Long Non-Coding RNA STARD13-AS Suppresses Glioma Cell Biological Activities

Type
Research paper

Keywords
glioma, U87, U251, cell biological activities, lncRNA STARD13-AS

Abstract
Introduction
It has been unclear that STARD13-AS had effects in glioma. The aim of our research was to investigate the effects of STARD13-AS in glioma development and the mechanisms underlying these effects by vitro study.

Material and methods
Adjacent normal and tumor tissues were collected for long non-coding RNA (lncRNA) microarray screening. STARD13-AS expression was measured by in situ hybridization (ISH) and reverse-transcription quantitative PCR (RT-qPCR) assays, and correlations between STARD13-AS and clinicopathological parameters and prognosis were analyzed. STARD13-AS transfection of glioma cell lines (U251 and U87) was used to evaluate biological activities of cells. Western blotting (WB) and RT-qPCR assays were used to investigate the underlying mechanisms.

Results
According to lncRNA microarray screening, ISH, and RT-qPCR, lncRNA STARD13-AS was significantly downregulated in tumor tissues. Low STARD13-AS expression was strongly correlated with poor prognosis and malignant clinicopathology. After STARD13-AS transfection, biological activities of glioma cells were significantly decreased (P<0.001 for both cell types). WB and RT-qPCR assays showed that protein and mRNA expression levels of cyclin D, cyclin E, N-cadherin, E-cadherin, and vimentin were significantly related to STARD13-AS overexpression (P<0.001 in all cases).

Conclusions
STARD13-AS overexpression suppresses the biological activities of glioma cells, indicating that STARD13-AS is a potential target for glioma treatment by vitro study.
Long Non-Coding RNA STARD13-AS Suppresses Glioma Cell Biological Activities by vitro study

Running Title: lncRNA STARD13-AS and glioma

Abstract

BACKGROUND: It has been unclear that STARD13-AS had effects in glioma.

OBJECTIVE: The aim of our research was to investigate the effects of STARD13-AS in glioma development and the mechanisms underlying these effects.

METHODS: Adjacent normal and tumor tissues were collected for long non-coding RNA (lncRNA) microarray screening. STARD13-AS expression was measured by in situ hybridization (ISH) and reverse-transcription quantitative PCR (RT-qPCR) assays, and correlations between STARD13-AS and clinicopathological parameters and prognosis were analyzed. STARD13-AS transfection of glioma cell lines (U251 and U87) was used to evaluate biological activities of cells. Western blotting (WB) and RT-qPCR assays were used to investigate the underlying mechanisms.

RESULTS: According to lncRNA microarray screening, ISH, and RT-qPCR, lncRNA STARD13-AS was significantly downregulated in tumor tissues. Low STARD13-AS expression was strongly correlated with poor prognosis and malignant clinicopathology. After STARD13-AS transfection, biological activities of glioma cells were significantly decreased (P<0.001 for both cell types). WB and RT-qPCR assays showed that protein and mRNA expression levels of cyclin D, cyclin E, N-cadherin, E-cadherin, and vimentin were significantly related to STARD13-AS overexpression (P < 0.001 in all cases).
CONCLUSION: STARD13-AS overexpression suppresses the biological activities of glioma cells, indicating that STARD13-AS is a potential target for glioma treatment.

Key words: lncRNA STARD13-AS; glioma; U251; U87; cell biological activities

1. Introduction

Glioma is a common malignant tumor of the brain that accounts for 45% of intracranial tumors and 80% of intracranial malignant tumors, and has the highest incidence and mortality among malignant tumors of the central nervous system. The boundary between infiltrative glioma cells and normal brain tissue is not clear, and glioma is characterized by high incidence, a short disease course, high mortality, frequent relapse, and a low cure rate. The main treatment for glioma consists of surgery combined with radiotherapy and chemotherapy; this treatment can quickly relieve patients’ symptoms, but residual lesions often lead to relapse and the prognosis is poor. Therefore, it is crucial to develop individualized therapeutic schedules and methods of prognosis evaluation based on genes related to the occurrence and development of glioma. Recent research into targeted therapies based on tumor genetics and molecular mechanisms could provide new approaches to the diagnosis and treatment of glioma. Long non-coding RNAs (lncRNAs) are widely involved in the regulation of multiple biological processes of cells, including proliferation, differentiation, apoptosis, and metabolism. The expression profiles of lncRNAs vary between normal tissues and cancer tissues; this provides a basis for the diagnosis, treatment, and prognosis of various human cancers.
transfer domain protein 13-Antisense RNA (STARD13-AS) was a kind of lncRNAs, previous studies found lncRNA STARD13-AS over-expression had effects to suppress gastric cancer, colorectal cancer and lung squamous carcinoma. However, until now, it has been unclear that lncRNA STARD13-AS had effects in glioma.

In this work, three pairs of cancerous tissues and para-carcinoma tissues from glioma patients were analyzed using cDNA microarrays. STARD13-AS, the lncRNA with the most differential expression, was selected as the research object. Reverse-transcription quantitative PCR (RT-qPCR) and in situ hybridization (ISH) were used to measure STARD13-AS expression in the cancerous tissues and para-carcinoma tissues, and the effects of STARD13-AS on patient prognosis were analyzed using clinical data. To further explore the mechanism of STARD13-AS in glioma, we designed relevant cell experiments to study and analyze its role.

2. Material and Methods

2.1 General data

Eighty-two glioma patients admitted to our hospital from April 2013 to April 2016 were selected. The inclusion criteria were as follows: patients were diagnosed with glioma by pathology; and complete clinical data and follow-up records were available. All patients provided signed informed consent, and the study was approved by the ethics committee of Hangzhou Yuhang District First People's Hospital. Exclusion criteria were as follows: non-primary glioma; history of surgery or chemoradiotherapy; severe
metabolic disease; other malignant tumors; other central nervous system diseases; history of central nervous system disease injury; and incomplete follow-up. Of the eligible patients, 44 were male and 38 were female. Patient ages ranged from 28 to 72 (55.24 ± 4.68) years. Pathological type was astrocytoma in 35 cases, anaplasia astrocytoma in 21 cases, glioblastoma in 16 cases, and oligodendroglia astrocytoma in 10 cases. World Health Organization (WHO) classification was I–II in 35 cases and III–IV in 47 cases; and Karnofsky performance score (KPS) was ≤80 points in 37 cases and > 80 points in 45 cases. This study was approved by Ethics committee of Hangzhou Yuhang District First People's Hospital (No. YHEC2012120612), all patients signed informed consent.

Follow-up visits
Patients were followed up by monthly telephone inquiries until 31 March 2019.

2.2 Materials and reagents
Normal human glial cells (HEB cells) and human glioma cell lines (U251, U87, LN-18, H4, and M059K) were purchased from ATCC; DMEM culture medium was purchased from Zhejiang Tianhang Biotechnology Co., Ltd.; pcDNA3.1 and related transfection agents were purchased from Invitrogen; anti-cyclin D, cyclin E, N-cadherin, vimentin, E-cadherin, and GAPDH were purchased from Jiangsu Beyotime Institute of Biotechnology; the CCK-8 kit was from Guangzhou Laide Biotechnology Co., Ltd. (Guangzhou, China); and the apoptosis and cycle detection kit was from KeyGen Biotech (Nanjing, China).
lncRNA STARD13-AS and SYBR Green I real were also used.

2.3 lncRNA microarray screening

Three pairs of tissues (normal tissue and cancer tissue) were selected for microarray detection and analysis by Shanghai GeneChem Co., Ltd.

2.4 ISH detection

Tissue samples were embedded in paraffin. Embedded sections were incubated with HCl at room temperature for 5 min and washed with phosphate-buffered saline (PBS) three times, 5 min per time. Sections were incubated first with protease K for 20 min, followed by washing three times with PBS, 5 min per time; then with polyformaldehyde for 10 min, followed by washing twice with PBS, 5 min per time; and finally with acetic anhydride and triethanolamine solution for 10 min at room temperature, followed by washing three times with PBS, 5 min per time. The probe was diluted with hybridization solution and denatured at 85 °C for 5 min. It was then added to the tissue samples, sealed overnight at 37 °C, and washed twice in saline-sodium citrate (SSC) buffer, 20 min per time, before being rinsed three times with formamide/SSC buffer at 37 °C, 20 min per time, and finally rinsed with TBST (Tris-buffered saline, 0.1% Tween 20) five times for 10 min per time. Samples were blocked with 3% bovine serum albumin at room temperature for 1 h, incubated overnight at 4 °C with anti-digoxin I antibody (1:1000), then washed four times with TBST, 10 min per time, and twice with BCIP/NBT dye buffer,
10 min per time. Samples were stained in the dark with BCIP/NBT for 4–48 h, followed
by washing twice with TE buffer (pH 8.0) to stop the reaction. Finally, samples were
washed to remove residue, dehydrated, and blocked, before being observed under an
inverted microscope and photographed. The Image J image analysis software was used to
determine STARD13-AS expression in each section.

2.5 RT-qPCR detection

Total RNA was extracted by the TRIzol method (Invitrogen, CA, USA) from tissues
or cells, and quantified using an absorbance ratio of 1.9–2.0. One microliter of total RNA
was taken and reverse-transcribed into cDNA according to the reverse-transcription kit
instructions. Then, real-time quantitative RT-PCR was used to detect the expression level
of the target gene, with GAPDH as an internal reference. Primer sequences are structured
from KeyGEN Bio Tech (Nanjing, China) and shown in Table 1. The quantitative analysis
used the $2^{-\Delta\Delta Ct}$ method. All experiments were repeated at least three times.

2.6 Cell culture

HEB, U251, U87, LN-18, H4, and M059K cells were cultured in DMEM
containing 10% fetal bovine serum in an incubator at 37 °C and 5% CO$_2$. The culture
solution was changed every 2 d, with passage of 3–5 d. Cell transfection was carried out
according to the instructions. Cells in the logarithmic growth phase were inoculated into
six-well plates. Once the cells were fused to 60%, the medium was changed to a serum-
free medium and synchronized for 12 h, followed by transfection. The groups comprised a normal control group (NC), blank transfection group (pcDNA3.1), and STARD13-AS group. Cells in the NC group were cultured routinely; those in the pcDNA3.1 group were transfected with a pcDNA3.1 empty vector; and those in the STARD13-AS group were transfected with LipofectamineTM 2000 (Invitrogen, Carlsbad, CA, USA). The subsequent experiments were conducted at least 24 h after transfection.

2.7 Detection of cell reproductive capacity by CCK-8

Cells were inoculated in 96-well plates (1×104 per well) and cultured after the appropriate treatment. CCK-8 reagent was added to each well 2 h before the end of culture. The absorbance at 450 nm of each well was determined. For each group, the mean value of three multiple wells was recorded. Medium alone was added to a single well as a blank control.

2.8 Cell apoptosis and cycle by flow cytometry assay

Cell apoptosis was detected using an Annexin V–FITC/PI double staining kit. Cells in the logarithmic growth phase were inoculated in six-well plates (4×105 cells per well) and cultured for 24 h. The medium was then discarded. After treatment, cells in each group were cultured for another 48 h and then collected. The experiment was conducted according to the kit instructions. Apoptosis and cell cycling in each group were detected and analyzed by flow cytometry.
2.9 Detection of cell migration and invasion by transwell assay

Cells were collected from each group and resuspended in culture medium to adjust the cell density to 2×10^8/L. Cells were inoculated in the upper compartment of the transwell chamber, and complete culture medium was added to the lower compartment, followed by incubation for 6 h. After removal from the incubator, cells on the surface of the upper compartment were rinsed and erased with PBS. Cells in the transwell chamber were fixed with 90% ethanol followed by addition of 0.1% crystal violet dye. After rinsing with PBS again, the number of stained cells counted under an inverted microscope (the mean value of three visual fields was taken for each group).

2.10 Wound healing assays

Cell migration was detected by cell wound healing assays. Cells in each group were treated by difference treatment of every groups for 24 h, after which cells in the logarithmic growth phase were taken and inoculated in six-well plates. When the cell density reached 80%, the cell layers were scratched with pipette tips, then washed with PBS and cultured for 24 h or 48 h, before being observed and photographed under a microscope. The wound healing rate was calculated for each group as wound healing rate=$(0 \text{ h length}-24 \text{ h or } 48 \text{ h length})/0 \text{ h length} \times 100\%$.

2.11 Determination of protein level by WB
Cellular proteins were extracted by RIPA pyrolysis and quantified using a BCA kit, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The total quantity of loading protein was adjusted to 60 μg, and protein loading buffer was added in a 1:4 volume ratio. Electrophoresis was performed after denaturation of samples at 100 °C. Proteins were then transferred onto polyvinylidene fluoride membranes. After blocking with 5% skim milk at room temperature for 90 min, the corresponding proportion of primary antibody was added, followed by incubation overnight at 4 °C according to the instructions and washing with TBST three times for 5 min per time. The corresponding secondary antibody was added, followed by incubation at room temperature for 2 h and washing with TBST three times for 10 min per time. Finally, bands corresponding to proteins were quantified using enhanced chemiluminescence (Keygentec) and ChemiDoc™XRS systems (Bio-Rad).

2.12 Statistical analysis

Experimental data were processed using the SPSS 17.0 statistical software. The measurement data followed a normal distribution after normality test, and are reported as mean ± standard deviation (SD). One-way analysis of variance (student-Newman-Keul method for pairwise comparison) was used for multi-group comparisons, and t-tests were used for comparisons between two groups. Counting cell counts are reported as ratios (%) and were analyzed by χ²-test. Survival times were analyzed by the Kaplan-Meier method. P < 0.05 was considered statistically significant.
3. Results

3.1 lncRNA STARD13-AS expression and its relationship with the prognosis of glioma patients

The microarray results showed that STARD13-AS expression in cancerous tissue was significantly reduced compared with that in adjacent normal tissues (Figure 1A). RT-qPCR detection in different pathological tissues showed that the expression level of lncRNA STARD13-AS mRNA decreased significantly compared with adjacent normal tissues (P<0.01 and P<0.001, Figure 1B) and decreased with increasing clinical stage (Figure 1B). ISH was used to further verify the expression of STARD13-AS in para-cancerous normal tissues at different stages. As shown in Figure 1C, lncRNA STARD13-AS was expressed in the cytoplasm. Its expression level was significantly decreased (P<0.01 and P<0.001, Figure 1C) compared with para-cancerous normal tissues, and decreased with increasing clinical stage. Glioma patients were divided into low- and high-expression groups based on the median mRNA expression level in glioma tissues. Survival analysis showed that patients in the STARD13-AS high-expression group had significantly better overall survival and progression-free survival than those in the STARD13-AS low-expression group (P=0.0019 and P=0.0021, respectively; Figure 1D&1E).

3.2 Expression of lncRNA STARD13-AS and its relationship with clinicopathological
Patients were assigned to either the high-expression group (n=38) or the low-expression group (n=44) on the basis of the mean expression level of lncRNA STARD13-AS in glioma tissues (0.32 fold). STARD13-AS was related to WHO grade, KPS, tumor diameter, and number of invaded lobes (P<0.05) but was not related to the age or sex of patients (P>0.05). Details are shown in Table 2.

3.3 STARD13-AS mRNA expression in different cells and groups, and its effects on cell proliferation

The RT-qPCR results showed that STARD13-AS mRNA expression was significantly downregulated in the glioma cell lines compared with normal human glial (HEB) cells (P<0.001 in all cases, Figure 2A). The lowest STARD13-AS mRNA levels were found in the U87 and U251 cell lines. Compared with the NC group, the STARD13-AS transfection group showed significantly increased STARD13-AS mRNA levels in both the U251 and U87 cell lines (P<0.001 in both cases, Figure 2B). The CCK-8 assay results showed that cell proliferation rates were significantly decreased compared with the NC groups in both the U251 and U87 cell lines (P<0.001 in both cases, Figure 2C).

3.4 Effects of STARD13-AS on apoptosis and cell cycle in U251 and U87 cell lines

Flow cytometry results showed that STARD13-AS overexpression significantly increased (P<0.001, Figure 3A & 3B) with G1 phase rate significantly increasing and
decreased the G2 phase rate in U251 and U87 cell lines (P < 0.001, respectively, Figure 3C & 3D).

3.5 Effects of STARD13-AS on cell invasion ability

In order to determine the effects of STARD13-AS on cell invasion ability, invasive cell numbers were measured in the different groups by transwell assay. The results showed significantly decreased invasive cell numbers in the STARD13-AS groups compared with the NC groups in both the U251 and U87 cell lines (P < 0.001 in all cases, Figure 4A & 4B).

3.6 Effects of STARD13-AS on cell migration ability

In order to evaluate the effects of STARD13-AS on cell migration, the wound healing rates of different groups were analyzed over 24 h and 48 h. Compared with the NC group, wound healing rates were significantly decreased in the STARD13-AS groups, over both 24 h and 48 h, in both the U251 and U87 cell lines (P < 0.001 in all cases, Figure 5A & 5B).

3.7 Effects of STARD13-AS on relative protein expression

WB assays were used to determine how STARD13-AS affects relative protein expression. Compared with the NC group, protein expression levels of cyclin D, cyclin E, N-cadherin, and vimentin were significantly decreased, and E-cadherin protein
expression was significantly increased, as a result of STARD13-AS overexpression (P < 0.001 in all cases, Figure 6A & 6B).

3.8 Effects of STARD13-AS on relative RNA expression

RT-qPCR assays were used to determine how STARD13-AS affects relative mRNA expression. Compared with the NC group, cyclin D, cyclin E, N-cadherin, and vimentin mRNA expression levels were significantly decreased and E-cadherin mRNA expression was significantly increased as a result of STARD13-AS overexpression (P < 0.001 in all cases, Figure 7A & 7B).

4. Discussion

Formerly regarded as “junk” genes, IncRNAs have been confirmed by a large number of studies in recent years to have complex biological functions. They are involved in cell proliferation, apoptosis, differentiation, and disease occurrence via inhibiting mRNA reduction, regulating protein activity, and changing relevant protein-coding genes expression.10-12 It has been reported that IncRNAs have key roles in the development of glioma. Wang et al13 found that overexpression of IncRNA HOXA11-AS in glioma could promote the proliferation of tumor cells, whereas its gene knockdown inhibited cell proliferation by regulating cell cycle progression, and was closely related to glioma grade and prognosis. Gao et al14 found that IncRNA HOXA11-AS was highly expressed in both glioma tissues and cell lines, and that the inhibition of IncRNA ZFAS1 in vitro could
significantly inhibit proliferation, migration, and invasion of glioma cells, and participated in the carcinogenic process by regulating epithelial-mesenchymal transformation (EMT) and the Notch signaling pathway. STARD13-AS is a recently discovered lncRNA. Previous studies have reported abnormal expression of STARD13-AS in some tumors. Here, microarray, RT-qPCR, and ISH experiments showed that the expression of STARD13-AS in glioma tissues was significantly lower than that in adjacent normal tissues. Survival analysis showed that expression levels of lncRNA STARD13-AS were correlated with WHO grading, KPS, tumor diameter, and number of invaded cerebral lobes, and that the prognosis of patients with low expression of lncRNA STARD13-AS was poor. In order to further explore the mechanism of lncRNA STARD13-AS in glioma, cell experiments were conducted. After transfection of STARD13-AS into cells, proliferation, invasion, and migration of glioma cells were all significantly inhibited, and the apoptosis rate was significantly increased.

The cell cycle has a key role in cell proliferation and apoptosis. Cyclin D and cyclin E are important proteins in the cell cycle, and their abnormal expression is strongly correlated with tumor development. The present study showed that overexpression of STARD13-AS could effectively inhibit expression of cyclin D and cyclin E in glioma cell lines U251 and U87. Therefore, the results confirmed that the overexpression of STARD13-AS could inhibit the proliferation of glioma cells via effects on the cell cycle. Tumor metastasis is a multi-step process, during which EMT enhances the activity and invasiveness of tumor cells. The first step in the EMT process is to inhibit E-cadherin,
thereby reducing cell adhesion.20 Another important aspect of EMT is upregulated expression of non-epithelial cadherins (including N-calcinetcin and vimentin).21,22 The results showed that high expression of STARD13-AS could increase the expression of E-cadherin in U251 and U87 cells and decrease the expression of vimentin and N-cadherin, thus inhibiting tumor metastasis.

However, the present study had some limitations. First, although high expression of STARD13-AS significantly inhibited proliferation and metastasis of glioma cells in vitro, the specific way in which STARD13-AS affected the proliferation and EMT processes remained unclear and needs further investigation. The target gene of STARD13-AS should be identified in order to further elucidate the underlying mechanism. STARD13-AS is the antisense RNA that encodes RNA-STARD13; thus, we predict that STARD13 might be the target gene of STARD13-AS. Second, animal models are required to verify the effects of overexpression of STARD13-AS on glioma development. We will carry out further experiments to remedy these limitations.

\textbf{Conclusions}

This study confirmed that the expression of lncRNA STARD13-AS in glioma cell lines and tissues was significantly reduced, and that overexpression of STARD13-AS could inhibit proliferation and metastasis of glioma cells. Therefore, STARD13-AS represents a potential target for glioma treatment.
Acknowledgement

None.

Ethics approval and informed consent

This study was approved by the Ethics Committee of Hangzhou Yuhang District First People's Hospital (approval no.2012122808) and was conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all the participants regarding the use of clinical samples for study purposes.

Competing interests

The authors report no conflicts of interest in this work.

References

Figure Legends

Figure 1. IncRNA STARD13-AS expression and its relationship with prognosis of glioma patients.

(A) Heat map of glioma patients IncRNA expression: N, adjacent normal tissues (which was more than 5cm from cancer tissues); T, tumor tissues. (B) Pathology by hematoxylin...
and eosin staining (×200) and STARD13-AS mRNA by RT-qPCR assay in different tissues. (C) STARD13-AS expression in different tissues by ISH assay (×200). (D) Overall survival in different STARD13-AS expression groups. (E) Progression-free survival in different STARD13-AS expression groups. **P < 0.01, ***P < 0.001 vs normal.

Figure 2. STARD13-AS mRNA expression in different cells and groups, and effects on cell proliferation.

(A) STARD13-AS mRNA expression in different cell lines by RT-qPCR assay (***P < 0.001 vs HEB cell line). (B) STARD13-AS mRNA expression in different cell groups by RT-qPCR assay (***P < 0.001 vs NC group). (C) Cell proliferation in different groups by CCK-8 assay (***P < 0.001 vs NC group).

Figure 3. Effects of STARD13-AS on apoptosis and cell cycle in U251 and U87 cell lines.

(A) Effects of STARD13-AS on cell apoptosis by flow cytometry in U251 cell line. (B) Effects of STARD13-AS on cell apoptosis by flow cytometry in U87 cell line. (C) Effects of STARD13-AS on cell cycle by flow cytometry in U251 cell line. (D) Effects of STARD13-AS on cell cycle by flow cytometry in U87 cell line. ***P < 0.001 vs NC group. NC, no treatment; pcDNA3.1, cells transfected with empty pcDNA3.1; STARD13-AS, cells transfected with lncRNA STARD13-AS.
Figure 4. Effects of STARD13-AS on cell invasion ability by transwell assay (×200).

(A) Numbers of invasive U251 cells in different groups. (B) Numbers of invasive U87 cells in different groups. ***P<0.001 vs NC group. NC, no treatment; pcDNA3.1, cells transfected with empty pcDNA3.1; STARD13-AS, cells transfected with lncRNA STARD13-AS.

Figure 5. Effects of STARD13-AS on cell migration ability by wound healing assay (×100).

(A) Wound healing rates in different U251 cell groups. (B) Wound healing rates in different U87 cell groups. ***P<0.001 vs NC group. NC, no treatment; pcDNA3.1, cells transfected with empty pcDNA3.1; STARD13-AS, cells transfected with lncRNA STARD13-AS.

Figure 6. Effects of STARD13-AS on relative protein expression by WB assay.

(A) U251 cell groups. (B) U87 cell groups. ***P<0.001 vs NC group. NC, no treatment; pcDNA3.1, cells transfected with empty pcDNA3.1; STARD13-AS, cells transfected with lncRNA STARD13-AS.

Figure 7. Effects of STARD13-AS on relative mRNA expression by RT-qPCR assay.
(A) U251 cell groups. (B) U87 cell groups. ***P < 0.001 vs NC group. NC, no treatment; pcDNA3.1, cells transfected with empty pcDNA3.1; STARD13-AS, cells transfected with IncRNA STARD13-AS.
<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Primer sequence</th>
</tr>
</thead>
</table>
| STARD13-AS | F: 5'-CCACAGAGAGGATCCAGAA-3'
| | R: 5'-TCCAGGCTCTGATAGAAGCT-3'
| Cyclin D | F: 5'-GTAGCAGCCAGCAGCAGGAT-3'
| | R: 5'-CTCCTCGCACTTTCCATCTC-3'
| Cyclin E | F: 5'-CTCCAGGAAGAGGAAAGGCAA-3'
| | R: 5'-TCGATTGGCCATTCTTCA-3'
| N-cadherin| F: 5'-TGTTATCTTTGTGCTGATGTT-3'
| | R: 5'-GTCTTTCTTCTCCACCTTCT-3'
| E-cadherin| F: 5'-CCTGACATTTCCAAACTCCTC-3'
| | R: 5'-TGTCACCTTCAGCCATCTC-3'
| Vimentin | F: 5'-CTGTGGCATCCAGAAACT-3'
| | R: 5'-CGGACTCGTCATCTCTGCT-3'
| GAPDH | F: 5'-GAAGGTCCGAGCTCAACGGAT-3'
| | R: 5'-CCTGGAAGATGGTATGGG-3' |
Table 2. Relationship between lncRNA STARD13-AS expression and clinical pathological parameters of glioma

<table>
<thead>
<tr>
<th>Pathological parameters</th>
<th>n</th>
<th>Low expression (n=44)</th>
<th>High expression (n=38)</th>
<th>χ^2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years old</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥50</td>
<td>46</td>
<td>26(56.52)</td>
<td>20(43.48)</td>
<td>0.345</td>
<td>0.557</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>44</td>
<td>24(54.55)</td>
<td>20(45.45)</td>
<td>0.030</td>
<td>0.682</td>
</tr>
<tr>
<td>Female</td>
<td>38</td>
<td>20(52.63)</td>
<td>18(47.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor Size(cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><4</td>
<td>37</td>
<td>14(37.84)</td>
<td>23(62.16)</td>
<td>4.156</td>
<td>0.025</td>
</tr>
<tr>
<td>≥4</td>
<td>45</td>
<td>30(66.67)</td>
<td>15(33.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHO stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I–II stage</td>
<td>35</td>
<td>12(34.29)</td>
<td>28(65.71)</td>
<td>9.216</td>
<td>0.002</td>
</tr>
<tr>
<td>III–IV stage</td>
<td>47</td>
<td>32(68.09)</td>
<td>15(31.91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KPS score (score)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤80</td>
<td>37</td>
<td>15(40.54)</td>
<td>22(56.46)</td>
<td>4.666</td>
<td>0.031</td>
</tr>
<tr>
<td>>80</td>
<td>45</td>
<td>29(64.44)</td>
<td>16(35.56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobes involved Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>59</td>
<td>28(47.46)</td>
<td>31(52.54)</td>
<td>3.952</td>
<td>0.043</td>
</tr>
<tr>
<td>≥2</td>
<td>23</td>
<td>16(69.57)</td>
<td>7(30.43)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>