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Abstract

Introduction
Pyruvate kinase in an enzyme that catalyzes the production of pyruvate and ATP as the final step of
the glycolysis. Potential role of Pyruvate kinase in tumorigenesis was previously suggested, due to its
altered activity in several tumors.

Material and methods
This study looks at M2 isozyme of pyruvate kinase activity (M2-PK) measured in peripheral and
uterine blood plasma in various stages of endometrial cancer (EC) as well as in precancerous state
of atypical endometrial hyperplasia (AEH). Measurements were performed using spectrophotometric
method in citrate plasma samples from peripheral and uterine blood. Study group included 84
patients with endometrial cancer, 28 patients with atypical endometrial hyperplasia and 23 non-
cancerous controls.

Results
Pyruvate kinase activity in EC group was 3-fold higher than in control group both in peripheral and
uterine blood samples. Pyruvate kinase activity was also 3-fold higher in uterine blood when
compared to peripheral blood samples. We also found statistically significant correlation between
FIGO staging and detected activity with the M2-PK activity being 2-fold higher for FIGO1 than for
FIGO3. We also describe a paradox in which the M2-PK activity in patients with atypical endometrial
hyperplasia is lower than M2-PK activity in control group in peripheral blood samples, but higher in
uterine blood samples.

Conclusions
The measurement of citrate plasma pyruvate kinase metabolic activity varies greatly between
samples collected from different sites and samples collected from patients with varied tumor staging.
Further studies are needed in order to elucidate molecular pathways that are responsible for
observed differences.
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1. Introduction 

Endometrial cancer (EC) is one of the most common gynecological malignancies, affecting 

more than 287,000 women annually and contributing to 74,000 deaths worldwide EC develops from 

the uterine mucosa (endometrium), most often in post-menopausal women [1]. The main methods 

of treatment include total laparoscopic or total abdominal hysterectomy [2]. While EC has been well-

studied at the genetic level, the metabolic basis of this disease has not yet been fully described. It is 

widely known that obesity is one of the greatest cancer risk factors and it has been shown that not 

only body mass index (BMI) > 30 kg/m2 but also hyperglycemia in type 1 and 2 diabetes are 

associated with an increased incidence, risk of death, and lower age of EC diagnosis. This means 

that any disturbances in the glucose metabolism may play an important role in in the development 

and growth of EC.  

The knowledge that tumor cells demonstrate altered metabolic phenotype has been with us 

since 1920. The alterations characterised by an elevated glucose uptake rate and reduced rates of 

oxidative phosphorylation. This process of high lactate production by tumor cells in the presence of 

oxygen was described by Otto Warburg [3]. Warburg demonstrated that tumor cells use aerobic 

glycolysis with reduced mitochondrial oxidative phosphorylation for glucose metabolism and that the 

aerobic glycolysis derives from mitochondrial injury. He hypothesized that this mechanism is an 

early, essential, and irreversible step in a tumorigenesis. Recent studies have demonstrated 

however, that tumor cells can turn back to mitochondrial respiration under specific circumstances. It 

has been suggested that there must be an association between aerobic glycolysis in tumor cells 

and oncogene activation or tumor suppressor gene suppression. 

Pyruvate kinase (PK) is an enzyme that catalyzes the transfer of a phosphate group from 

phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), a process which produces pyruvate 

and ATP as the final step of glycolysis [4]. The potential role of PK in tumorigenesis has been 

suggested by several studies. It has been shown that PKM2, being the embryonic isoform of 

enzyme with its transcription attenuated in some adult tissues, is reactivated in several tumors such 

as EC [5]. What is more, a switch from the PKM1 to the PKM2 isoform has been observed in 

various cancers such as hepatocellular carcinoma [6] with c-Myc oncogene affecting M-gene 

splicing in a way that favors PKM2 [7]. Several connections regarding modified PKM2 activity 

affecting tumor growth in vivo were also observed [8,9]. In addition, it has been proposed that 

PKM2 is involved in intracellular signaling modulator by its ability to interact with several proteins 

such as tyrosine kinases (BCR-ABL, A Raf, FGFR1) which are able to modulate the 

dimeric/tetrameric state of PKM2 thus affecting cell metabolism [10]. Several links between PKM2 

and the anti-apoptotic Bcl2 protein have also been observed [11]. These results imply that PKM2 

may possess translation-controlling properties while also helping cancer cells with oxidative stress 

and extracellular insult adaptation through intra-mitochondrial Bcl2 expression protection. PK has 

also been shown to enhance tumor angiogenesis by acting as a transcriptional factor interacting 

with HiF-1a and activating its target gene VEGF-A – which increases blood vessel formation thus 

contributing to tumor growth [12]. PKM2 can also be transported as a package protein of exosomes 

acting as an extracellular signaling molecule. Several studies have indicated that circulating PKM2 
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may be responsible for tumor growth through angiogenesis, migration and matrix adhesion of 

endothelial cells [13]. Even though some studies do not support the oncogenic role of PKM2 (with 

PKM2 knockout mice having an accelerated BRCA1 driven tumor formation) its overexpression has 

been universally connected to several human cancers as well as poor clinical outcome [14]. These 

cancers include gastric cancer, hepatocellular carcinoma, breast cancer and ovarian cancer. Due to 

this low specificity it is unlikely to serve as an useful screening marker on its own, but could serve 

as such when combined with other markers by increasing thier sensitivity and specificity [15]. 

Endometrial hyperplasia in patients with PCOS has been associated with PKM2 

overexpression when compared to patients without PCOS or without hyperplasia [16]. It also 

indicates that PKM2-driven glycolysis inhibition with increased mitochondrial activity may contribute 

to the onset of ER-dependent endometrial hyperplasia. Several attempts to assess if metabolic 

switches precede or follow the histological changes have also been undertaken. One of them has 

shown lowered PKM1 expression in patients with EC compared to non-cancerous patients 

implicating that disappearance of PKM1 may be associated with cancer phenotype progression and 

could serve as a prognostic factor in patients with endometrial hyperplasia [3]. Some studies have 

explored the idea of PK serving as an EC marker, with promising results [17,18].  

In this study we explored whether these previously mentioned metabolic alterations precede 

histological changes in precancerous lesions. We wanted to evaluate whether altered pyruvate 

kinase M2 activity is detectable in the precancerous state of atypical endometrial hyperplasia as 

well as to investigate whether PKM2 activity differs across different stages of endometrial cancer. 

There were 3 objectives to this study. The first was to determine whether altered pyruvate kinase 

M2 in plasma in comparison to non-neoplastic controls can be detected not only in endometrial 

cancer but also in the precancerous state of atypical endometrial hyperplasia. The second goal was 

to determine whether pyruvate kinase M2 activity differs between peripheral and uterine blood of 

patients with AEH and endometrial cancer. The third goal was to determine whether plasma 

pyruvate kinase M2 activity varies between the different stages of EC according to the FIGO 

classification. 

 

2. Materials and Methods  

The study was approved by the Jagiellonian University Bioethics Committee (approval number 

1072.6120.96.2017). All subjects included in the study gave their written informed consent. The 

endometrial cancer group was made up of 84 patients aged 40–75. Their medical histories were 

taken and a record was made of who had histologically proven endometrial cancer. 28 women with 

atypical endometrial hyperplasia (AEH) were included in the second group. The control group 

consisted of 23 women aged 40–65 who had undergone hysterectomies due to non-cancerous 

reasons.  

Peripheral and uterine venous blood samples were collected into tubes containing citrate as 

anticoagulant. Both peripheral and uterine blood were collected from the peripheral vein and uterine 

vein, respectively. The patients were operated on by laparotomy or laparoscopy. After an inspection 

of the pelvis and the abdominal cavity, blood was collected from the venous vessels of the so-called 
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uterine venous plexus, which is located between the plaques of the broad ligament along the lateral 

circumference of the uterine body. Blood sample collection was performed during surgical 

procedures at the Department of Gynecological Oncology, Jagiellonian University Medical College. 

The procedure was as follows: We chose citrate plasma samples due to the proven high stability 

and ability to acurately reproduce results. Samples were then allowed to stand at room temperature 

for 30 minutes after which they were centrifuged at 14000 rpm for 10 minutes and the plasma was 

stored at -80°C.  

Total pyruvate kinase activity M2 was determined using the Pyruvate Colorimetric/Fluorometric 

assay kit (BioVision; Milpitas, CA, USA). The assay procedure was performed according to 

manufacturer’s instructions. Pyruvate concentration was measured spectrophotometrically at 570 

nm in 10 ul of plasma. Optical density was measured at 570 nm at two-minutes intervals for 15 

minutes using a SpectraMax Gemini EM multiplate fluorescence reader. The mean signal intensity 

was averaged across 3 biological replicates. Pyruvate kinase activity was then calculated based on 

two absorbance readings in the linear reaction range.  Results were expressed in mU/mL. We 

measured pyruvate kinase activity in citrate plasma samples from peripheral and uterine blood 

using Pyruvate Kinase Activity Colorimetric assay kit (BioVision). In that assay, 

phosphoenolpyruvate (PEP) and ADP are catalyzed by pyruvate kinase to generate pyruvate and 

ATP. The generated pyruvate is oxidized by pyruvate oxidase in order to produce color (at λ = 570 

nm) and fluorescence (at Ex/Em = 535/587 nm). The pyruvate kinase activity is detected when the 

increase in colour or fluorescence intensity is proportional to the increase in amount of pyruvate. 

The detection threshold for this method is 0.1 mU/ml. 

 

2.1. Statistical analyses 

The statistical analyses were performed using SPSS statistics 20.0 software (IBM, Armonk, 

NY, USA). T-test was applied to evaluate the differences of pyruvate kinase activity between 

healthy controls and patients with atypia or endometrial cancer as well as between peripheral and 

uterine blood samples. The activity of pyruvate kinase in plasma of patients with different 

endometrial cancer stages (according to FIGO) was compared with atypical hyperplasia of 

endometrium. Statistical tests were one/two sided and p< 0.05 was considered statistically 

significant. Non-parametric Kruskal–Wallis one-way ANOVA based on ranks was employed to 

assess differences between median values. The differences between more than two the mean 

values were assessed based on analysis of variance (ANOVA). To show for which pair of 

comparisons the difference was significant, Tukey's post hock test was used.   

3. Results 

3.1. Pyruvate kinase M2 activity in the plasma samples from peripheral blood of patients with atypia 

or endometrial cancer in comparison to healthy controls 

We found statistically significant differences in mean M2-PK levels between all three study groups:. 

It can be seen from Figure 1 that the PK activity was the lowest (<9.5mU/mL) in group of patients 
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with atypical endometrial hyperplasia.. We observed a rise (from about 9 to above 12 mU/mL) of 

pyruvate kinase activity in patients with endometrial cancer in relation to patients with AEC. The 

pyruvate kinase values in patients with endometrial cancer ranged from above 11.5 to 12.5 mU/mL 

with a mean value 12.0 mU/mL. The post-hock tests analysis showed statistical significances in 

pairs between all groups (p<0.01).  

The analysis of variance (ANOVA) between the same samples with EC group divided by the FIGO 

staging can be seen in Figure 2. The post-hock tests were performed to show differences between 

the samples in pairs. We found statistically significant differences (p = 2.18e-12) in mean values of 

pyruvate kinase activity in the peripheral blood plasma samples of women with endometrial cancer 

striated into FIGO IA, FIGO IB, FIGO>III groups. The highest statistical significances were seen 

between all FIGO stages and atypia (p<0.00), as well as control – atypia (p<0,03) and FIGO IA – 

control (p<0.00), FIGO>III – control (p<0.00).  

3.2. Pyruvate kinase M2 activity in citrate plasma samples from uterine blood of patients with atypia 

or endometrial cancer in comparison to healthy controls 

A comparison of the pyruvate kinase activity in uterine blood of women with AEH or women with 

endometrial cancer and healthy controls can be seen in Figure 3. We found statistically significant 

differences in the mean pyruvate kinase levels between the control group having a mean value of 

26 mU/mL, atypia having a mean value of 29 mU/mL and endometrial cancer group having a mean 

value of 47,5 mU/mL. In uterine blood pyruvate kinase activity was more than three times as high as 

in samples from peripheral blood (p = 7.5e-12). The post-hock test showed differences between the 

samples in pairs. The mean pyruvate kinase activity was significantly different in endometrial cancer 

samples: endometrial cancer vs control (p<0.000) and endometrial cancer vs atypia (p<0,005).  

An analysis of variance (ANOVA) including FIGO classification for endometrial cancer was also 

performed, results are presented on Figure 4. Pyruvate kinase activity in uterine blood of patients 

with endometrial cancer ranged from 30 to 60 mU/mL and its mean values differed significantly 

between cancer stages according to FIGO scale, with a lower detected activity for more advanced 

staging. The statistically significant differences were found in following pairs: 

FIGO IA – AEH (p<0.001),  

FIGO IB – AEH (p<0.004),  

FIGO IA – control (p<0.001),  

FIGO IB – control (p<0.001). 

FIGO>III was statistically different only in comparison to FIGO IA (p<0.001) and FIGO IB (p<0.005). 

3.3. Pyruvate kinase M2 activity in citrate plasma samples from peripheral and uterine blood of 

patients with different endometrial cancer stages according to FIGO classification and in atypia   
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Figures 5 and 6 demonstrate differences in pyruvate kinase activity between peripheral and uterine 

blood samples. The most prominent findings include pyruvate kinase activity in uterine blood being 

almost three times higher than in peripheral blood for atypia samples (p=2.2e-16, Figure 5), and 

almost twice as high for EC samples (p=2.341e-15, Figure 6). In atypia samples from uterine blood 

the mean value was about 3 times as high when compared to peripheral blood samples. This 

tendency was significant for all stages of the disease (FIGO IA, FIGO IB, FIGO >III, p <0.0001).  

 

 

4. Discussion 

Endometrial cancer is  the second most common and the fourth leading cause of death due to gynecological 

cancer among women worldwide [19]. The incidence rate of that tumor is increasing rapidly, and is estimated 

to increase by more than 50% worldwide by 2040 [20]. About 40% of EC cases are still diagnosed at 

advanced stages with early metastasis and a poor survival rate. Hyperplasia of endometrium is very 

significant clinically due to the associated risk of progression to endometrioid EC. Nowadays, atypical forms 

of EH are recognized as premalignant lesions. Differential diagnosis between AH and EC is highly essential 

for cytological atypia. In this study we concentrated on pyruvate kinase activity in patients with EC at 

different clinical stages (based on FIGO classification) and with AEH. 

The results showed that pyruvate kinase M2 activity differs across different clinical stages of the 

disease, indicating its potential role in carcinogenesis. We demonstrated that peripheral blood 

plasma pyruvate kinase M2 activity was lowest in patients with AEH, with the highest activity being 

observed for endometrial cancer group. During tumorigenesis, the reprogramming of cell 

metabolism is critical. Cancer cells are characterized by a high glycolytic rate, which leads to energy 

regeneration and anabolic metabolism. It is known that tumor cells are primarily dependent on 

aerobic glycolysis to obtain energy and produce lactate, even in the presence of oxygen. It was 

suggested in many studies that PKM2 is involved in a complex network that regulates cancer cell 

metabolism. The studies showed that PKM2 was upregulated in proliferating cells such as 

cancerous and embryonic cells [21]. It was demonstrated that proliferating cells are able to 

reprogram their cellular glucose metabolism based on their bioenergetics and biosynthetic needs in 

order to maintain a proper cellular redox homeostasis. PKM2, as a critical regulator of this metabolic 

reprogramming, may be involved in cancer progression, regulating both metabolic and non-

metabolic pathways [21]. Exploring the role of PKM2 is essential because of the therapeutic 

relevance of anticancer drugs that could inhibit PKM2 activity. It has previously been shown that the 

downregulation of PKM2 expression, using inhibitors or short interfering RNA was possible in 

bladder cancer [22]. In the study of Salama A. et al., conducted on human endometrial cells, it was 

demonstrated that estradiol-17β (E2) treatment induced Warburg-like glucose metabolism by 

inducing the expression of PKM. Moreover, the authors showed that E2 enhanced PKM splicing 

into PKM2 as well as inducing PKM2 oxidation, phosphorylation, and nuclear translocation [24]. In 

that study it was demonstrated that PKM2 was able to interact with estrogen receptor-α (ERα) and 
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thus to play a role as an ERα coactivator. It was suggested that small-molecule PKM2 activators 

ameliorated ERα transcriptional activity and abrogated the E2-induced human primary endometrial 

stromal cells proliferation [23].  

The deviation from the Warburg effect may be explained by the fact that tyrosine 

phosphorylation of M2-PK disrupts FBP binding, inhibiting the formation of the highly active tetramer 

conformation and lowering enzymatic activity. Phosphorylation promotes increased glucose 

consumption followed by increased lactate production and an exponential increase in cell 

proliferation. Factors such as post-menopausal age, obesity and elevated estrogen levels contribute 

to the post-translational modifications of M2-PK and provoke a decrease in activity, which can lead 

to higher level of tumor proliferation [24]. This theory correlates precisely with the observations from 

our study. A decrease in M2-PK activity leads to an increase in the production of glycolytic 

intermediates for biosynthetic pathways such as pentose phosphate pathway and serine 

biosynthesis pathways. Decreased pyruvate kinase activity has also been described as a factor 

provoking the increase in an alternative glycolytic pathway due to the decrease in M2-PK activity 

increasing PEP levels. PEP is a M2-PK substrate and is able to promote tumorigenesis. The 

increase in the level of PEP was also previously observed to cause the phosphorylation of 

phosphoglycerate mutase 1 (PGAM1) at histidine 11 position leading to the activation of PGAM1 

which results in an increase of glycolysis and production of glycolytic intermediates [25].  M2-PK is 

one of the glycolytic targets of tyrosine kinase signaling and is thought to be one of the rates limiting 

the steps of glycolysis, playing an important role in the regulation of glycolytic activity. The post-

translational modifications of M2-PK, such as phosphorylation, promote an increased glycolytic rate 

resulting in tumor cell proliferation. In that case this enzyme plays a pivotal role in enhancing the 

Warburg effect by increasing glycolysis and lactate production during tumorigenesis [26].  

The novel part of this study is the comparison of PK activity in both uterine and peripheral 

blood samples. When looking at uterine blood samples, we can see that the detected levels of PK 

activity were higher in atypical endometrial hyperplasia group than in control group samples. We 

speculate that the reason that this increased activity was not detectable in peripheral blood samples 

was due to the fact that the markers of early stage of tumorigenesis may only have been present in 

close proximity to the tumor. It can be presumed with high probability that similar relationships may 

occur in the blood that comes out of the uterus during abnormal bleeding and may be used for 

testing in a non-invasive manner. It is generally known that abnormal uterine bleeding occurs in the 

early stages of the development of atypical endometrial  hyperplasia and endometrial cancer. 

 last part of our study looked at the correlations between pyruvate kinase activity and tumor 

staging based on FIGO classification which reflects the clinical stage of the cancer. We detected 

that the pyruvate kinase activity was highest for early stage cancers (FIGO1A) and lower in more 

advanced cancers. These findings are in contrast to previous reports, which show an increase in 

plasma M2-PK levels with increasing tumor stages for various cancers such as gastric, pancreatic 

and lung cancer [27,28]. However, we suggest that the observed higher activity of pyruvate kinase  

in FIGO 1A and lower in FIGO III stages may be related to the cell proliferation. Warburg-like 
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glucose metabolism is characterized by increased glucose uptake and shifting the glucose 

metabolism toward aerobic glycolysis. This metabolic phenotype, strongly related to cell growth and 

proliferation, generates the energy, the anabolic precursors, and the redox equivalents required for 

the de novo synthesis of macromolecules and to remove ROS produced during cell proliferation 

[29-31]. The metabolic reprogramming is induced by signal pathways driving cell proliferation [32]. 

FIGO III is a stage of EC with advanced clinical symptoms and bigger tumors when compared with 

FIGO I and II, however the cell proliferation in this stage is lower than in FIGO I and II. It could 

explain the observed lower activity of pyruvate kinase in patients with the most clinically advanced 

EC.  

Our study has several limitations. Due to low number of samples from patients with FIGO II 

and FIGO IV staging, we had to divide patients into just three groups to take statistical 

measurements: FIGO1A, FIGO1B and FIGO>3. Such action reduces the credibility of data 

regarding usage of PK activity measurement as a novel staging tool alternative to histopathological 

specimen analysis. More detailed studies regarding M2-PK activity in endometrial cancer are 

therefore needed in order to answer the question whether there is a link between M2-PK activity 

and endometrial cancer stages. Moreover, the molecular mechanism behind the paradox of the  

disparity of the pyruvate kinase activity that we observed in peripheral and uterine blood plasma of 

patients with atypia and endometrial cancer is still not clear. Lower M2-PK activity in FIGO 3 group 

when compared to FIGO 1A group is also a subject for further studies dealing with the molecular 

basis of this relationship. According to numerous studies, including ours, M2-PK plays an important 

role in tumor metabolism and, therefore, it may be a potential goal of targeted therapy. Researches 

on substances modulating the activity of M2-PK are ongoing [33-35].  

 

5. Conclusions 

To conclude, our study demonstrates decreased pyruvate kinase activity in the pre-cancerous 

state of endometrium which is in line with the results of previous studies. This low pyruvate kinase 

activity result of the accelerated tumor growth. We also demonstrated that this activity is higher in 

samples collected in close proximity to atypia. We found significant differences in uterine pyruvate 

kinase activity compared to peripheral blood samples. EC is associated with uterine bleeding and in 

future studies, this material (excluding perioperative uterine blood samples) may be considered 

appropriate for testing for pyruvate kinase activity. We believe that this study can provide a direction 

for further studies assessing the involvement of pyruvate kinase activity in transition from a pre-

cancerous to cancerous state in endometrial cancers. 
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Figure 1. Peripheral blood M2 pyruvate kinase (PK) activity in patients with atypical
endometrial hyperplasia (AEH) or endometrial cancer (EC) and healthy controls. Mean
values ±SD are as presented. P < 0.01 was observed between all pairs.
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Figure 2. Peripheral blood M2-type pyruvate kinase (PK) activity in patients with atypical
endometrial hyperplasia (AEH), healthy controls and endometrial cancer staged into FIGO
IA, FIGO IB, FIGO > III, groups. Mean values ± SD are as presented. P values were as
follows: FIGO – AEH p<0.01, Control – AEH p<0.03, Control – FIGO IA p<0.01, Control –
FIGOIII p<0.01.
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Figure 3. Uterine blood M2-type pyruvate kinase (PK) activity in patients with atypical
endometrial hyperplasia (AEH) or endometrial cancer (EC) and healthy controls. Mean
values ±SD are as presented. P values were as follows: Endometrial cancer – control
p<0.001, endometrial cancer – AEH p<0.005.
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Figure 4. Uterine blood M2-type pyruvate kinase (PK) activity in patients with atypical
endometrial hyperplasia (AEH), healthy controls and endometrial cancer staged into FIGO
IA, FIGO IB, FIGO > III, groups. Mean values ± SD are as presented. P values were as
follows: FIGO IA – AEH p<0.001, FIGO IB – AEH p<0.004, FIGO IA – control p<0.001,
FIGO 1B – control p<0.001, FIGO>III – FIGO IA p<0.001, FIGO>III – FIGO IB p<0.005.
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Figure 5. Boxplot with a range restriction to exclude major outliers for mean values of
M2-type pyruvate kinase (PK) activity in peripheral and uterine blood of women with atypical
endometrial hyperplasia (AEH). p=2.2e-16.
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Figure 6. Boxplot with a range restriction to exclude major outliers for mean values of
M2-type pyruvate kinase activity (PK) in peripheral and uterine blood of women with
endometrial cancer (EC). P=2.341e-15.
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