the Affiliated Huai’an 16 

Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an. 17 

Data collection and array data analysis 18 

Two expression profile data sets, GSE34747 and GSE103473, relating to osteoporosis and 19 

peripheral and spinal fracture were downloaded from GEO database 20 

(https://www.ncbi.nlm.nih.gov/gds/). The differently expressed genes (DEGs) of GSE34747 21 

between Wnt activation samples (n=3) and normal samples (n=3) were identified using impute 22 

R package. The differently expressed miRNAs of GSE103473 between Wnt1 mutation samples 23 

(n=12) and normal samples (n=12) were identified using impute R package. The DEGs and 24 

differently expressed miRNAs were selected with the log |fold change| value ≥1 and P-value 25 

＜ 0.05. The common genes between DEGs of GSE34747 and the target genes of miRNAs of 26 

GSE103473 were overlapped by Venny 2.1.0.  27 

The construction and analysis of protein-protein interactions (PPI) network 28 

To construct the PPI network, DEGs were uploaded to STRING (https://string-db.org/) and 29 
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Metascape (http://metascape.org/gp/index.html#/main/step1), respectively. STRING was an 1 

online tool to predict and visualize the PPI which includes direct and indirect associations. 2 

Metascape was an online gene annotation and analysis tool, which could analyze and visualize 3 

the PPI network. The analysis of PPI by Metascape algorithm depends on BioGrid, InWeb_IM, 4 

OmniPath databases. Molecular Complex Detection (MCODE) was applied to identify 5 

connected network components.    6 

Gene ontology (GO) enrichment and pathway enrichment analysis 7 

GO enrichment of DEGs including biological process, molecular function, and cellular 8 

component was analyzed using STRING and Metascape. Reactome pathway database was a 9 

relational database of signaling and metabolic molecules. STRING PPI network construction 10 

was performed to analyze the Reactome pathways of DEGs. Kyoto Encyclopedia of Genes and 11 

Genomes (KEGG) pathways containing the information of the network of genes or molecules 12 

were also analyzed by STRING and Metascape.  13 

Quantitative Real-time PCR (RT-qPCR)   14 

Total RNA was extracted from bone tissues from spines using TRIzol reagent (Invitrogen, USA) 15 

and quantified using NanoDrop 2000 (Thermo Fisher Scientific, USA). Then 2 ug RNA was 16 

subjected to reverse transcription PCR to generate cDNA through the use of PrimeScriptVR RT 17 

reagent Kit (Takara, Japan), the qRT-PCR was then conducted to detect the expression of target 18 

genes using SYBR Premix Ex Taq (Takara, Japan). GAPDH was applied as the internal control, 19 

and the gene expression was calculated using 2−ΔΔCT method. The measurement data were 20 

shown as mean ± standard deviation (SD), and the difference between two groups was analyzed 21 

by student’s t-test using GraphPad Prism 8.0 (GraphPad Software, USA). Statistical 22 

significance was considered when P<0.05. 23 

Results 24 

GO enrichment and Reactome pathway enrichment of 562 DEGs using STRING 25 

Wnt signaling was associated with osteoporosis and could be activated by lithium. GSE34747 26 

including the LiCl-stimulated samples (Wnt activation samples) and normal samples was 27 

analyzed by R software. Hierarchical clustering analysis showed that the datasets were well 28 

clustered: most genes in Wnt activation samples and normal samples tended to be grouped in 29 
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two clusters, while there were limited overlapped parts (Fig.1A). For the functional enrichment 1 

analysis by STRING, 562 DEGs were finally selected with the fold change value ≥1 and P-2 

value＜0.05 and displayed the complicated PPI network (Fig.1B). GO enrichment showed that 3 

the biological process of 562 DEGs was associated with the chemical stimulus, the molecular 4 

function of 562 DEGs was associated with receptor activity, and cellular component was 5 

associated with membrane (Fig.1C). Meanwhile, Reactome pathway analysis revealed that 6 

GPCR was the key signaling which had been proved to be related to osteoporosis. These results 7 

demonstrated that 562 DEGs might be associated with membrane protein-related signaling 8 

pathways. 9 

The analysis of process enrichment, pathway enrichment, and PPI network of DEGs using 10 

Metascape  11 

To further identify the function of 562 DEGs, another algorithm, Metascape, was used to 12 

analyze and visualize the key processes and pathways. As shown in Fig.2A, the calcium 13 

signaling pathway which was consistent with the GO analysis results of STRING, was the key 14 

pathway. In addition, the PPI network constructed by Metascape displayed 5 MCODEs (Fig.2B). 15 

The top 3 MCODEs were calcium signaling pathway, cAMP signaling pathway, and 16 

anterograde trans-synaptic signaling. The results of Metascape identified that the calcium 17 

signaling pathway and cAMP signaling pathway were the key pathways. 18 

The identification of overlapping genes between the target genes of miRNAs and DEGs 19 

GSE103473 was the miRNA profile of spinal fracture involving the Wnt1 mutation samples 20 

and normal samples. Hierarchical clustering analysis showed that most miRNAs in Wnt 21 

mutation samples and normal samples tended to be grouped in two clusters, while there was 22 

some degree of overlapping (Fig.3A). miR-34a-5p, miR-22-3p, miR-143-5p, miR-18a-3p, 23 

miR-31-5p, and miR-223-3p were the top 6 differently expressed miRNAs of GSE103473. 24 

Venny 2.1.0 was then used to select the overlapping genes between the target genes of the top 25 

6 differently expressed miRNAs and the formerly identified 562 DEGs of GSE34747. Due to 26 

the most overlapping genes in miR-18a-3p, miR-18a-3p and overlapping 75 genes were 27 

screened out, which was associated with osteoporosis and spinal fracture (Fig.3B-G).  28 

The identification of key genes using STRING and Metascape 29 

To explore the biological functions of 75 genes involving in osteoporosis and peripheral and 30 
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spinal fracture, STRING was first used to construct the PPI network of the 75 genes. The PPI 1 

network analysis showed that ADCY5, ADCY2, MLLT4, and GRIA1 were the genes associated 2 

with the cAMP signaling pathway (Fig.4A). Similar to the result of STRING, process and 3 

pathway analysis by Metascape also revealed that the cAMP signaling pathway was the key 4 

pathway (Fig.4B). Compared the results of STRING with Metascape, ADCY2, ADCY5, and 5 

GRIA1 were identified as the significant genes that were associated with the cAMP signaling 6 

pathway and possibly participate in osteoporosis and spinal fracture when Wnt signaling was 7 

manipulated (Fig.4C). 8 

The expression of ADCY2, ADCY5, and GRIA1 in osteoporotic patients with spinal 9 

fracture  10 

To further investigate the association of ADCY2, ADCY5, and GRIA1 with spinal fracture, we 11 

collected bone tissues from osteoporotic patients with spinal fracture (n=42) and age-matched 12 

healthy donors (n=45), and examined the expression of ADCY2, ADCY5, and GRIA1 mRNA 13 

by RT-qPCR. The results showed an approximately 50% downregulation of ADCY2 mRNA in 14 

the bone tissues of osteoporotic patients compared with the healthy donors (normal group) (Fig. 15 

5A). Meanwhile, the expression of ADCY5 and GRIA1 mRNA exhibited a 60% 16 

downregulation in the bone tissues of osteoporotic patients (Fig. 5B-C). These results indicated 17 

that ADCY2, ADCY5, and GRIA1 might play a regulatory role in the occurrence of 18 

osteoporosis with spinal fracture. 19 

Discussion 20 

Spinal fracture induced by osteoporosis has become a health burden of the aging population, 21 

especially in postmenopausal women over 55. The activation of the Wnt/β-catenin signaling 22 

pathway has been proved to prevent osteoblast and osteocyte apoptosis so it acts as a negative 23 

role in osteoporosis [20]. In this study, the GO analysis and Reactome pathway analysis 24 

revealed that 562 DEGs might be associated with membrane protein-related signaling pathways 25 

especially calcium signaling pathway and cAMP signaling pathway. By analyzing the miRNA 26 

microarray, the 75 target genes of miR-18a-3p were screened out for further PPI network 27 

construction and GO term enrichments. Both STRING and Metascape enrichments identified 28 

that the cAMP signaling pathway was a crucial pathway. By comparing the results of STRING 29 
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and Metascape, ADCY2, ADCY5, and GRIA1 were thought to be the key genes participating 1 

in osteoporosis and spinal fracture after the manipulation of Wnt signaling. Lastly, the 2 

aberrantly downregulated ADCY2, ADCY5, and GRIA1 in osteoporotic patients with spinal 3 

fracture further suggested the potential role of the three genes in the pathogenesis of 4 

osteoporotic spinal fracture. 5 

Wnt/β-catenin signaling pathway promoted the regeneration of osseous tissue by stimulating 6 

proliferation and differentiation of osteoblasts [23, 24]. The Wnt proteins are secreted 7 

glycoproteins, which can stimulate the signaling pathway by binding to LRP5/6 and co-receptor 8 

Fizzled [25]. Then, the receptors including Dsh, Axin, and APC can inhibit the activity of 9 

glycogen synthase kinase 3 (GSK3) to prevent the phosphorylation of β-catenin [26]. The 10 

phosphorylation of β-catenin results in the degradation of β-catenin so that the Wnt/β-catenin 11 

is inactivated. Kim JH et al. found that β-catenin expression in bone tissues from patients 12 

suffering from osteoporotic fractures was reduced, indicating that the decrease of β-catenin 13 

could cause osteoporotic fractures [24]. Additionally, the Wnt/β-catenin signaling pathway 14 

have also been reported to participate in the regulation of chondrocyte proliferation and 15 

apoptosis in osteoarthritis [27]. In our study, impaired Wnt signaling led to significant miR-16 

18a-3p upregulation that possibly participated in osteoporosis and spinal fracture. 75 genes that 17 

were both target genes of miR-18a-3p and DEGs caused by proactive Wnt activation went 18 

through STRING and Metascape interrogation, which demonstrated that the cAMP signaling 19 

pathway was the key pathway that might be associated with Wnt activation or mutation. We 20 

then concluded that the activation or inactivation of the Wnt signaling pathway could affect the 21 

cAMP signaling, which therefore affecting osteoporosis, and spinal fracture processes. 22 

Cyclic 3’,5’-adenosine monophosphate (cAMP) is an important second messenger in bone 23 

homeostasis, which acts as a prominent role in determining the fate of cells. The intracellular 24 

cAMP level could be elevated by activating the G-protein-coupled receptor (GPCR) that was 25 

the major mediator of bone remodeling by inhibiting osteoblasts apoptosis and enhancing 26 

osteoblasts differentiation [28]. In the present study, the Reactome pathways analysis exhibited 27 

that signaling by GPCR was closely associated with Wnt activation, which was consistent with 28 

the result of 75 overlapping genes’ enrichment analysis. cAMP has been proved to inhibit 29 

osteoblast proliferation by suppressing the MAP kinase pathway [29]. In addition, a network 30 
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pharmacological study demonstrated that cAMP signaling pathway was one of the critical 1 

pathways that were closely related to the bone formation and resorption [30]. Weivoda MM et 2 

al. investigated the relationship between cAMP and Wnt pathway and found that Wnt3a 3 

suppressed osteoclast differentiation by activating the cAMP/PKA pathway [31]. Together with 4 

the previous studies and our bioinformatic analysis, we believed that the cAMP signaling 5 

pathway was closely associated with the Wnt signaling, and thus may participate in osteoporotic 6 

fractures. 7 

Adenylate cyclase, a family of membrane bound enzymes that catalyze the formation of cyclic 8 

AMP from ATP under the stimulation of G-protein signaling, is the direct regulator of cAMP 9 

signaling pathway [32]. Adenylate cyclase family consists of nine members, naming 10 

ADCY1~ADCY9 [33]. It has been evidenced that the blockage of cAMP/PKA/CREB signaling 11 

through inhibiting the activity of adenylate cyclase could repress Icariin-induced osteogenesis  12 

[34]. Another report proved that the stimulation of adenylyl cyclase could activate cAMP-13 

mediated MAPK signaling and induce the expression of Runx2 in osteoblasts to accelerate bone 14 

regeneration [35]. Given the potential regulation of cAMP signaling on osteoporosis, the key 15 

catalytic enzymes of cAMP signaling, the adenylate cyclase, can be speculated to play a 16 

regulatory role in the development and progression of osteoporotic spinal fracture. Particularly, 17 

ADCY6 was demonstrated to promote the proliferation and differentiation of osteoblasts in 18 

osteoporotic rats through activating Rap1/MAPK signaling pathway [36]. It was also once 19 

reported that ADCY3 had a positive effect on bone formation [37]. Interestingly, a research on 20 

ADCY5 knock-out mouse models suggested that ADCY5 protected the mice from bone density 21 

reduction and susceptibility to fractures of aging [38]. ADCY2 was also identified to be a 22 

potential regulator in osteoporotic spinal fracture by our study, however, there was no study 23 

supporting this. Based on the close relationship between ADCY2 and cAMP signaling, we 24 

believe that it is worth studying the effects of ADCY2 in osteoporotic spinal fracture. On the 25 

other hand, Glutamate Ionotropic Receptor AMPA Type Subunit 1 (GRIA1), belonging to a 26 

family of AMPA receptors, only have been proved to be a tumor suppressor gene in human 27 

osteosarcoma [39]. Therefore, the identified genes ADCY2, ADCY5, and GRIA1 are of high 28 

significance in regards to osteoporosis and potentially spinal fracture, thus need to be further 29 

studied, which may provide the new therapeutic strategies for osteoporotic fractures.  30 
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During our search on gene expression profiling GEO data series in spinal fracture, we found 1 

only GSE34747 dataset. The limited number of samples is a drawback indeed; however, there 2 

has been no more other profiling data available and we currently don’t have enough fund to 3 

conduct our own gene profiling experiment. We will certainly consider to conduct the gene 4 

expression profiling of our own data in the future. In addition, we have supplied the PCR 5 

verification results, which to some extent makes the results more reliable. 6 

 7 

Conclusion 8 

In conclusion, we identified that the cAMP signaling pathway was associated with the 9 

activation or inactivation of the Wnt signaling pathway in osteoporotic fractures. Meanwhile, 10 

ADCY2, ADCY5, and GRIA1 were associated with osteoporotic fractures involving the Wnt 11 

pathway and cAMP pathway due to the little studies on these genes in osteoporotic fractures. 12 

Our findings might provide novel therapeutic strategies for osteoporotic fractures.  13 
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 16 

 17 

Legend 18 

Figure 1 Functional enrichment analysis of 562 DEGs in GSE34747. (A) Heat map of DEGs 19 

in GSE34747. Red color revealed the upregulated genes while the green color revealed the 20 

downregulated genes. (B) PPI network for DEGs was constructed using STRING. (C) GO 21 

enrichment and Reactome pathways enrichment of DEGs were analyzed by STRING. DEGs, 22 

differentially expressed genes. PPI, protein-protein interactions. GO, gene ontology. FDR, false 23 

discovery rate.  24 

 25 

Figure 2 The analysis of GO enrichment, KEGG enrichment, and PPI network of 562 26 

DEGs using Metascape. (A) The top 20 pathway and process enrichment was displayed using 27 

different colors. (B) The contruction of PPI network using Metascape. The top 3 MCODE were 28 

displayed. DEGs, differentially expressed genes. PPI, protein-protein interactions. GO, gene 29 

ontology. KEGG, Kyoto Encyclopedia of Genes and Genomes. MCODE, Molecular Complex 30 

Detection.  31 

 32 

Figure 3 The target genes of top 6 differently expressed miRNAs were screened out using 33 

R software and Venny 2.1.0. (A) Heat map of differently expressed miRNAs in GSE103473 34 

using R software. (B-G) Venny 2.1.0 was applied to identify the target genes of miRNAs which 35 
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also belonged to DEGs in GSE34747. DEGs, differentially expressed genes. -, low expression. 1 

+, high expression. 2 

 3 

Figure 4 ADCY2, ADCY5, and GRIA1 were identified as key genes by STRING, 4 

Metascape and Venny 2.1.0. (A) The PPI network of 72 target genes of miR-18a-3p was 5 

constructed by STRING. The genes involving cAMP signaling pathway were list. (B) cAMP 6 

signaling pathway was the key pathway by Metascape analysis. Different colors represented 7 

different processes and pathways. (C) The common genes (ADCY2, ADCY5, and GRIA1) from 8 

Metascape and STRING involving cAMP signaling pathway by Venny 2.1.0. PPI, protein-9 

protein interactions. 10 

 11 

Figure 5 ADCY2, ADCY5, and GRIA1 mRNA expression in osteoporotic patients with 12 

spinal fracture. (A-C) The relative expression of ADCY2 (A), ADCY5 (B), and GRIA1 (C) 13 

mRNA in the bone tissues of osteoporotic patients with spinal fracture and the healthy control 14 

was detected by RT-qPCR. The data were shown in mean ± SD. Statistics analysis was 15 

conducted using Mann Whitney test. Normal: the healthy control.  16 
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Figure 1 Functional enrichment analysis of 562 DEGs in GSE34747.
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Figure 2 The analysis of GO enrichment, KEGG enrichment, and PPI network of 562 DEGs
using Metascape.
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Figure 3 The target genes of top 6 differently expressed miRNAs were screened out using
R software and Venny 2.1.0.
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Figure 4
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Figure 5
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