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 Abstract
Introduction
Purpose: Among young adults and adolescents, the most common malignant bone tumor is
osteosarcoma (OS). Even patients who are cured by surgery or neoadjuvant chemotherapy still have a
high possibility of recurrence. In recent years, due to the development of molecular biology research
methods, many new prognostic markers based on the gene level have emerged. In addition, the
mutual regulation mode among long non-coding RNA (lncRNA), miRNA and target genes are closely
related to the occurrence and development of tumors. In our research, we aimed to analyze the
molecular regulation mode and predict clinical outcomes by integrate three types of RNA expression.

Material and methods
Materials and Methods: We obtained the data of OS patients from The Cancer Genome Atlas (TCGA)
database including expression data (RNA and miRNA expression data) and clinical data.

Results
Results: After differential gene expression analysis, Cox regression analysis and functional enrichment
analysis, 1 lncRNA, 3 miRNAs and 9 mRNAs were identified as prognostic RNA. We constructed the
prognostic scoring (PS) model with high predicting prognosis performance. Using PS models and
clinical data, we established a nomogram to calculate patients' 3-year and 5-year survival rates.

Conclusions
Conclusions: Finally, competing endogenous RNAs (ceRNAs) network and functional enrichment
analysis help us to understand molecular mechanisms associated with the recurrence of
osteosarcoma.

 Explanation letter
Review 1:
The manuscript is interesting, but I have some comments:
1. the summary does not reflect the content of the manuscript, especially the results and conclusions
do not contain specific information.
Response: thanks for your comment. We have rewritten the summary.
2. the discussion is very superficial. The results were briefly commented, such as "Through the
univariate and multivariate analyzes, we identified tumor metastasis as an independent prognostic
clinical factor." It seems that this factor was previously considered as a prognostic factor. The authors
should elaborate on the markers they believe have prognostic potential, including studies in other
neoplasms.
Response: Thanks for your comment. We have rewritten this part. We added the impact of two clinical
factor (tumor metastasis and PS model) on OS recurrence.
3. The study group is not very numerous, therefore the conclusions should be formulated more
carefully, especially since the authors do not refer to basic research on the mechanisms related to the
markers that
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Response: Thanks for your comment. We revised our conclusion.
4. there are errors in the manuscript related to punctuation, extra spaces and typos
Response: We checked our manuscript carefully and corrected these errors. 
Review 2:
The authors responded to the comments of the reviewers and improved the manuscript. English
editing also improved the manuscript.
Figure legends make the images more clear, however, Figure 2 and 3 seem to be switched.
Response: Thanks for your comment and sorry for the mistake. We have corrected it.
In current Figure 3A, it is not clear what the title “Metastatic” represents. Additionally, a couple of typos
remain in the manuscript.

Response: Thanks for your comment. We have removed the “Metastatic” in Figure 3A.

Response one by one .docx
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Genome-wide analysis of lncRNAs, miRNAs, and mRNAs forming a prognostic scoring model 1 

associated with the recurrence of osteosarcoma 2 

 3 

Abstract 4 

Purpose: Among young adults and adolescents, the most common type of malignant bone tumor is 5 

osteosarcoma (OS). Even patients cured by surgery or neoadjuvant chemotherapy still have a high possibility 6 

of recurrence. Due to the development of molecular biology research methods, many new prognostic markers 7 

based on gene level have emerged. In addition, the mutual regulation mode among long noncoding RNA 8 

(lncRNA), microRNA (miRNA), and target genes is closely related to the occurrence and development of 9 

tumors. Therefore, in our research, we analyzed the molecular regulation mode and predicted clinical 10 

outcomes by integrating three types of RNA expression. 11 

Materials and Methods: We obtained the data of patients with OS from The Cancer Genome Atlas (TCGA) 12 

database, including RNA and miRNA expression and clinical data. 13 

Results: After performing differential gene expression, Cox regression, and functional enrichment analyses, 14 

we identified 1 lncRNA （LINC00626）, 3 miRNAs （has-miR-429，hsa-miR-526b，hsa-miR-615）, and 15 

9 mRNAs （such as BCAS4, CA9,CPA3）as prognostic RNAs. Baed on these genes, we constructed the 16 

prognostic scoring (PS) model with a high predicting prognosis performance. Using this model and the 17 

clinical data, we established a nomogram to calculate patients’ 3- and 5-year survival rates. In addition, we 18 

also construted a competing endogenous RNA (ceRNA) network. Functional enrichment analysis shows that 19 

mRNAs in the ceRNA network were significantly related to biological processes of positive regulation of the 20 

developmental process and regulation of neurogenesis. 21 

Conclusions: The PS model had high predicting prognosis performance. It can help us predict which patients 22 

will develop a recurrence. The ceRNA network and functional enrichment analysis can support the 23 
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understanding of the molecular mechanisms associated with OS recurrence. 24 

Keywords: osteosarcoma, prognostic scoring model, recurrence, The Cancer Genome Atlas 25 

Introduction 26 

Osteosarcoma (OS), the most common malignant tumor that is prone to recurrence and metastasis (1). 27 

Itoccurs mostly occurs in young adults and adolescents and usually originates from the long bones (2). In the 28 

past, many patients died within 1 year of diagnosis due to treatment limitations. Today neoadjuvant 29 

chemotherapy has greatly improved the survival rate, but the recurrence rate remains around 35% (3). 30 

However, there are too many clinical indicators, such as age, gender, and tumor site and stage, can influence 31 

OS prognosis and cause recurrence. It is difficult to confirm which patients will develop recurrence using only 32 

these indicators. Therefore, finding effective and novel recurrent biomarkers to evaluate the prognosis of OS 33 

recurrence is important to formulating treatment strategies and predicting efficacy. 34 

In tumorigenesis and tumor progression, protein coding genes and noncoding RNAs play important roles. 35 

MicroRNAs (miRNAs) regulate mRNA expression at a post-transcriptional level with ∼20 nucleotides in 36 

length. Long noncoding RNAs (lncRNAs) （>200 nucleotides）can act as competing endogenous RNAs 37 

(ceRNAs), which usually regulate mRNA expression by competing for a common pool of miRNAs. This 38 

mechanism, called “ceRNA hypothesis”(4, 5). It occurs extensively in the basic cellular processes and 39 

functions and is closely related to disease development (5, 6). 40 

In this study, we comprehensively analyzed all OS-related data in The Cancer Genome Atlas (TCGA) 41 

database. We divided OS tissue samples into high-risk and low-risk groups, determining significant difference 42 

in overall survival through a prognostic scoring (PS) model. Then we established a nomogram to calculate 43 

patients’ 3- and 5-year survival rates using this model and clinical data. In addition, we constructed a 44 

recurrence-related ceRNA network and explored the potential molecular mechanisms of recurrence mRNAs 45 

using functional enrichment analyses. Our aim is to discover some novel clues that can effectively predict 46 

which patients will develop recurrence. 47 
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 48 

Materials and methods 49 

Data collection 50 

Within the TCGA database (https://gdc-portal.nci.nih.gov), we identified 169 OS samples with mRNA (which 51 

includes lncRNAs) and miRNA expression data and also recurrence prognosis information. We detected these 52 

samples with the Illumina HiSeq 2000 RNA Sequencing platform. We used these data as the training data set 53 

for this analysis. 54 

We downloaded the validation data set from the Gene Expression Omnibus (GEO) database 55 

(https://www.ncbi.nlm.nih.gov/geo/) using the key words “osteosarcoma, homo sapiens.” A total of 37 56 

samples in GSE39058 met the following criteria: (1) solid tissue from OS tumors; (2) lncRNA, mRNA, and 57 

miRNA expression data; and (3) clinical information on recurrence and prognosis. We detected these samples 58 

using the Illumina platform.  59 

Analysis of differentially expressed RNA in OS tissues 60 

Using the RefSeq ID information, we compared the profiles in the training data set with the genome 61 

annotation file, which we downloaded from the HUGO Gene Nomenclature Committee (HGNC(7); 62 

http://www.genenames.org/)  To further examine the differentially expressed RNAs (DERs; including 63 

lncRNA, miRNA, and mRNA) between the recurrence and non-recurrence OS samples in the training data set, 64 

we analyzed the expression data using the Limma package of the R software 65 

(https://bioconductor.org/packages/release/bioc/html/limma.html) (8). We considered |log2 foldchange| >0.5 66 

and FDR <0.05 as significant. We used heatmaps and volcano plots for visualization (9). 67 

Screening for independent prognostic clinical factors 68 

Univariate and multivariate Cox regression analysis was used to screen out the independent prognostic 69 
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clinical factors by R package of survival. We both selected plog-rank < 0.05 as the threshold for significant 70 

correlation. To further investigate the relationship between independent prognostic factors and high- and 71 

low-risk groups, we conducted risk stratification analysis on these independent prognostic clinical factors. 72 

PS model and performance evaluation 73 

We used Cox regression analysis to assess the effects of candidate high-risk gene expression on overall 74 

survival and used univariate Cox regression analysis to test the relationship between DER expression levels 75 

and prognosis in the training data set. We used a multivariate Cox regression analysis to examine the results.  76 

We selected plog-rank <0.05 as the threshold for significant correlation and screened out the DERs related to 77 

independent prognosis. On the basis of DER expression, we used the R package of penalized 78 

(http://bioconductor.org/packages/penalized/) to screen out the optimal prognosis-related signature DERs 79 

using the Cox proportional-hazards model (10) 80 

Using the signature DER expression and their prognosis coefficients in the training data set, we identified a 81 

combined signature to build a PS model. With this model, we calculated an expression-based risk score for 82 

every sample. Then the samples were classified into two groups (high-risk and low-risk) according to their 83 

median score. 84 

Using Kaplan−Meier analysis we evaluated for the association between the samples and actual survival 85 

prognostic information (11). We also evaluated the association in the validation data set. 86 

Nomogram construction 87 

To further investigate the correlation among the independent prognostic clinical factors, the PS model, and 88 

survival prognosis, we established a nomogram for 3- and 5-year survival rates using the regression modeling 89 

strategies package in R(12, 13). 90 

ceRNA network construction 91 
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Prediction of lncRNA−miRNA−mRNA interactions 92 

We used the experimental module DIANA‐LncBase Version 2 (14) (http://www.microrna.gr/LncBase) to 93 

predict the lncRNA−miRNA interactions. Then, we used T starBase Version 2.0 (15) 94 

(http://starbase.sysu.edu.cn/) to predict the interactions between the DEmiRNAs and DEmRNAs. We mapped 95 

the signature mRNAs to regulated target genes to predict the signature miRNA−mRNA interactions. Finally, 96 

we constructed an lncRNA-related ceRNA network using Cytoscape Version 3.6.1 (16). It shows which 97 

lncRNAs can affect miRNA function and how to regulate mRNA expression. 98 

Gene function analysis 99 

We performed the Gene Ontology (GO) biology process and the Kyoto Encyclopedia of Genes and Genomes 100 

(KEGG) signaling pathway enrichment analysis on the genes contained in the ceRNA network using the 101 

DAVID version 6.8(17, 18) (Database for Annotation, Visualization, and Integrated Discovery, 102 

http://david.abcc.ncifcrf.gov/). P < 0.05 was the threshold of enrichment significance.  103 

Functional enrichment analysis for DERs between the high- and low-risk groups 104 

First, we used the Limma package of R to screen DERs between the high- and low-risk groups in the training 105 

data set. We considered |log2 foldchange| >0.5 and FDR < 0.05 as significant. Then we used DAVID Version 106 

6.8 for the functional analysis of the DERs. 107 

 108 

Results 109 

DE lncRNA, DEmiRNA, and DEmRNA 110 

We found 169 OS tissue samples for combined mRNA, miRNA, and lncRNA from the TCGA database. We 111 

annotated 10,700 mRNAs, 1,029 lncRNAs, and 1,881 miRNAs. Utilizing the recurrence information, we 112 

divided the samples into recurrence and non-recurrence groups containing 28 and 141 samples, respectively. 113 
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From the analysis of the expression profile we identified 54 miRNAs, 178 mRNAs, and 47 lncRNAs 114 

differentially expressed between recurrent and non-recurrent OS. The volcano plot (Fig 1A) and heatmap (Fig 115 

1B) for the lncRNAs, miRNAs, and mRNAs showed that the recurrence tissues clustered separately from the 116 

non-recurrence tissues.  117 

Identifying the independent prognosis DERs and the PS model 118 

In the TCGA dataset, 133 OS tumor samples contained recurrence prognosis information. From the univariate 119 

Cox proportional hazard regression analysis, we identified 61 significant RNAs (P < 0.05). We performed a 120 

multivariate Cox regression analysis for these using recurrence-free survival as an independent variable; thus, 121 

we identified 20 DERs, including 4 lncRNAs, 3 miRNAs, and 13 mRNAs, that were significantly associated 122 

with independent prognosis in OS (P < 0.05). Finally, from the Cox-PH model of the regularization regression 123 

algorithm, which screens the optimal combination of the signature DERs, we obtained a total of 13 DERs 124 

(Table 1). 125 

Therefore, we proposed the following PS model for recurrence-free survival with the risk scoring method, 126 

which integrated the signature DER expression levels and their prognosis coefficients:  127 

Prognostic score = ∑βDERs × Exp DERs 128 

where βDERs is the prognosis coefficient of the signature DERs and ExpDERs is the expression level of the 129 

signature DERs. 130 

Screening the independent prognostic clinical factors 131 

With the univariate and multivariate Cox regression analyses we selected the independent prognostic clinical 132 

factors. Two factors were significantly associated with independent prognosis in OS: tumor metastasis and PS 133 

model status (Table 2). As is shown in Fig 2A, samples with tumor metastasis had a worse prognosis than did 134 

samples without (P < 0:0001). This result is consistent with the actual situation. We then divided the samples 135 

into with− and without−tumor metastasis groups, analyzing the correlation between the prediction results of 136 
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the PS model and the actual prognosis for each group. Our results showed that the PS model remained 137 

significantly correlated with recurrence-free survival time after adjustment by tumor metastasis (Fig 2B). 138 

Prognostic scoring model and performance evaluation 139 

We calculated the risk scores based on the formula of the PS model and divided the samples into low-risk (n = 140 

66) and high-risk (n = 67) groups according to median risk score. The prognostic value of these signature 141 

DERs was demonstrated in Kaplan−Meier plots (Fig 3A). For this PS model, we obtained a good area under 142 

the curve (AUC) value of 0.966 based on a 10-fold cross-validation in the training data set. Samples in the 143 

high-risk group had a worse prognosis than did those in the low-risk group (P < 0:0001). We tested the 144 

robustness of the combined prognostic signature DERs for predicting recurrence in patients with OS in the 145 

validation data set (GSE39058, n = 37) downloaded from the GEO, obtaining similar risk stratification results 146 

(Fig 3B). As with the training data set, the combined prognostic signature DERs classified 37 samples into 147 

low-risk (n = 18) and high-risk (n = 19) groups with significantly different recurrence-free survival times. The 148 

AUC of the prognostic model in the validation was 0.854. 149 

Nomogram survival rate model with independent prognostic factors 150 

To further analyze the correlation among the tumor metastasis and PS model status factors and survival 151 

prognosis, we conducted a nomogram survival rate model construction analysis with the TCGA samples, a 152 

practical way to predict the survival probability for OS patients (Fig 4A). As shown in Fig 4B, the 3- and 153 

5-year C-indexes were 0.834 and 0.869, respectively, suggesting a high prediction of performance. 154 

Construction of ceRNA regulatory network 155 

In this research, we constructed a ceRNA network using the DERs obtained from Step 2.2. This network 156 

contained 33 miRNAs, 55 mRNAs, and 22 lncRNAs (Fig 5). We found 3 significant RNAs in the network: 157 

CPA3, SERTAD4, and GLRB. 158 

By performing the GO and KEGG analyses for the mRNAs in the ceRNA network, we screened 23 159 
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significant correlations in the biological processes and 3 KEGG signal pathways. As shown in Fig 6, these 160 

mRNAs were mostly enriched in specific categories, such as positive regulation of the developmental process 161 

and regulation of neurogenesis. The results of the KEGG analysis revealed the potential biological 162 

relationships between our gene set and the endocytosis, axon guidance, and cancer pathways.  163 

Pathway enrichment analysis of the DEGs between the high- and low-risk groups 164 

We obtained 257 differentially expressed genes (DEGs), including 140 upregulated genes and 117 165 

downregulated genes. Then we performed pathway enrichment analysis on these. As shown in Fig 7, the 166 

DEGs were mainly enriched in the biological processes of immune response and cytokine−cytokine receptor 167 

interaction. 168 

 169 

Discussion 170 

Growing research has proved that RNAs are important prognostic factors in human diseases such as OS. For 171 

example, Zhang et al.(19) has reported that LncRNA CBR3-AS1 is an independent prognostic factor for OS. 172 

Using real-time quantitative polymerase chain reaction, Li et al. (20) has verified that miR-1826 can be a new 173 

prognostic marker for OS. Receptor interacting protein kinase 4 (RIPK4)，Matrilin-2 (MATN2), and many 174 

other genes also can play important roles in prognosis(21-23). Therefore, our prediction model integrates 175 

multiple types of RNA, which may have better prognostic efficacy. 176 

In our research, we proposed a novel PS model based on miRNA, lncRNA, and mRNA that had a high 177 

prediction performance. We analyzed the clinical factors (Age, Gender,Tumor multifocal, Tumor metastatic, 178 

Radiotherapy,Tumor necrosis and PS model) of the samples and screened out independent prognostic clinical 179 

factors. Through the univariate and multivariate analyses, tumor metastasis and PS model was screened out. 180 

Despite combined treatment of extensive resection and chemotherapy, 40%−50% of patients will develop 181 

lung metastases (24). Lung metastases remain an important cause of OS-related mortality (25). With the 182 
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improvement of treatment technology, the survival rates of nonmetastatic OS have been increased to 65% to 183 

75%. (26-28). But, the survival rates of OS systemic metastasis, especially the occurrence of lung metastasis 184 

is still only 11% to 30%(28). The nomogram we constructed, which combines the PS model and tumor 185 

metastasis information, can more effectively predict the survival probability of individual patients with OS. 186 

Noncoding RNAs can act as central players in modulating gene expression at multiple levels and can affect 187 

diverse aspects of cellular processes, including cell apoptosis, proliferation, cycle, migration, and invasion, as 188 

well as drug resistance (29). Most RNAs used in the construction of the PS model are related to malignant 189 

tumors. miR-429 can suppress tumorigenesis in OS by affecting cell proliferation and invasion (30). miR-526b 190 

can regulate the initiation and progression of non-cardia gastric, esophageal squamous cell, breast, and colon 191 

cancers(31-34). miR‑615 plays an important role in renal cell carcinoma progression [(35)]. However, until 192 

now, no research has been done on LINC00626 in cancer.  193 

Carboxypeptidase A3 is a metalloexopeptidase that can be expressed in the subtype of mast cells (36). which 194 

can promote the development of certain malignant tumors such as stomach, prostate, or pancreatic 195 

cancers(37). Glycine receptors, including its beta receptor subunit, can inhibit neurotransmission. (38). The 196 

expression of BCAS4 is significantly reduced in myelodysplastic syndromes patients (39). CA9 197 

overexpression is identified as an independent favorable prognostic marker in many cancers such as 198 

intrahepatic cholangiocarcinoma, tongue squamous cell carcinoma and (RCC) (40-42). LOXL3 contributes to 199 

proliferation and metastasis in pancreatic ductal adenocarcinoma, gastric cancer and melanoma (43). NRXN2 200 

is one of neurexins genes and relates to a wide variety of neuropsychiatric disorders (44). RAMP1 plays a 201 

critical role in inflammation-related lymphangiogenesis (45). SUSD2 expression correlates with the 202 

progression of lung adenocarcinoma, breast cancer and high grade serous ovarian cancer (46-48). SERTAD4 is 203 

a SERTA domain-containing protein. It can interacts with I-mfa which considered to be candidate tumor 204 

suppressor gene (49). 205 

Because post-transcriptional regulation is a complex regulatory network, we should not focus only on 206 

miRNA−mRNA silencing mechanisms. The ceRNA network is an effective tool for comprehensively 207 
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analyzing the function and regulation mechanisms. We constructed a ceRNA network in OS based on 33 208 

miRNAs, 55 mRNAs, and 22 lncRNAs. Many factors such as heredity, inflammation, and environment can 209 

affect OS occurrence and development. OS has a complicated pathophysiological process (50). Due to 210 

mRNAs are the implementers of molecular function, we performed a GO analysis; our results revealed that 211 

mRNAs in the ceRNA network were mainly enriched in positive regulation of the developmental process and 212 

of neurogenesis. We also made a GO-enriched analysis for the DEGs between the high- and low-risk groups. 213 

The DEGs enriched the biological processes, including those for immune responses and the 214 

cytokine−cytokine receptor interaction pathways.  215 

Conclusions 216 

In our research, we have added the exploration of miRNAs. Therefore, our PS model was constructed using 217 

these 3 types of RNA, with high predicting prognosis performance. Combined with tumor metastasis 218 

information, this model can help us to predict survival probability through the nomogram, helping us predict 219 

the likelihood of a patient's recurrence. Through the ceRNA network and enrichment analysis, we can 220 

understand how lncRNAs can affect the function of miRNAs. These RNAs were potential biomarkers for OS 221 

diagnosis and prognosis. Our research also has some limitations. We could not explore the 5-year and 10-year 222 

survival rates using the nomogram model. In future studies, we will collect more data. In addition, we also 223 

need to validate our results through experiment.  224 
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Figure captions 354 

Fig 1. The DER results. A. Volcano plot. The horizontal dashed line indicates FDR < 0.05; the two vertical 355 

dashed lines indicate | log2FC | >0.5. The point size represents the absolute value of logFC; the larger the 356 

value, the larger the point. B. Heatmap. 357 

Fig 2. A. Kaplan−Meier curve of tumor metastasis related to prognosis in the training data set. Blue and red 358 

curves indicate no-recurrence and recurrence groups for the OS tumor samples, respectively. B. The OS 359 

sample group with and without tumor metastasis is based on the PS prediction model and the 360 

prognosis-related Kaplan−Meier curve line graphs. Blue: low-risk samples; red: high-risk samples. 361 

Fig 3. Training and validation data sets used in the study. A. Training set. B. Validation set. Left: 362 

Kaplan−Meier survival plots of low-grade and high-grade samples. Right: receiver operating characteristic 363 

(ROC) curve for the PS model. The area under the curve (AUC) values of 0.966 and 0.854 showed a good 364 

performance of the risk prediction. 365 

Fig 4. Nonogram and concordance plots for the study. A. Nomogram of prognosis. B. Concordance plots 366 

of predictions of 3- and 5-year recurrence survival probability with actual recurrence survival probability. Red: 367 

3 years; blue: 5 years. 368 

Fig 5. ceRNA network. Squares: lncRNA; triangles: miRNA; circles: mRNA. The change in color from blue 369 

to red indicates the change in logFC expression from down-regulation to up-regulation, respectively, and the 370 

nodes with larger numbers represent signature RNAs. 371 
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Fig 6. GO analysis of the mRNA in the ceRNA network. Horizontal axis: number of genes; vertical axis: GO 372 

entry name. Dot size: number of genes involved; dot color: −log10 (FDR). The closer the color is to red, the 373 

higher the significance. 374 

Fig 7. Comparisons between the high- and low-risk groups. (A) GO results for the DEmRNAs between the 375 

high- and low-risk groups. (B) 8 enrichment of KEGG pathway analysis of DEmRNAs between the high- and 376 

low-risk groups. Horizontal axis: number of genes; vertical axis: GO entry name. Dot size: number of genes 377 

involved; dot color: −log10 (FDR). The closer the color is to red, the higher the significance. 378 
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Table 1. The optimal combination of signature DERs. 1 

 2 

Symbol Type 
Multi-variate Cox regression analysis LASSO 

coefficient HR 95%CI P value 

LINC00626 lncRNA 1.0056  1.0011-1.0101 3.840E-03 0.02461  

has-miR-429 miRNA 1.0166  1.0092-1.042 4.858E-02 0.33082  

hsa-miR-526b miRNA 1.0211  1.0099-1.043 1.565E-02 0.24799  

hsa-miR-615 miRNA 0.9967  0.9934-0.9999 1.155E-02 -0.14581  

BCAS4 mRNA 0.9663  0.9419-0.9914 8.742E-03 -0.67382  

CA9 mRNA 1.0111  1.0031-1.0191 6.424E-03 0.17397  

CPA3 mRNA 1.0125  1.0013-1.0238 2.826E-02 0.13737  

GLRB mRNA 0.9613  0.9375-0.9856 1.965E-03 -0.18084  

LOXL3 mRNA 0.9776  0.9644-0.9911 1.158E-03 -0.21229  

NRXN2 mRNA 0.9154  0.9035-0.9275 1.108E-02 -0.13537  

RAMP1 mRNA 0.9911  0.9826-0.9997 4.173E-02 -0.03370  

SERTAD4 mRNA 0.9864  0.973-0.9999 4.833E-02 -0.50416  

SUSD2 mRNA 1.0123  1.0034-1.0212 6.659E-03 0.29587  
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Table 2. Univariate and multivariate Cox regression analysis for clinical factors. 3 

 4 

Clinical characteristics TCGA(N=133) 
Uni-variables cox Multi-variables cox 

HR 95%CI P HR 95%CI P 

Age(years,mean±sd) 38.81±35.63 1.001 0.977-1.025 9.59E-01 - - - 

Gender(Male/Female) 52/81 1.935 0.920-4.070 8.24E-02 - - - 

Tumor multifocal(Yes/No/-) 27/98/8 2.803 1.290-6.092 6.56E-03 1.688 0.753-3.784 2.04E-01 

Tumor metastatic(Yes/No) 29/104 7.695 3.588-16.50 6.75E-10 7.094 3.179-15.83 1.70E-06 

Radiotherapy(Yes/No) 46/87 1.262 0.597-2.670 5.42E-01 - - - 

Tumor necrosis(No/Slight/Moderate/Severe/-) 49/26/44/6/8 1.257 0.842-1.876 2.60E-01 - - - 

PS model(High/ Low) 68/69 15.98 3.792-67.35 5.29E-08 14.01 3.309-59.35 3.38E-04 

Tumor recurrence(Yes/No) 28/105 - - - - - - 

Recurrence free survival time(months,mean±sd) 60.40±15.51 - - - - - - 

 5 
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