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Abstract

Introduction
Carotid atherosclerosis (CAS) is one of the main causes of cerebral infarction in the ageing
population. Long non-coding RNA small nucleolar RNA host gene 16 (lnc-SNHG16) could promote
the development of atherosclerosis. However, the mechanism of lnc-SNHG16 in CAS remains
vague.

Material and methods
The expression levels of lnc-SNHG16, microRNA-30c-5p (miR-30c-5p) and disintegrin and
metalloproteinase 10 (ADAM10) were detected by real-time quantitative polymerase chain reaction
(RT-qPCR). Cell viability and migration were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2,
5-diphenyl-2-H-tetrazolium bromide (MTT) and transwell assays, severally. The levels of interleukin-6
(IL-6), IL-β and tumor necrosis factor-α (TNF-α) were assessed by enzyme-linked immunosorbent
assay (ELISA). Protein levels of spinal muscular atrophy (SMA), calponin and ADAM10 were
examined by western blot assay. The binding relationship between miR-30c-5p and lnc-SNHG16 or
ADAM10 was predicted by Starbase, then verified by the dual-luciferase reporter assay.

Results
Lnc-SNHG16 and ADAM10 were increased, and miR-30c-5p was decreased in CAS patient and
oxidized low-density lipoprotein (ox-LDL)-treated human aortic smooth muscle cells (hASMCs). Lnc-
SNHG16 silencing repressed cell viability, migration, inflammation, facilitated differentiation in ox-LDL-
treated hASMCs. Moreover, mechanical analysis proved that lnc-SNHG16 improved ADAM10
expression by sponging miR-30c-5p.

Conclusions
Our data indicated that lnc-SNHG16 could regulate the progression of ox-LDL induced CAS model
by the miR-30c-5p/ADAM10 axis, implying a potential therapeutic strategy for CAS
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ABSTRACT 1 

Introduction: Carotid atherosclerosis (CAS) is one of the main causes of cerebral 2 

infarction in the ageing population. Long non-coding RNA small nucleolar RNA host 3 

gene 16 (lnc-SNHG16) could promote the development of atherosclerosis. However, 4 

the mechanism of lnc-SNHG16 in CAS remains vague. 5 

Material and Methods: The expression levels of lnc-SNHG16, microRNA-30c-5p 6 

(miR-30c-5p) and disintegrin and metalloproteinase 10 (ADAM10) were detected by 7 

real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability and 8 

migration were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-9 

tetrazolium bromide (MTT) and transwell assays, severally. The levels of interleukin-10 

6 (IL-6), IL-β and tumor necrosis factor-α (TNF-α) were assessed by enzyme-linked 11 

immunosorbent assay (ELISA). Protein levels of spinal muscular atrophy (SMA), 12 

calponin and ADAM10 were examined by western blot assay. The binding relationship 13 

between miR-30c-5p and lnc-SNHG16 or ADAM10 was predicted by Starbase, then 14 

verified by the dual-luciferase reporter assay. 15 

Results: Lnc-SNHG16 and ADAM10 were increased, and miR-30c-5p was decreased 16 

in CAS patient and oxidized low-density lipoprotein (ox-LDL)-treated human aortic 17 

smooth muscle cells (hASMCs). Lnc-SNHG16 silencing repressed cell viability, 18 

migration, inflammation, facilitated differentiation in ox-LDL-treated hASMCs. 19 

Moreover, mechanical analysis proved that lnc-SNHG16 improved ADAM10 20 

expression by sponging miR-30c-5p. 21 

Conclusion: Our data indicated that lnc-SNHG16 could regulate the progression of ox-22 

LDL induced CAS model by the miR-30c-5p/ADAM10 axis, implying a potential 23 

therapeutic strategy for CAS 24 

Key words: Lnc-SNHG16, miR-30c-5p, ADAM10, carotid atherosclerosis 25 

 26 

Introduction 27 

As a manifestation of systemic atherosclerosis in the carotid artery, carotid 28 

atherosclerosis (CAS) has become a leading cause of cerebral infarction in the aging 29 

population [1]. Currently, carotid intima–media thickness (cIMT) and carotid plaque 30 
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(CP) were the proposed biomarkers of subclinical atherosclerosis associated with stroke 1 

risk [2, 3]. Moreover, the vulnerable plaque of CAS can lead to the occurrence of 2 

cerebral infarction [4]. Interestingly, as an important component of vascular structure, 3 

excessive proliferation and inappropriate migration of vascular smooth muscle cells are 4 

key factors in the formation of atherosclerotic plaque [5]. Recent studies have shown 5 

that oxidized low-density lipoprotein (ox-LDL) can be used to simulate atherosclerosis 6 

through exciting vascular smooth muscle cells [6]. Hence, repairing the dysfunction of 7 

vascular smooth muscle cells might be an effective way to mitigate atherosclerosis 8 

progression. 9 

In recent years, long non-coding RNAs (lncRNAs), a class of transcripts with about 10 

200 nucleotides (nts), have been reported to play essential regulatory roles in multiple 11 

biological and pathological activities by regulating diverse molecules, such as DNA, 12 

RNA and proteins [7]. In fact, accumulating evidence suggested that abnormal 13 

expression of lncRNAs is involved in the development and progression of numerous 14 

diseases, including atherosclerosis [8, 9]. As Cai et al. reported, that abundance of 15 

lncRNA TNK2-AS1 contributed to cell proliferation and migration of human aortic 16 

smooth muscle cells (hASMCs) through inhibiting miR-150-5p and enhancing VEGFA 17 

and FGF1 expression in atherosclerosis [10]. Analogously, Ji et al. confirmed that 18 

excess of linc-ROR aggravated the malignancy of atherosclerosis by increasing 19 

hASMCs proliferation and migration through regulating miR-195-5p/FGF2 axis [11]. 20 

LncRNA small nucleolar RNA host gene 16 (lnc-SNHG16) has been confirmed to work 21 

as an oncogene in a variety of cancers, such as bladder cancer [12], gastric cancer [13] 22 

and hepatocellular carcinoma [14]. Moreover, a recent literature manifested that lnc-23 

SNHG16 could accelerate proliferation and inflammatory response of macrophages by 24 

interacting with miR17-5p to activate NF-κB signaling in atherosclerosis [15]. 25 

However, the underlying mechanism of lnc-SNHG16 in CAS is still unclear. 26 

During the past decades, microRNAs (miRNAs), endogenous non-coding RNAs 27 

with 19-25 nts, have been shown to negatively regulate gene expression at post-28 

transcriptional levels [16]. An extensive body of recent studies has proved that miRNAs 29 

could exert the regulating role in the progression of atherosclerosis [17, 18]. 30 

MicroRNA-30c-5p (miR-30c-5p) has been identified as a tumor suppressor by 31 

modulating target genes in gastric cancer [19], clear cell renal cell carcinoma [20] and 32 

multiple myeloma [21]. Furthermore, relevant studies have indicated that the low 33 
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expression of miR-30c-5p, as an underlying predictive biomarker, was related to the 1 

development of carotid intima-media thickness and early plaque in atherosclerosis [22, 2 

23], implying that miR-30c-5p played a crucial function in the development of 3 

atherosclerosis. 4 

A disintegrin and metalloproteinase 10 (ADAM10), a member of the metalloprotease 5 

family, takes part in the incision of diverse cells surface molecules, containing 6 

cytokines, growth factors and adhesion molecules [24]. Simultaneously, some research 7 

have confirmed that the knockdown of ADAM10 could weaken atherosclerosis 8 

progression by suppressing inflammatory response and boosting cholesterol efflux [25]. 9 

Yet, the specific role of ADAM10 in CAS remains unknown. 10 

Herein, our results presented that lnc-SNHG16 was upregulated in CAS patient and 11 

ox-LDL-treated hASMCs. Lnc-SNHG16 silencing hindered cell viability, migration, 12 

inflammation, facilitated differentiation in ox-LDL-treated hASMCs. Moreover, 13 

bioinformatics analysis suggested that miR-30c-5p had some sequences with lnc-14 

SNHG16. Therefore, we aimed to investigate whether lnc-SNHG16 might regulate ox-15 

LDL- induced hASMCs damage through the miR-30c-5p/ADAM10 axis in CAS. 16 

 17 

Materials and Methods 18 

Tissue samples and cell culture 19 

This research obtained the approval of Ethics Committee of The Third People's 20 

Hospital of Heze, and written informed consent was signed by each participant from 21 

The Third People's Hospital of Heze. Serum samples of the CAS patient (n=30) were 22 

collected from patients with ischaemic stroke in the internal carotid artery underwent 23 

magnetic resonance angiography within 1 week of symptom onset while the central 24 

plaque and the interior layer of the outer plaque are relatively stable, and healthy 25 

volunteers (n=30) were acquired from healthy volunteers. All the patients had no 26 

cardioembolic stroke, haemorrhagic stroke, radiation therapy of the neck. 27 

Human aortic smooth muscle cells (hASMCs) were provided by ScienCell (Carlsbad, 28 

CA, USA), and were maintained in 5% CO2 at 37˚C under moist atmosphere with 29 

Dulbecco’s modified Eagle’s medium (DMEM; Hyclone, Beijing, China). 30 
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Noteworthily, 10% fetal bovine serum (FBS; Hyclone) and 1% penicillin/streptomycin 1 

as the supplement were added the culture medium. Besides, hASMCs were treated with 2 

0 ng/mL, 25 ng/mL, 50 ng/mL, 75 ng/mL and 100 ng/mL ox-LDL (Sigma-Aldrich, 3 

St.Louis, MO, USA) for 24 h before measurement. 4 

 5 

Real-time quantitative polymerase chain reaction (RT-qPCR) 6 

Total RNA was isolated from human serum and cells referring to the supplier’s 7 

direction of TRIzol reagent (Invitrogen, Carlsbad, CA, USA) [26]. Extracted RNA was 8 

quantified by using a NanoDrop spectrometer (NanoDrop, Wilmington, DE, USA) at 9 

260 nm. Then, a PrimeScript™ RT Reagent Kit (Takara, Dalian, China) was applied to 10 

synthesize complementary DNA (cDNA) from total RNA (2-3 μg) following the 11 

operation manual. Subsequently, the expression of lnc-SNHG16, miR-30c-5p and 12 

ADAM10 was analyzed on an HT7900 Real-Time PCR System (Applied Biosystems, 13 

Foster City, CA, USA) with SYBR Green PCR Kit (Takara). The results were 14 

calculated by using the 2–ΔΔCt method [27], normalizing to glyceraldehyde-3-phosphate 15 

dehydrogenase (GAPDH) for lncRNA and mRNA, and U6 small nuclear RNA (snRNA) 16 

for miRNA. The primers used were showed as below: 17 

Lnc-SNHG16: 5’-GCAGAATGCCATGGTTTCCC-3’ (sense), 5’-18 

GGACAGCTGGCAAGAGACTT-3’ (antisense); 19 

miR-30c-5p: 5’-GCCGCTGTAAACATCCTACACT-3’ (sense), 5’-20 

GTGCAGGGTCCGAGGT-3’ (antisense); 21 

ADAM10: 5’-AAGAAGCTTCCCACAAGGCA-3’ (sense), 5’-22 

TGTGTACGCAGAGTATCTAACTGG-3’ (antisense); 23 

U6: 5’-CTCGCTTCGGCAGCACA-3’ (sense), 5’-AACGCTTCACGAATTTGCGT-3’ 24 

(antisense); 25 

GAPDH: 5’-GTCAACGGATTTGGTCTGTATT-3’ (sense), 5’-26 

AGTCTTCTGGGTGGCAGTGAT-3’ (antisense).  27 

 28 

Cell transfection 29 
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Lnc-SNHG16 small interference RNA (si-lnc-SNHG16) and its negative control (si-1 

NC), miR-30c-5p inhibitor (anti-miR-30c-5p) and its negative control (anti-miR-NC), 2 

miR-135a-5p mimics (miR-135a-5p) and its negative control (miR-NC) were acquired 3 

from RiboBio (Guangzhou, China). The pcDNA3.1 vector (pcDNA, Addgene, 4 

Cambridge, MA, USA) was applied to construct lnc-SNHG16 and ADAM10 5 

overexpression vector, termed as pcDNA-lnc-SNHG16 (lnc-SNHG16) and pcDNA-6 

ADAM10 (ADAM10). With the help of Lipofectamine 3000 reagent (Invitrogen), these 7 

oligonucleotides and plasmids were transfected into hASMCs. After 24 h of 8 

transfection, transfected cells were harvested and used for the following experiments. 9 

 10 

Cell viability assay 11 

Cell viability of hASMCs was detected by using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-12 

diphenyl-2-H-tetrazolium bromide (MTT, Sigma-Aldrich) referring to the supplier’s 13 

direction. In brief, hASMCs were seeded on 96-well plates (5 × 103 cells/well). After 14 

treatment with ox-LDL for 24 h, 20 μL MTT (Sigma-Aldrich) was added into each well 15 

at indicated time points (0 h, 24 h, 48 h and 72 h), followed by incubation for another 16 

4 h at 37˚C. Whereafter, the supernatant was discarded, 150 μL of dimethyl sulfoxide 17 

(DMSO, Sigma-Aldrich) was added to terminate the reaction. At last, with the help of 18 

microplate reader (Thermo Electron Corporation, Vantaa, Finland), cell absorbance 19 

was read at 490 nm. 20 

 21 

Cell migration assay 22 

Migration ability of hASMCs was evaluated in accordance with the instructions of 23 

Transwell chambers (Corning Incorporated, Corning, NY, USA). Generally, the treated 24 

hASMCs (1 × 105) in serum-free medium were introduced into the upper chamber of 25 

transwell, and the medium with 10% FBS (Hyclone) was added in the lower chamber. 26 

After incubation for 24 h, cells remaining on the upper surface of membranes were 27 

scraped with cotton swabs, while cells migrated to the lower surface of membranes 28 

were fixed in methanol and stained by crystal violet. Finally, an inverted microscope 29 

was used to count the number of stained cells. 30 
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 1 

Enzyme-linked immunosorbent assay (ELISA) 2 

In this assay, hASMCs were incubated in 24-well plates. After treatment with ox-3 

LDL for 24 h, the medium was collected, followed by detection the levels of 4 

interleukin-6 (IL-6), IL-β and tumor necrosis factor-α (TNF-α) with an ELISA 5 

(Beyotime, Shanghai, China) kits based on the user’s guidebook. A SpectraMaxM2 6 

microplate reader (Molecular Devices, Sunnyvale, CA, USA) was applied for the 7 

measurement of the absorbance in plates. 8 

 9 

Western blot assay 10 

In brief, total protein from serums and cells was extracted by using RIPA buffer with 11 

protease and phosphates inhibitions (Sigma-Aldrich), and the concentrations were 12 

quantified with BCA Protein Assay Kit (Beyotime, China). After separation with a 13 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protein 14 

samples were transferred onto polyvinylidene fluoride (PVDF) membranes (Millipore, 15 

Bedford, MA, USA), followed by blocking with 5% skim milk. After incubation for 2 16 

h, the primary antibodies were incubated with the membranes at 4˚C. The next day, the 17 

corresponding horseradish peroxidase (HRP)-conjugated secondary antibodies were 18 

further cultured in the membranes. Finally, an enhanced chemiluminescence kit (ECL; 19 

Amersham Biosciences, Pittsburg, PA, Sweden) was conducted to analyze these protein 20 

signals. Primary antibodies were as followed: anti-spinal muscular atrophy (anti-SMA; 21 

1:1000, ab5694, Abcam, Cambridge, MA, USA), anti-calponin (1:1000, ab46794, 22 

Abcam), anti-ADAM10 (1:1000, ab124695, Abcam) and anti-GAPDH (1:1000, 23 

ab8227, Abcam). 24 

 25 

Dual-luciferase reporter assay 26 

Lnc-SNHG16 wild-type reporter vector (lnc-SNHG16 WT) containing the binding 27 

sites for miR-30c-5p and its mutant-type in complementary sites (lnc-SNHG16 MUT), 28 

ADAM10 3’ un-translated region (3’UTR) wild-type reporter vector (WT ADAM10 29 

3’UTR) possessing the binding sequences with miR-30c-5p and its mutant-type in seed 30 
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region (MUT ADAM10 3’UTR) were amplified and then sub-cloned into  pMIR-1 

GLO™ vector (Promega, Madison, WI, USA). Subsequently, according to the standard 2 

method of Lipofectamine 3000 (Invitrogen), hASMCs in 48-well plates were co-3 

transfected with the constructed reporter plasmids and miR-135a-5p or miR-NC. 4 

Luciferase activities at 48 h after transfection were detected under a dual-luciferase 5 

reporter assay kit (Promega). 6 

 7 

Statistical analysis 8 

Statistical analysis was conducted with GraphPad Prism7 software, and was shown 9 

as the mean ± standard deviation (SD). Differences between two groups were analyzed 10 

by using Student’s t-test. Differences between more than two groups were identified 11 

using one-way analysis of variance (ANOVA) followed by Tukey’s tests. All assays 12 

were carried out at least in triplicate. If P value < 0.05, it was regarded as statistically 13 

significant. 14 

 15 

Results 16 

Lnc-SNHG16 expression was increased and miR-30c-5p expression was decreased 17 

in CAS patient and ox-LDL-treated HASMCs 18 

At first, to investigate the function of lnc-SNHG16 and miR-30c-5p in CAS, their 19 

expression levels were detected through RT-qPCR assay. Compared with the serums of 20 

healthy volunteers (n=30), lnc-SNHG16 was highly expressed and miR-30c-5p was 21 

lowly expressed in CAS patient serums (n=30) (Figure 1A and 1C). Importantly, we 22 

found that lnc-SNHG16 expression was improved, and miR-30c-5p expression was 23 

reduced in hASMCs with the increase of ox-LDL concentration, when compared to 24 

cells un-treated with ox-LDL (Figure 1B and 1D), suggesting that the involvement of 25 

lnc-SNHG16 and miR-30c-5p in the ox-LDL induced CAS model. Particularly in cells 26 

treated with 50 ng/mL ox-LDL, hence, we chose 50 ng/mL ox-LDL 24 h for subsequent 27 

experiments. Furthermore, lnc-SNHG16 level was inversely related to miR-30c-5p 28 

expression in CAS patient serums (Figure 1E). In a word, the dysregulation of lnc-29 

SNHG16 and miR-30c-5p might be correlated with CAS. 30 
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 1 

Lnc-SNHG16 knockdown repressed cell viability, migration, inflammation, 2 

facilitated differentiation in ox-LDL-treated hASMCs 3 

Then, to explore the role of lnc-SNHG16 in CAS, we knocked down lnc-SNHG16 4 

expression in ox-LDL treated hASMCs. As displayed in Figure 2A, in the treatment of 5 

hASMCs, lnc-SNHG16 level was markedly declined in si-lnc-SNHG16-transfected 6 

relative to cells transfected with si-NC. Functional analysis showed that the promotion 7 

of cell viability and migration caused by ox-LDL was obviously attenuated through lnc-8 

SNHG16 downregulation (Figure 2B and 2C). Synchronously, introduction of si-lnc-9 

SNHG16 evidently diminished the enhancement of ox-LDL on inflammatory factors 10 

(IL-6, IL-β and TNF-α) level (Figure 2D), indicating that lnc-SNHG16 silencing 11 

retarded the inflammation of ox-LDL induced CAS model. Apart from that, lnc-12 

SNHG16 deletion abrogated ox-LDL-triggered decrease in the protein levels of 13 

differentiation-related factors (SMA and Calponin) in hASMCs (Figure 2E), proving 14 

that lnc-SNHG16 deficiency accelerated the differentiation of ox-LDL induced CAS 15 

model. Collectively, these results suggested that the knockdown of lnc-SNHG16 16 

impeded cell viability, migration, inflammation, and expedited differentiation in ox-17 

LDL-treated hASMCs. 18 

 19 

MiR-30c-5p was direct target of lnc-SNHG16 20 

Given that there was a negative correlation between lnc-SNHG16 and miR-30c-5p 21 

in CAS patient serum. We used to the bioinformatics software starBase to further 22 

analyze the underlying relationship between lnc-SNHG16 and miR-30c-5p. As 23 

presented in Figure 3A, miR-30c-5p was found to harbor some common 24 

complementary sequences with lnc-SNHG16. To verify the predicted results, a dual-25 

luciferase reporter assay was conducted in hASMCs. Data showed that the 26 

overexpression of miR-30c-5p reduced the luciferase activity of WT-lnc-SNHG16 27 

reporter vector, but not that of MUT-lnc-SNHG16 reporter vector (Figure 3B). 28 

Moreover, the transfection efficiency of pcDNA-lnc-SNHG16 was detected and 29 

exhibited in Figure 3C. And lnc-SNHG16 knockdown contributed to miR-30c-5p level, 30 

and lnc-SNHG16 overexpression suppressed miR-30c-5p level in ox-LDL-treated 31 
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hASMCs (Figure 3D). Notably, re-introduction of anti-miR-30c-5p abolished the 1 

facilitation of lnc-SNHG16 knockdown on miR-30c-5p level in ox-LDL-treated 2 

hASMCs (Figure 3E). Functionally, deletion of miR-30c-5p notably abated the 3 

inhibitory effect of lnc-SNHG16 downregulation on cell viability and migration in ox-4 

LDL-induced hASMCs (Figure 3F and 3G). Besides, the reduction of IL-6, IL-β and 5 

TNF-α levels due to lnc-SNHG16 deficiency was undermined by miR-30c-5p 6 

knockdown in ox-LDL-stimulated hASMCs (Figure 3H), implying that silencing of 7 

miR-30c-5p overturned the suppression effect of lnc-SNHG16 downregulation on 8 

inflammatory response in ox-LDL-excited hASMCs. Western blot assay confirmed that 9 

anti-miR-30c-5p reversed the positive effect of lnc-SNHG16 knockdown on 10 

differentiation in ox-LDL-provoked hASMCs, showing that the protein levels of SMA 11 

and Calponin increased by si-lnc-SNHG16 was repressed through miR-30c-5p 12 

downregulation in ox-LDL-treated hASMCs (Figure 3I). All these results unveiled that 13 

miR-30c-5p, as a target of lnc-SNHG16, partially abolished the effects of lnc-SNHG16 14 

on cell viability, migration, inflammation, and differentiation in ox-LDL-trigger 15 

hASMCs. 16 

 17 

ADAM10 worked as the target of miR-30c-5p 18 

As widely believed, miRNAs could exert the function by binding to the 19 

3’untranslated regions (3’UTR) of mRNAs [28]. Thus, to further explore the 20 

mechanism of miR-30c-5p, we searched the latent target genes of miR-30c-5p by using 21 

the bioinformatics tool (StarBase). Results presented that miR-30c-5p contained a motif 22 

with sites complementary to ADAM10 3’UTR (Figure 4A). Then, we preformed the 23 

dual-luciferase reporter assay to further confirm the direct interaction between miR-24 

30c-5p and ADAM10 3’UTR. As showed in Figure 4B, miR-30c-5p upregulation led 25 

to an overt decline in luciferase activity of WT-ADAM10 3’UTR, while had little effect 26 

on MUT-ADAM10 3’UTR in hASMCs. In addition, ADAM10 was expressed at the 27 

high level in both CAS patient serum (Figure 4C and 4D) and ox-LDL-treated hASMCs 28 

(Figure 4E and 4F) in comparison with their respective control groups. And transfection 29 

efficiency of anti-miR-30c-5p and miR-30c-5p mimics were examined and shown in 30 

Figure 4H. Intriguingly, we viewed that there was an inverse relationship between miR-31 

30c-5p and ADAM10 in CAS patient serum (Figure 4G). MiR-30c-5p downregulation 32 
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improved the expression level of ADAM10, whereas miR-30c-5p upregulation 1 

declined ADAM10 level in ox-LDL-stimulated hASMCs (Figure 4I and 4J). Taken 2 

together, these findings suggested that miR-30c-5p directly bound with ADAM10. 3 

 4 

MiR-30c-5p-mediated cell viability, migration, inflammation and differentiation 5 

were reversed by ADAM10 in ox-LDL-treated hASMCs 6 

As mentioned above, ADAM10 was a direct target of miR-30c-5p in ox-LDL-treated 7 

hASMCs. Meanwhile, ADAM10 as a carcinogenic factor has been testified by previous 8 

studies [29, 30]. We inferred that miR-30c-5p could exert the suppressive effect on ox-9 

LDL induced CAS model by interacting with ADAM10. Firstly, the transfection 10 

efficiency of pcDNA-ADAM10 was detected by RT-qPCR and western blot assays in 11 

ox-LDL-induced hASMCs. As illustrated in Figure 5A and 5B, ADAM10 level was 12 

augmented in ADAM10-transfected hASMCs versus cells transfected with pcDNA. 13 

Importantly, rescue assays rendered that ADAM10 overexpression overturned the 14 

inhibiting effect of miR-30c-5p upregulation on cell viability and migration in ox-LDL-15 

stimulated hASMCs (Figure 5C and 5D). Consistently, re-transfection of pcDNA-16 

ADAM10 evidently abrogated miR-30c-5p mimics-caused decrease in the levels of IL-17 

6, IL-β and TNF-α in ox-LDL-treated hASMCs, supporting that ADAM10 upregulation 18 

partly reversed the adverse effect of miR-30c-5p overexpression on inflammatory 19 

response in ox-LDL-induced hASMCs (Figure 5E). Additionally, reduced SMA and 20 

Calponin protein levels further confirmed that upregulation of ADAM10 could 21 

effectively abolished the positive effect of miR-30c-5p mimics on differentiation in ox-22 

LDL-triggered hASMCs (Figure 5F). Overall, these results suggested that miR-30c-5p 23 

could regulate cell viability, migration, inflammation, and differentiation of ox-LDL-24 

trigger hASMCs by targeting ADAM10. 25 

 26 

Verification of lnc-SNHG16/miR-30c-5p/ADAM10 regulatory axis in ox-LDL-27 

treated hASMCs 28 

Based on the above results, we conjectured that lnc-SNHG16 could exert its 29 

regulatory role by the miR-30c-5p/ADAM10 axis in ox-LDL-treated hASMCs. To 30 

testify the guess, we implemented the rescue assays to further verify whether lnc-31 
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SNHG16 affect ADAM10 expression through miR-30c-5p. As shown in Figure 6, anti-1 

miR-30c-5p improved the protein level of ADAM10, while lnc-SNHG16 knockdown 2 

could relieve miR-30c-5p silencing-mediated promotion effect on ADAM10 protein 3 

level in ox-LDL-induced hASMCs. Together, the results unveiled that lnc-SNHG16 4 

could perform as a molecular sponge of miR-30c-5p to affect ADAM10 expression. 5 

 6 

Discussion 7 

Increasing evidence exhibits that lncRNAs can be used as prognostic biomarkers in 8 

multiple diseases, including atherosclerosis [31]. Indeed, as the research moves along, 9 

lncRNAs have become necessary regulators in the development and progression of 10 

atherosclerosis [32-35]. Lnc-SNHG16, located at 17q25.1 gene, was identified as an 11 

oncogenic lncRNA in various types of cancer [36, 37]. Importantly, in a recent 12 

publication, lnc-SNHG16 was verified to be abnormally increased and exacerbated the 13 

progression of atherosclerosis through triggering hASMCs proliferation and migration 14 

[38]. However, the underlying mechanism of lnc-SNHG16 in CAS still needs further 15 

clarification. In this study, the different concentration of ox-LDL induced the aortic 16 

smooth muscle cells (hASMCs) in an Atherosclerosis simulation environment was used 17 

for further research. Lnc-SNHG16 was upregulated in CAS patient serum samples and 18 

ox-LDL-treated hASMCs cells, suggesting that lnc-SNHG16 might involve in CAS 19 

progression. Functionally, lnc-SNHG16 deficiency constrained ox-LDL-induced 20 

proliferation, migration, the expression of inflammatory factor and differentiation of 21 

hASMCs, demonstrating that lnc-SNHG16 mitigated the progression of CAS. 22 

MiR-30c-5p, a tumor suppressor, has been pointed out to exert the suppressive action 23 

in atherosclerosis development [39]. In this manuscript, our data showed that miR-30c-24 

5p was decreased in CAS patient and ox-LDL-treated hASMCs. Intriguingly, there was 25 

an inverse relation between miR-30c-5p and lnc-SNHG16 in CAS. Previous studies 26 

have suggested that lncRNAs could exert the function through the interaction with 27 

miRNAs [40]. Our results first confirmed that miR-30c-5p was a direct target of lnc-28 

SNHG16, and miR-30c-5p downregulation could relieve the negatively effect of lnc-29 

SNHG16 deletion on ox-LDL-excited hASMCs damage. The inhibitory action of miR-30 

30c-5p on ox-LDL-caused cell injury of atherosclerosis was also testified in prior report 31 

[41]. 32 
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It is widely accepted that lncRNAs could impact mRNA expression by sponging 1 

miRNA [42]. ADAM10 as the target of miR-30c-5p was first validated in hASMCs. 2 

Apart from that, some reports have presented that ADAM10 was closely linked to the 3 

composition of atherosclerosis plaque [43, 44]. In this research, ADAM10 was 4 

upregulated in CAS patient and ox-LDL-treated hASMCs, and partly reversed the 5 

suppression effect of miR-30c-5p on ox-LDL-caused hASMCs damage. Consistent 6 

with our data, ADAM10 could facilitate the inflammatory response in atherosclerosis 7 

[25]. Additionally, mechanistic analysis further verified that the downregulation of lnc-8 

SNHG16 could overturn the positive action of miR-30c-5p knockdown on ADAM10 9 

expression in ox-LDL-treated hASMCs. That was to say, lnc-SNHG16 preformed as a 10 

sponge of miR-30c-5p to upregulate ADAM10 expression, thereby regulating CAS 11 

progression.  12 

While the present results highlights the regulation roles of lnc-SNHG16 in CAS, we 13 

should note the limitation of this research. One limitation of the present research is, 14 

although our initial comparison of the miRNA and circRNA expression level in normal 15 

and CAS serum samples was credible, the limited sample size makes further evaluation 16 

necessary. Another himation is our research was limited to an in vitro study, therefore, 17 

an in vivo experiments will be seriously considered in the future. Besides, whether 18 

SNHG16 correlates with the progression of atherosclerosis and the effects of targeting 19 

SNHG16 on therapy for atherosclerosis may require further investigation. 20 

Together, this study first discovered the regulatory role of the lnc-SNHG16/miR-21 

30c-5p/ADAM10 axis in the ox-LDL induced CAS model. Our findings provided an 22 

insight into the molecular basis of carotid atherosclerosis, which will provide us 23 

important clues for developing the effective therapeutic strategies. 24 
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 26 

Figure Legends 27 

Figure 1 Lnc-SNHG16 was upregulated and miR-30c-5p was downregulated in 28 

CAS and ox-LDL-treated hASMCs. (A and C) RT-qPCR assay was preformed to 29 

detect the expression level of lnc-SNHG16 and miR-30c-5p in 30 pairs of CAS patient 30 

serum and healthy volunteers serum (B and D) Expression levels of lnc-SNHG16 and 31 

Prep
rin

t



miR-30c-5p in hASMCs treated with ox-LDL at different concentrations (0 ng/mL, 25 1 

ng/mL, 50 ng/mL, 75 ng/mL and 100 ng/mL). (D) The expression association between 2 

lnc-SNHG16 and miR-30c-5p in CAS patients was analyzed by Pearson correlation 3 

analysis. *P <0.05. 4 

Figure 2 Lnc-SNHG16 knockdown suppressed cell viability, migration, 5 

inflammation, promoted differentiation in ox-LDL-treated hASMCs. (A) Lnc-6 

SNHG16 level was measured by RT-qPCR assay in hASMCs treated with Control, ox-7 

LDL, ox-LDL + si-NC and ox-LDL + si-lnc-SNHG16. (B) Cell viability was detected 8 

by MTT assay in treated hASMCs. (C) Migration ability was assessed by transwell 9 

assay in treated hASMCs. (D) Expression levels of IL-6, IL-β and TNF-α were 10 

examined by ELISA in treated hASMCs. (E) The protein levels of SMA and Calponin 11 

were tested by western blot assay in treated hASMCs. *P <0.05. 12 

Figure 3 Lnc-SNHG16 directly bound with miR-30c-5p. (A) The binding sites 13 

between lnc-SNHG16 and miR-30c-5p were predicted by starBase software. (B) The 14 

effects of miR-30c-5p overexpression on luciferase activity of WT-lnc-SNHG16 and 15 

MUT-lnc-SNHG16 reporters in hASMCs were measured by dual-luciferase reporter 16 

assay. (C-I) HASMCs were stimulated with 50 ng/mL ox-LDL for 24 h. (C) Lnc-17 

SNHG16 level was assessed in hASMCs transfected with Control, pcDNA and lnc-18 

SNHG16. (D) MiR-30c-5p level was measured in hASMCs transfected with Control, 19 

si-NC, si-lnc-SNHG16, pcDNA and lnc-SNHG16. (E) MiR-30c-5p level was measured 20 

in hASMCs transfected with Control, si-NC, si-lnc-SNHG16, si-lnc-SNHG16 + anti-21 

miR-NC and si-lnc-SNHG16 + anti-miR-30c-5p. (F) Cell viability in treated hASMCs 22 

was tested by MTT assay. (G) Migration capacity in treated hASMCs was measured by 23 

transwell assay. (H) The levels of IL-6, IL-β and TNF-α in treated hASMCs were by 24 

ELISA. (I) SMA and Calponin protein levels in treated hASMCs were western blot 25 

assay. *P <0.05. 26 

Figure 4 ADAM10 was the target of miR-30c-5p. (A) StarBase software was applied 27 

to predict the binding sequence between miR-30c-5p and ADAM10 3’UTR. (B) The 28 

dual-luciferase reporter assay was conducted to confirm the binding relationship 29 

between miR-30c-5p and ADAM10 3’UTR in hASMCs. (C and D) The mRNA level 30 

and protein level of ADAM10 were detected in 30 pairs of CAS patient serum and 31 

healthy volunteer serum (E and F) ADAM10 level was measured in hASMCs 32 
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stimulated with ox-LDL at various concentrations (0 ng/mL, 25 ng/mL, 50 ng/mL, 75 1 

ng/mL and 100 ng/mL). (G) Pearson correlation analysis was preformed to appraise the 2 

expression association between miR-30c-5p and ADAM10 in CAS patients. (H-J) 3 

hASMCs were treated with 50 ng/mL ox-LDL for 24 h. (H) MiR-30c-5p level was 4 

examined in hASMCs transfected with Control, anti-miR-NC, anti-miR-30c-5p, miR-5 

NC and miR-30c-5p. (I and J) The mRNA level and protein level of ADAM10 were 6 

detected in treated hASMCs. *P <0.05. 7 

Figure 5 ADAM10 abrogated the effects of miR-30c-5p on cell viability, migration, 8 

inflammation and differentiation in ox-LDL-treated hASMCs. HASMCs were 9 

treated with 50 ng/mL ox-LDL for 24 h. (A and B) ADAM10 level was tested in 10 

hASMCs transfected with Control, pcDNA and ADAM10. (C) MTT assay was used to 11 

detect the proliferative ability in hASMCs transfected with Control, miR-NC, miR-30c-12 

5p, miR-30c-5p + pcDNA and miR-30c-5p + ADAM10. (D) Transwell assay was 13 

carried out to measure the migration in treated hASMCs. (E) ELISA was preformed to 14 

assess the levels of IL-6, IL-β and TNF-α in treated hASMCs. (F) Western blot assay 15 

was applied to examine the protein levels of SMA and Calponin in treated HASMCs. 16 

*P <0.05. 17 

Figure 6 Lnc-SNHG16 regulated ADAM10 expression through sponging miR-30c-18 

5p. HASMCs were treated with 50 ng/mL ox-LDL for 24 h. ADAM10 protein level 19 

was detected with Control, anti-miR-NC, anti-miR-30c-5p, anti-miR-30c-5p + si-NC 20 

and anti-miR-30c-5p + si-lnc-SNHG16. *P <0.05. 21 
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