Development and validation of a prognostic nomogram for lower-grade glioma based on an autophagy-related IncRNA signature

Туре

Research paper

Keywords

glioma, nomogram, long noncoding RNA, autophagy, computational biology

Abstract

Introduction

Gliomas account for 75% of the primary malignant brain tumors. The prognosis and treatment planning vary in lower-grade gliomas (LGG) due to their heterogeneous clinical behaviors. The dysregulation of autophagy-related (ATG) lncRNAs plays a crucial role in LGG. We aimed to develop and validate an ATG lncRNA risk signature, and a survival nomogram with integration of novel prognostic for LGG patients.

Material and methods

Differentially expressed ATG IncRNAs were screened out based on TCGA and GTEx RNA-seq databases. ATG IncRNA prognostic signature was then established by Kaplan–Meier, univariate Cox proportional hazards regression, Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox proportional hazards regression, with its predictive value validated by time-dependent receiver operating characteristic (ROC) curves. Kaplan–Meier, univariate Cox regression and multivariate Cox proportional hazards regression were used to screen out clinical and molecular variables. A nomogram was developed and internally validated by ROC and calibration plots.

Results

An ATG IncRNA risk signature was constructed with six differentially expressed IncRNAs (LINC00599, LINC02609, AC021739.2, AL118505.1, AL354892.2, and AL590666.2). Based on the risk signature, a nomogram was developed by addition of the significant prognostic clinical variables (age and grade) and molecular variables (IDH status and MGMT status).

Conclusions

We identified an ATG IncRNA risk signature and develop a nomogram for individualized survival prediction in LGG patients. A user-friendly free online calculator to facilitate the use of this nomogram among clinicians is also provided: https://linstu2009.shinyapps.io/LGGPRODICTORapp/?_ga=2.3154 800.1506830296.1588641469-159983587.1588641469.

Development and validation of a prognostic nomogram for lower-grade glioma based on an autophagy-related lncRNA signature

Running title: lncRNA-based nomogram in lower-grade gliomas

Abstract

Introduction: Gliomas account for 75% of the primary malignant brain tumors. The prognosis and treatment planning vary in lower-grade gliomas (LGG) due to their heterogeneous clinical behaviors. The dysregulation of autophagy-related (ATG) lncRNAs plays a crucial role in LGG. We aimed to develop and validate an ATG lncRNA risk signature, and a survival nomogram with integration of novel prognostic for LGG patients.

Material and methods: Differentially expressed ATG lncRNAs were screened out based on TCGA and GTEx RNA-seq databases. ATG lncRNA prognostic signature was then established by Kaplan–Meier, univariate Cox proportional hazards regression, Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox proportional hazards regression, with its predictive value validated by time-dependent receiver operating characteristic (ROC) curves. Kaplan–Meier, univariate Cox regression and multivariate Cox proportional hazards regression were used to screen out clinical and molecular variables. A nomogram was developed and internally validated by ROC and calibration plots.

Results: An ATG lncRNA risk signature was constructed with six differentially expressed lncRNAs (LINC00599, LINC02609, AC021739.2, AL118505.1, AL354892.2, and AL590666.2). Based on the risk signature, a nomogram was developed by addition of the significant prognostic clinical variables (age and grade) and molecular variables (IDH status and MGMT status).

Conclusions: We identified an ATG lncRNA risk signature and develop a nomogram for individualized survival prediction in LGG patients. A user-friendly free online calculator to facilitate the use of this nomogram among clinicians is also provided: https://linstu2009.shinyapps.io/LGGPRODICTORapp/?_ga=2.3154800.1506830296.158864 1469-159983587.1588641469.

Keywords: glioma; autophagy; long noncoding RNA; nomogram; computational biology

1. Introduction

Gliomas account for 75% of primary malignant brain tumors in adults and are associated with high mortality (1, 2). Lower-grade gliomas (LGGs), including diffuse low-grade and intermediate-grade gliomas (World Health Organization (WHO) grades II and III), show a considerably high morbidity (3, 4). Despite a rarer incidence and overall better prognosis for LGG than grade IV tumors and glioblastoma (GBM), 70% of LGGs can develop into GBM and lead to the death of patients within 10 years (5). Molecular alterations, which can be identified objectively, are now believed to serve as more important prognostic factors than histologic grading (3). The current gold standard treatment of glioma includes surgical resection followed by radiotherapy and chemotherapy (6). However, due to the heterogeneity of their clinical behaviors, the standard care of LGG has been debated, thus presenting a therapeutic challenge to physicians (4, 7). Therefore, searching for novel biomarkers for survival prediction and individualized treatment planning to improve the outcomes of LGG patients is necessary and urgent.

Induced by diverse cellular stresses, macroautophagy (autophagy hereafter) is a self-digestive process involving the formation and turnover of autophagosomes, which engulf cellular proteins and organelles for delivery to lysosomes. Unlike apoptosis that represents canonical type I programmed cell death, autophagy is a "double-edged sword", as it can contribute to

stability, survival and evasion of stress, where it is often referred to as "protective autophagy", as well as being toxic by promoting type II cell death (8, 9). These processes are regulated by evolutionarily conserved autophagy-related (ATG) genes (10, 11). The deregulation of ATG genes results in abnormal autophagy and is associated with a variety of pathological conditions, including cancer (12), with accumulating evidence demonstrating that autophagy is involved in the activities of glioma (7, 13). Specifically, long noncoding RNAs (lncRNAs), which are transcripts longer than 200 nucleotides (nt) without protein-coding capacity (14, 15), have been reported to regulate autophagy activity by changing the transcript levels of ATG genes (16, 17). Acting individually or cooperatively as competitive platforms for both miRNAs and mRNAs, lncRNAs are crucial regulators of ATG genes in autophagy regulatory networks (16, 18). For instance, the lncRNA PTENP1 induced cellular autophagy and apoptosis by decoying several ATG-targeting miRNAs, thus repressing the tumorigenic properties of hepatocellular carcinoma (19). Gu et al. revealed that the lncRNA DICER1-AS1 promoted the proliferation, autophagy and invasion of osteosarcoma cells by targeting ATG5 (20). Additionally, the lncRNA MEG3 was revealed to promote cisplatin-induced apoptosis via the inhibition of autophagy in human glioma cells (13). Thus, exploring ATG lncRNAs will be important to provide new insights into prognostic biomarkers and therapeutic interventions for LGG.

A nomogram is a useful and accessible tool for predicting survival and planning individualized treatments by providing an individualized estimate of survival rather than a group prediction (21). Although several nomograms for LGG survival have previously been established, they lack the integration of transcriptome data or a comprehensive inclusion of novel prognostic factors. Thus, in this study, we aimed to develop and validate a prognostic nomogram for individualized survival prediction for LGG patients by integrating an ATG lncRNA risk signature with novel clinical and molecular prognostic factors (age, grade, isocitrate dehydrogenase (IDH) status, and O6-methylguanine-DNA methyltransferase (MGMT) status). In addition, a user-friendly online application was developed.

2. Materials and methods

2.1 Clinical data collection and processing

The study design was shown as a flow chart (Figure. 1). Two public databases, The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) Project, served as the primary sources of this study. TCGA (dataset ID: TCGA-LGG.htseq_fpkm) provided LGG lncRNA expression profiles as well as corresponding clinical information and molecular parameters, while GTEx (dataset ID: gtex_RSEM_gene_fpkm) offered lncRNA expression profiles of normal brain tissues. Specifically, the RNA sequencing (RNA-seq) expression profiles were downloaded from UCSC Xena (2020.3, https://xena.ucsc.edu/) (22). Clinical information and molecular parameters were downloaded from GlioVis (2020.3, http://gliovis.bioinfo.cnio.es) (23), including the following variables for each patient: tumor grade (grade II or grade III), age at diagnosis (>40 years old or < 40 years old), sex (male or female), IDH mutation status (IDH-mutant or IDH-wild type), MGMT status (methylated or unmethylated), survival/follow-up time in months (continuous) and survival status (alive or dead). By using data from Ensembl (https://uswest.ensembl.org/index.html) (24), we reannotated the gene symbols and extracted lncRNAs (including sense_overlapping, lincRNA, 3prime_overlapping_ncrna, processed_transcript, and antisense, sense_intronic (25)) from the original dataset. The lncRNA expression profiles from 529 normal brain samples and 529 LGG samples are presented by log2 (fpkm+1). Then, the two datasets were merged into one with normalization by using the "limma" package, version 3.42.0 (http://www.bioconductor.org/) (26) in R language, version 3.6.2 (https://cran.r-project.org/). LncRNAs with an expression value of 0 were removed. Eventually, 14086 lncRNAs among 1058 samples were found.

2.2 Identification of DElncRNAs

Principal component analysis (PCA) by the "stats" package, version 3.6.2 (https://cran.r-project.org/), was used to determine the visualized genetic distance and relatedness between normal brain tissue and LGG. Differentially expressed lncRNAs (DElncRNAs) between LGG and normal brain tissue were generated using the "limma" package. LncRNAs were considered to have statistically significant differences in expression if $|log2(fold-change)| \ge 2$ and false discovery rate (FDR) < 0.05. We performed hierarchical clustering based on the most variably expressed genes using Euclidean distance as the similarity metric and the complete linkage method as the between-cluster distance metric.

2.3 Identification of ATG DElncRNAs

ATG genes were extracted from the Human Autophagy Database (HADb, http://www.autophagy.lu/index.html) (27). All of the mRNA expression data were normalized by log2 transformation. Pearson correlation was applied to calculate the correlation between the DElncRNAs and ATG genes. A DElncRNA with a correlation coefficient $|\mathbf{r}| > 0.4$ and p value < 0.05 was considered to be an ATG DElncRNA.

2.4 Identification of a prognostic ATG lncRNA signature

Twenty-five LGG samples, in which survival, clinical or molecular subtype information was missing, were excluded. Using the "caret" package, version 6.0-85 (https://cran.r-project.org/) (28) in R language, the ATG DElncRNA profiles were then randomly divided into a training cohort (n = 252) and a validation cohort (n= 252). A survival analysis model was constructed based on the training cohort by the "survival" package, version 3.1-8

(https://cran.r-project.org/) in R language, while the validation cohort was used for model testing. The median expression level of the training cohort was used to split the ATG lncRNAs into high- and low-expression groups, followed by Kaplan–Meier (K-M) survival analysis to assess the survival differences between them. Univariate Cox proportional hazards regression models were used to assess the association between the ATG lncRNAs and the overall survival (OS) of LGG patients from the training cohort. P value < 0.05 was considered statistically significant. Least absolute shrinkage and selection operator (LASSO) regression, which avoids overfitting of the model in the risk signature according to the best lambda value, was performed to filter out the ATG lncRNAs that were significant in univariate Cox analysis. Subsequently, the joint effect of different covariates was assessed using multivariate Cox proportional hazards regression by the "step" function in R programming language, with results shown as forest plots. The relationships among the six

ATG lncRNAs and their coexpressed ATG genes were displayed by creating a Sankey diagram.

The prognostic prediction model was constructed based on the regression coefficient-weighted lncRNA expression, and a risk score formula was established as follows:

Risk score= $\sum_{i=1}^{n} Expi \times Coei$

In the formula, N is the number of selected ATG lncRNAs, with Expi being the expression value of each ATG lncRNA and Coei being the multivariate Cox regression coefficient. Next, the expression profile data of the corresponding ATG lncRNAs were extracted from the training cohort and substituted into the model to calculate the risk score of each patient. The patients were divided into high- and low-risk groups according to the median risk score value. K-M survival analysis was used to estimate the survival distributions. Receiver operating characteristic (ROC) analysis ("survivalROC" package, version 1.0.3, https://cran.r-project.org/) of the ATG lncRNA risk signature for predicting 1-, 3- and 5-year survival was carried out. Replication was carried out to internally validate the model by using the data from the validation cohort.

2.5 Functional enrichment analysis

Gene set enrichment analysis (GSEA, https://www.broad institute.org/gsea/index.jsp) was applied to identify the biological functions and pathways between the high- and low-risk groups based on the risk signature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with the risk signature were further explored. According to the GSEA website, an FDR of 0.25 is reasonable in the setting of exploratory discovery for the validation of the candidate hypothesis in future research, while a more stringent FDR may lead to overlooking potentially significant results. Thus, gene sets with an FDR < 0.25 in the high- and low-risk groups in the TCGA data set (TCGA-LGG.htseq_fpkm) were considered significantly different and were selected.

2.6 Development of a prognostic nomogram

In the training cohort, K-M survival analysis was first used to estimate the survival distributions of each clinical and molecular factor, followed by assessing the association between the OS and each factor using univariate Cox proportional hazards regression models. Next, the joint effect of different covariates was assessed using multivariate Cox proportional hazards regression by the "step" function in the R programming language. The results of both univariate Cox and multivariate Cox analyses are shown as forest plots. Receiver operating characteristic (ROC) analysis ("survivalROC" package) of the ATG lncRNA risk signature, as well as each clinical and molecular factor mentioned above for predicting the 1-, 3- and 5-year survival, was performed to evaluate the sensitivity and specificity of survival prediction. Nonsignificant variables (p value>0.05) were omitted. A nomogram was constructed based on the significant factors for predicting the survival of LGG patients. The survival ROC curve and calibration curve were used to assess the performance of the nomogram. The nomogram was internally validated using the validation cohort. To facilitate clinical use, a free online calculator for the final nomogram was established by the "DEnorm"

package (version 5.0.1, https://cran.r-project.org/) and published in "https://www.shinyapps.io/".

2.7 Statistical analysis

The R programming language (version 3.6.2) was used to perform statistical analyses, including PCA, K-M survival analyses, univariate and multivariate Cox regression models, LASSO regression and ROC curve analysis, as well as to draw figures, including heatmaps, boxplots, forest plots and calibration plots. Quantitative data are shown as the mean \pm standard deviation (SD). Statistical differences between two groups were compared by the Wilcoxon test. A P value< 0.05 was considered statistically significant.

3. Results

3.1 Construction of a risk signature including six ATG DElncRNAs

To graphically determine the distribution of all 14086 lncRNAs within normal brain tissue and LGG, PCA was employed to show that the data had been normalized well and that the variation in the data were maximal (Figure 2a). Subsequently, 112 DElncRNAs with an expression ratio that differed between LGG and normal brain tissues by a factor of at least 2-fold were selected (Figure 2b and 2c). Each lncRNA with their median expression levels in LGG and normal brain tissues is shown in Figure 2d. A total of 232 ATG genes were downloaded from HADb, and 20 ATG DElncRNAs with Pearson correlation coefficient $|\mathbf{r}| > 0.4$ and p value< 0.05 were selected (Figure 2e). LGG patients in the TCGA dataset with detailed clinical information (age, grade, and gender) and molecular parameters (IDH status and MGMT status) were randomly divided into a training cohort (n = 252) and a validation cohort (n = 252) (Table 1). Twelve ATG DElncRNAs of prognostic value were screened out by performing Kaplan-Meier analysis and univariate Cox analysis in the training cohort (Table S1). To select appropriate parameters for constructing a risk signature, LASSO regression was used and identified 10 ATG DElncRNAs (AC021739.2, AC093010.3, AL118505.1, AL121827.2, AL354892.2, AL355916.2, AL590666.2, LINC00599, LINC02609, and NEAT1) (Figures 3a and 3b). Eventually, only 6 ATG DElncRNAs (AC021739.2, AL118505.1, AL354892.2, AL590666.2, LINC00599, and LINC02609) remained following multivariate Cox regression analysis. AC021739.2, AL118505.1, AL354892.2, LINC00599, and LINC02609 were regarded as protective factors (hazard ratios (HRs) < 1), while AL590666.2 was the only risk factor (HR > 1) among these lncRNAs in LGG (Figure 3c). According to the HRs, a Sankey diagram was constructed to intuitively display the regulation of the six ATG lncRNAs on their coexpression genes, with five lncRNAs as protective factors and one as a risk lncRNA (Figure S1). Based on both univariate and multivariate Cox regression analyses, the six lncRNAs as novel prognostic biomarkers were suggested for further analysis.

3.2 Construction of the prognostic risk signature with six ATG lncRNAs in LGG

The six ATG lncRNAs (AC021739.2, AL118505.1, AL354892.2, AL590666.2, LINC00599, and LINC02609) were incorporated to develop a risk signature in the training cohort. The risk scores were produced using the formula mentioned in the methods as follows: risk

score= (-0.3899 × expression level of AC021739.2) + (-0.5685 × expression level of AL118505.1) + (-0.7595 × expression level of AL354892.2) + (-0.2849 × expression level of LINC00599) + (-0.3508 × expression level of LINC02609) + (0.5524 × expression level of AL590666.2). The samples in the training cohort were divided into high- and low-risk groups according to the median risk score. As shown in Figure 4a, higher risk scores suggested more deaths. In addition, along with the increasing risk scores, the expression levels of AC021739.2, AL118505.1, AL354892.2, LINC00599, and LINC02609 were decreased, whereas the expression level of AL590666.2 was increased. The K-M curve showed that the high-risk group was associated with poorer prognosis (Figure 4b). The ROC curve was used to evaluate the efficacy of the ATG lncRNA risk signature to predict 1-, 3-, and 5-year survival in LGG patients. The areas under the curve (AUCs) for 1-, 3-, and 5-year survival were 0.788, 0.857, and 0.687, respectively (Figure 4c-4e), indicating that the risk signature had good predictive performance.

3.3 Validation of the prognostic ATG lncRNA risk signature

The performance of the ATG lncRNA risk signature was internally tested in the validation cohort. The LGG samples in the validation cohort were divided into high- and low-risk groups according to the median risk score. In line with the results in the training cohort, downregulated expression levels of AC021739.2, AL118505.1, AL354892.2, LINC00599 and LINC02609, as well as upregulated expression of AL590666.2 and more deaths, were observed with higher risk scores (Figure 5a). Similarly, the K-M curve showed that patients in the high-risk group had a relatively unfavorable prognosis (Figure 5b). The AUCs for 1-,

3-, and 5-year survival were 0.906, 0.78, and 0.725, respectively (Figure 5c-5e), thereby confirming the good predictive efficacy of the risk signature.

3.4 Functional annotation and signaling pathway enrichment of the ATG IncRNA prognostic signature

GSEA was conducted to explore the biological functions and pathways associated with the ATG lncRNA risk signature in LGG patients. As a result, a total of 3373 GO functions were enriched in the high-risk group (FDR< 0.25, top 100 shown in Table S2), including autophagosomes, cell matrix adhesion and regulation of cell junction assembly functions (FDR< 0.05) (Figure S2a- S2c), while 181 GO functions were enriched in the low-risk group (FDR< 0.25) (Table S3), including ribosome assembly functions (FDR< 0.05) (Figure S2d). We also obtained 113 enriched KEGG pathways in the high-risk group (FDR< 0.25) (Table S4), including the regulation of autophagy, MAPK signaling pathway, and extracellular matrix (ECM) receptor interaction pathway (FDR< 0.05) (Figure S2e- S2g). For the low-risk group, 6 enriched KEGG pathways are shown in Table S5, including the ribosome pathway (FDR< 0.25) (Figure S2h).

3.5 Development and independent validation of a nomogram integrating the risk signature with clinical and molecular variables

The prognostic significance of clinical factors such as age, gender, and grade, as well as molecular parameters such as IDH status and MGMT status, were previously reported in glioma (3, 29-33). In the training cohort, the association of overall survival with these

variables was assessed using K-M survival analysis (Figure 6a-6e) and Cox proportional hazards regression in univariate and multivariable models (Figure 6f and 6g). The gender variation was eliminated from the models since the univariate analysis result showed no statistical significance between groups. ROC curves were also used to evaluate the prognostic accuracy of the risk signature and each variable. Due to space limitations, as well as the most commonly used indexes in clinical practice, we only show the predicted 1-, 3-, and 5-year survival rates for LGG patients. As shown in the ROC curves, the AUCs of the ATG lncRNA risk signature for predicting 1-, 3- and 5-year survival were 0.824 (Figure 6i), 0.901 (Figure 6j) and 0.700 (Figure 6k), respectively, which were higher than those of any clinical or molecular variables, except for that of IDH status in 1-year survival (0.867). Conclusively, the ATG lncRNA risk signature provided a more accurate survival prediction than other prognostic factors (age, grade, IDH status, and MGMT status), though they were contributing factors of survival and had good prognostic accuracy. Thus, a nomogram was developed by integrating the ATG lncRNA risk signature with novel prognostic clinical and molecular factors (age, grade, IDH status, and MGMT status). As shown in the nomogram, the probabilities of 1-, 3-, and 5-year survival could be quickly estimated as the total points by adding the points in each item (Figure 6h). ROC curves and calibration plots were used to evaluate the performance of the nomogram. The AUCs of the ROC curves for predicting 1-, 3- and 5-year survival were 0.877, 0.937 and 0.826, respectively, in the training cohort (Figure 7a) and 0.905, 0.914 and 0.732 in the validation cohort (Figure 7e). The calibration curves showed good agreement between the predictions and observations in the training cohort (Figure 7b-7d) and the validation cohort (Figure 7f-7h) for the probabilities of 1-, 3and 5-year survival. Considering that predictions for other time points are also important, free online software, established by the "DEnorm" package, for the developed nomogram was made available for easier clinical use:

https://linstu2009.shinyapps.io/LGGPRODICTORapp/?_ga=2.3154800.1506830296.158864 1469-159983587.1588641469.

4. Discussion

A recently published study had confirmed the involvement of aberrant expression of IncRNAs in glioma development by examining the IncRNA profiles from tumor and peritumoral tissues, without exploring the potential contribution of lncRNA expression to patients' survival (34). In our study, we identified six ATG lncRNAs (LINC00599, LINC02609, AC021739.2, AL118505.1, AL354892.2 and AL590666.2) that were of predictive value in LGG survival. Long intergenic nonprotein coding RNA 599 (LINC00599), also known as retinal noncoding RNA3, is located on human chromosome 8p23 and was first reported to be dynamically expressed during mouse retinal development (35). It is considered to regulate the differentiation of neurons and oligodendrocytes (36) and is now increasingly recognized as a critical player in a variety of cancers and considered an oncogene. For example, LINC00599 promotes the progression of both prostatic cancer and colorectal cancer (37). However, the functional roles of LINC00599 in glioma are controversial. Increased expression of LINC00599 was observed in glioma tissues and cell lines, where its silencing suppressed proliferation and invasion and induced cell cycle arrest involving the Akt/GSK3β pathway (38, 39). In contrast, it has been reported that LINC00599 is downregulated in GBM

cells, and its overexpression inhibits proliferation and induces apoptosis through the miR-185- 5p/KLF16 axis (40). In addition, Fu and colleagues revealed that the expression of LINC00599 was reduced in both LGG and GBM tissues and that it served as a tumor-suppressing lncRNA by inhibiting cell migration and invasion through the regulation of the EMT process (41). This finding is in agreement with the concept that LINC00599 is downregulated in LGG and serves as a protective factor for LGG survival. Despite accumulating studies on the molecular mechanisms of lncRNAs, knowledge of the remaining 5 lncRNAs (LINC02609, AC021739.2, AL118505.1, AL354892.2, and AL590666.2) is limited so far. In our study, we show that LINC02609, AC021739.2, AL118505.1 and AL354892.2 all have an HR < 1, indicating that they are positive predictors of LGG. Conversely, higher expression of AL590666.2 suggests an unfavorable prognosis in LGG. Therefore, these lncRNAs can be further explored for their potential roles in regulating autophagy and as prognostic markers and therapeutic targets of LGG. In addition, GSEA suggested that the ATG lncRNA risk signature was mainly related to autophagy and cell matrix adhesion, which was reported to be involved in the malignant transformation and local invasiveness of glioma cells (42), indicating the essential roles of our signature. By integrating a set of novel prognostic factors, nomograms are useful and accessible tools for predicting survival and individualized treatment planning since they provide an individualized estimate of survival rather than a group prediction (21). Several nomograms for LGG patient survival have been established previously (4, 43, 44). Among these, the nomogram developed by Gittleman et al. represented the most comprehensive nomogram, including common essential prognostic variables such as sex, tumor grade, and age, as well

as some critical newly discovered factors including molecular subtype (IDH mutation, 1p/19q codeletion) and Karnofsky performance status (KPS) (4). Our nomogram included all the variables in Gittleman's nomogram, except for postoperative KPS, 1p/19q codeletion and sex. In fact, Gittleman did not identify a sex difference in LGG survival by analyzing data from both TCGA and the Ohio Brain Tumor Study (OBTS) but still kept it in the nomogram considering its clinical significance (4). In line with their results, sex was not statistically significant in our study. According to the published literature, a sex difference was more commonly observed in GBM (30, 45), whereas LGG incidence was nearly identical in males and females. Therefore, gender was not included in our nomogram. We did not include the KPS value due to the high amount of missing data in TCGA (up to 55.0%). Since 1p/19q codeletion is the most common genetic characteristic of only a specific type of glioma (oligodendroglioma) and is of predictive value in response to chemotherapy and radiation (3, 32, 46), we included IDH mutation status, which is regarded as a hallmark of LGG and characterizes the majority of LGG patients, instead of 1p/19q codeletion (32, 47). In addition, we added another important prognostic variable, MGMT status, which is a DNA repair protein correlated with prolonged survival in patients with diffuse gliomas (3, 32, 33) and was found to be statistically significant in our survival model. Most importantly, we deeply explored the TCGA transcriptome data of LGG tissue rather than simply associating clinical and molecular prognostic factors to establish a lncRNA prognostic signature, which seemed to have the best accuracy among all the prognostic factors according to the AUCs of the ROC curves and was independently validated. A nomogram was developed based on this ATG lncRNA risk signature, with integrations of novel clinical (age and grade) and molecular

(IDH status and MGMT status) prognostic factors, followed by independent validation demonstrating an accurate and stable performance by ROC curves and calibration plots. This is the first nomogram that comprehensively integrates an ATG lncRNA risk signature with novel clinical and molecular prognostic factors.

An important advantage of this study is the application of transcriptome data from the GTEx Project, which allows access to a much larger data set of normal brain tissue while minimizing measurement bias compared to other studies extracting data from several Gene Expression Omnibus (GEO) datasets. Furthermore, some classical statistical methods were applied to make the survival prediction convincing. First, to avoid overfitting of the model, LASSO regression was used to identify lncRNAs since it allows the model coefficients to become 0. This property is consistent with our expectation of identified biomarkers in clinical practice in that it is clinically efficient and economical to detect the least number of key biomarkers for diagnosis or prognosis prediction. Second, K-M survival analysis, univariate Cox proportional hazards regression models, multivariate Cox proportional hazards regression, and ROC curves were sequentially used to strictly screen out all potential prognostic factors, with ROC curves and calibration applied for the validation of both the risk signature and nomogram. Third, we internally validated the established risk signature and nomogram in the validation cohort, thereby testing their accuracy in predicting survival. Finally, user-friendly free online software was designed to facilitate the use of the nomogram by clinicians.

However, the present study also has certain limitations. First, our nomogram did not include information regarding treatment, such as the extent of surgical resection, chemotherapy and

radiotherapy. This is due to the lack of information on the extent of surgical resection in TCGA and the debated standard of care for LGG patients. Second, internal validation was used to evaluate the efficiency of the risk signature and nomogram rather than external validation because of the lack of integrated LGG lncRNA data from other databases, such as GEO. Finally, the validation cohort was based on 252 retrospective datasets from the TCGA database with the application of internal validation instead of external validation to test the accuracy of the risk signature and the nomogram. This is because there is a lack of or too little LGG lncRNA data from other databases, such as GEO, Chinese Glioma Genome Atlas (CGGA), and Repository of Molecular Brain Neoplasia Data (REMBRANDT). However, although we did not include other databases in our research as an external validation, the randomly grouped datasets from the TCGA database used for internal validation were from different institutions. Therefore, the signature is in fact independently validated and is still convincing. Considering all these above limitations, we may replicate our findings in larger cohorts, hopefully with the LGG clinical data bank built, or validate the five-lncRNA signature in future studies when integral datasets are available.

5. Conclusions

In conclusion, we complemented available genomic-based studies by identifying six ATG lncRNAs (LINC00599, LINC02609, AC021739.2, AL118505.1, AL354892.2, and AL590666.2) that may serve as potential prognostic biomarkers or therapeutic targets of LGG, followed by establishing of an ATG lncRNA risk signature. With integration of ATG lncRNA risk signature, novel clinical and molecular prognostic factors (age, grade, IDH

mutation status, and MGMT status), we developed and internally validated a nomogram, thereby providing healthcare practitioners with individualized survival estimates and facilitating treatment planning in LGG patients. To promote the clinical use of this model, a free online software for its implementation is provided as follows:

 $https://linstu2009.shinyapps.io/LGGPRODICTORapp/?_ga=\!2.3154800.1506830296.158864$

 $1469 \hbox{-} 159983587.1588641469.$

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Availability of data and material

Data can be downloaded from UCSC Xena (<u>https://xena.ucsc.edu/</u>) and GlioVis (<u>http://gliovis.bioinfo.cnio.es</u>)

Statements and Declarations

The authors declare that they have no competing interests.

Funding

The present study was supported by The National Natural Science Foundation of China (grant nos. 81471279 and 81171138) and The Research Start-Up Fund of Wuxi School of Medicine, Jiangnan University (grant no. 1286010242190060).

Acknowledgements

The authors thank UCSC Xena and GlioVis for the availability of the data.

References

1. Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet (London, England). 2018;392(10145):432-46.

2. Wang H, Liu G, Li T, Wang N, Wu J, Zhi H. MiR-330-3p functions as a tumor suppressor that regulates glioma cell proliferation and migration by targeting CELF1. Archives of medical science : AMS. 2020;16(5):1166-75.

3. Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. The New England journal of medicine. 2015;372(26):2481-98.

4. Gittleman H, Sloan AE, Barnholtz-Sloan JS. An independently validated survival nomogram for lower-grade glioma. Neuro-oncology. 2020;22(5):665-74.

5. Kiran M, Chatrath A, Tang X, Keenan DM, Dutta A. A Prognostic Signature for Lower Grade Gliomas Based on Expression of Long Non-Coding RNAs. Molecular Neurobiology. 2018;56(7):4786-98.

6. Peng Z, Liu C, Wu M. New insights into long noncoding RNAs and their roles in glioma. Molecular Cancer. 2018;17(1).

7. Ulasov I, Fares J, Timashev P, Lesniak MS. Editing Cytoprotective Autophagy in Glioma: An Unfulfilled Potential for Therapy. Trends in Molecular Medicine. 2020;26(3):252-62.

8. Emdad L, Bhoopathi P, Talukdar S, Pradhan AK, Sarkar D, Wang XY, et al. Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Seminars in cancer biology. 2020;66:140-54.

9. Lin JZ, Lin N. A risk signature of three autophagy-related genes for predicting lower grade glioma survival is associated with tumor immune microenvironment. Genomics. 2021;113(1 Pt 2):767-77.

10. Mizushima N. Autophagy: process and function. Genes & development. 2007;21(22):2861-73.

11. Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annual review of cell and developmental biology. 2011;27:107-32.

12. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069-75.

13. Ma B, Gao Z, Lou J, Zhang H, Yuan Z, Wu Q, et al. Long non-coding RNA MEG3 contributes to cisplatin-induced apoptosis via inhibition of autophagy in human glioma cells. Mol Med Rep. 2017;16(3):2946-52.

14. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26-46.

15. Lin JZ, Lin N, Zhao WJ. Identification and validation of a six-lncRNA prognostic signature with its ceRNA networks and candidate drugs in lower-grade gliomas. Genomics. 2020;112(5):2990-3002.

16. Zhang J, Wang P, Wan L, Xu S, Pang D. The emergence of noncoding RNAs as Heracles in autophagy. Autophagy. 2017;13(6):1004-24.

17. Ebadi N, Ghafouri-Fard S, Taheri M, Arsang-Jang S, Parsa SA, Omrani MD. Dysregulation of autophagy-related lncRNAs in peripheral blood of coronary artery disease patients. Eur J Pharmacol. 2020;867:172852.

18. Khorkova O, Hsiao J, Wahlestedt C. Basic biology and therapeutic implications of lncRNA. Advanced Drug Delivery Reviews. 2015;87:15-24.

19. Chen C-L, Tseng Y-W, Wu J-C, Chen G-Y, Lin K-C, Hwang S-M, et al. Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation. Biomaterials. 2015;44:71-81.

20. Zhang Y, Li X, Zhou D, Zhi H, Wang P, Gao Y, et al. Inferences of individual drug responses across diverse cancer types using a novel competing endogenous RNA network. Molecular oncology. 2018;12(9):1429-46.

21. Gittleman H, Lim D, Kattan MW, Chakravarti A, Gilbert MR, Lassman AB, et al. An independently validated nomogram for individualized estimation of survival among patients with newly diagnosed glioblastoma: NRG Oncology RTOG 0525 and 0825. Neuro-oncology. 2017;19(5):669-77.

22. Goldman M, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. bioRxiv. 2019.

23. Bowman RL, Wang Q, Carro A, Verhaak RG, Squatrito M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro-oncology. 2017;19(1):139-41.

24. Cunningham F, Achuthan P, Akanni W, Allen J, Amode M R, Armean IM, et al. Ensembl 2019. Nucleic acids research. 2018;47(D1):D745-D51.

25. Wright MW. A short guide to long non-coding RNA gene nomenclature. Human genomics. 2014;8:7.

26. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43(7):e47-e.

27. Wang NN, Dong J, Zhang L, Ouyang D, Cheng Y, Chen AF, et al. HAMdb: a database of human autophagy modulators with specific pathway and disease information. Journal of cheminformatics. 2018;10(1):34.

28. Kuhn M. Building predictive models in R using the caret package. Journal of statistical software. 2008;28(5):1-26.

29. Pignatti F, van den Bent M, Curran D, Debruyne C, Sylvester R, Therasse P, et al. Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol. 2002;20(8):2076-84.

30. Yang W, Warrington NM, Taylor SJ, Whitmire P, Carrasco E, Singleton KW, et al. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci Transl Med. 2019;11(473).

31. Leu S, von Felten S, Frank S, Vassella E, Vajtai I, Taylor E, et al. IDH/MGMT-driven molecular classification of low-grade glioma is a strong predictor for long-term survival. Neuro-oncology. 2013;15(4):469-79.

32. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011-2015. Neuro-oncology. 2018;20(suppl_4).

33. Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25 Suppl 3:iii93-ii101.

34. Ding Y, Wang X, Pan J, Ji M, Luo Z, Zhao P, et al. Aberrant expression of long non-coding RNAs (lncRNAs) is involved in brain glioma development. Archives of medical science : AMS. 2020;16(1):177-88.

35. Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, et al. Genomic analysis of mouse retinal development. PLoS Biol. 2004;2(9):E247.

36. Mercer TR, Qureshi IA, Gokhan S, Dinger ME, Li G, Mattick JS, et al. Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 2010;11:14.

37. Tian C, Deng Y, Jin Y, Shi S, Bi H. Long non-coding RNA RNCR3 promotes prostate cancer progression through targeting miR-185-5p. Am J Transl Res. 2018;10(5):1562-70.

38. Zhu B, Zhang S, Meng N, Zhang H, Yuan S, Zhang J. Long non-coding RNA RNCR3 promotes glioma progression involving the Akt/GSK-3β pathway. Oncol Lett. 2019;18(6):6315-22.

39. Xu G, Wang H, Yuan D, Yao J, Meng L, Li K, et al. RUNX1-activated upregulation of lncRNA RNCR3 promotes cell proliferation, invasion, and suppresses apoptosis in colorectal cancer via miR-1301-3p/AKT1 axis in vitro and in vivo. Clin Transl Oncol. 2020.

40. Zhang L, Cao Y, Wei M, Jiang X, Jia D. Long noncoding RNA-RNCR3 overexpression deleteriously affects the growth of glioblastoma cells through miR-185-5p/Krüppel-like factor 16 axis. Journal of Cellular Biochemistry. 2018;119(11):9081-9.

41. Fu Q, Li S, Zhou Q, Yalikun K, Yisireyili D, Xia M. Low LINC00599 expression is a poor prognostic factor in glioma. Bioscience Reports. 2019;39(4).

42. Ku BM, Lee YK, Ryu J, Jeong JY, Choi J, Eun KM, et al. CHI3L1 (YKL-40) is expressed in human gliomas and regulates the invasion, growth and survival of glioma cells. Int J Cancer. 2011;128(6):1316-26.

43. Gorlia T, Wu W, Wang M, Baumert BG, Mehta M, Buckner JC, et al. New validated prognostic models and prognostic calculators in patients with low-grade gliomas diagnosed by central pathology review: a pooled analysis of EORTC/RTOG/NCCTG phase III clinical trials. Neuro-oncology. 2013;15(11):1568-79.

44. Wang Y, Xin S, Zhang K, Shi R, Bao X. Low GAS5 Levels as a Predictor of Poor Survival in Patients with Lower-Grade Gliomas. J Oncol. 2019;2019:1785042.

45. Ostrom QT, Rubin JB, Lathia JD, Berens ME, Barnholtz-Sloan JS. Females have the survival advantage in glioblastoma. Neuro-oncology. 2018;20(4):576-7.

46. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med. 2015;372(26):2499-508.

47. Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet. 2012;205(12):613-21.

Legend

Fig. 1 Flow chart of study design.

Fig. 2 Screening of lncRNAs used for constructing the risk signature for lower-grade gliomas (LGG). (a) Principal components analysis of lncRNAs between LGG and normal brain tissues. (b) Volcano plot showed the distribution of differentially expressed lncRNAs (DElncRNAs) between LGG and normal brain tissues. (c) Heatmap exhibited the expression levels of the DElncRNAs. (d) Boxplot showed the expressions of DElncRNAs. The green and red boxes showed the DElncRNA expression in LGG and normal brain tissue, respectively. (e) The networks constructed by autophagy-related DElncRNAs (blue rectangle) and autophagy-related genes (yellow ellipse). Positive and negative Pearson coefficients were illustrated by red line and green line, respectively. The width of the line was proportional to the correlation

Fig. 3 Identification of the autophagy-related differentially expressed lncRNAs (ATG DElncRNA). (a) Log (Lambda) value of the 20 ATG DElncRNAs in least absolute shrinkage and selection operator (LASSO) model. (b) The most appropriate log (Lambda) value in the LASSO model. (c) Multivariate Cox regression analysis was performed and six ATG DElncRNAs (AC021739.2, AL118505.1, LINC00599, AL590666.2, LINC02609, and AL354892.2) were identified to for further construction of the risk signature

Fig. 4 Characteristics of the autophagy-related differentially expressed lncRNAs (ATG DElncRNA) risk signature in the training cohort. (a) lncRNA expression profiles, risk score

distributions and patient survival in the training cohort. (b) Survival curves for high-risk and low-risk groups classified by the risk signature in the training cohort. (c-e) Receiver operating characteristic (ROC) curves for the 1- (c), 3- (d), and 5- (e) year survival according to the ATG DElncRNA risk signature in the training cohort

Fig. 5 Efficacy of the autophagy-related differentially expressed lncRNAs (ATG DElncRNA) risk signature in the validation cohort. (a) LncRNA expression profiles, risk score distributions and patient survival in the validation cohort. (b) Survival curves for high-risk and low-risk groups classified by the risk signature in the validation cohort. (c-e) Receiver operating characteristic (ROC) curves for the 1- (c), 3- (d), and 5- (e) year survival according to the ATG DElncRNA risk signature in the validation cohort

Fig. 6 Assessment of the survival prognostic value of the risk signature, as well as clinical (grade, age, and gender) and molecular variables (IDH status and MGMT status) in LGG patients. (a-e) Kaplan-Meier survival curves showed the survival probabilities for LGG patients by grade (a), IDH status (b), MGMT status (c), age (d), and gender (e). (f-g) Univariate (f) and multivariate (g) Cox regression analyses evaluated the contribution of each variable to LGG survival. (h) Nomogram was developed by integrating the risk signature with age, grade, IDH status and MGMT status for predicting LGG survival. (i-k) ROC curves to evaluate the accuracy of each variable for predicting 1- (i), 3- (j), and 5- (k) year survival were shown with areas under curves (AUCs)

Fig. 7 Evaluation of the performance of the nomogram for survival prediction. (a) ROC curves showed the accuracy of the nomogram for predicting 1-, 3-, and 5- year survival in the training cohort. (b-d) Calibration curves showed the predicted values and the observed values of patient survival at 1- (b), 3- (c) and 5-(d) year in the training cohort. (e) ROC curves showed the accuracy of the nomogram for predicting 1-, 3-, and 5- year survival in the validation cohort. (f-h) Calibration curves showed the predicted values and the observed values of patient survival at 1- (f), 3- (g) and 5-(h) year survival in the validation cohort.

Fig. S1 The relationships between the six autophagy-related differentially expressed lncRNAs and their co-expressed genes shown by Sankey diagram. The six autophagy-related lncRNAs were divided into protective and risk lncRNAs according to the hazard ratios

Fig. S2 Functional roles of the risk signature by the gene set enrichment analysis (GSEA). GO analysis showed gene sets related to autophagosome membrane (a), cell matrix adhesion (b) and regulation of cell junction assembly (c) were enriched in LGG patients with the high-risk score, while a gene set related to ribosome assembly (d) was enriched in LGG patients with a low risk score. KEGG showed that gene sets were enriched in the pathway of regulation of autophagy (e), MAPK signaling pathway (f), and ECM receptor interaction (g) in LGG patients with high- risk score, while a gene set related to ribosome (h) was enriched in LGG patients with a low risk score

Clinicopathological		Nihave of an even lar	
charae	cteristics	Number of samples	
	Trainning cohort(n=252)	Validation cohort(n=252)	
WHO Grade			
Grade II	109	116	
Grade III	121	119	
Unknown	22	17	
Age			
Average value	44.01	42.52	
Range	14-87	18-75	
Unknown	32	25	
Gender			
Male	87	109	
Female	133	118	
Unknown	32	25	

Table 1. Clinicopathological characteristics of samples in the training cohort and the validation cohort.

	Kmnwalna	Unicox
gene	Kinpvalue	pvalue
AC021739.2	0.000341	3.08E-05
AC053503.1	7.32E-05	3.07E-06
AC093010.3	0.000113	0.001098
AL118505.1	0.000404	3.87E-09
AL121827.2	0.019342	3.05E-05
AL354892.2	9.71E-05	7.67E-08
AL355916.2	0.006057	0.025537
AL590666.2	0.003906	0.018444
LINC00599	0.00955	0.003334
LINC02283	0.002057	7.52E-08
LINC02609	0.009672	0.009522
NEAT1	0.023499	7.96E-05

Table S1. P value of the autophagy-related DElncRNAs with Kaplan-Meieranalysis and Univariate Cox proportional hazards regression

NAME	SIZE	ES	NES	NOM p-val	FDR q-val
GO_PHOSPH					
ATIDYLINOSI					
TOL_3_5_BIS	28	0.561242	2.035787	0	0.016556
PHOSPHATE_					
BINDING					
GO_T_CELL_					
RECEPTOR_S	109	0.571007	2.02(01)	0.005882	0.01/(2)2
IGNALING_P	198	0.371007	2.030010	0.003882	0.010025
ATHWAY					
GO_CELL_SU					
BSTRATE_JU	412	0.481075	2.034863	0	0.016637
NCTION					
GO_CELL_JU					
NCTION_ASS	244	0.510005	2.031892	0	0.016713
EMBLY					
GO_REGULA					
TION_OF_GR					
ANULOCYTE	42	0.687937	2.036136	0	0.016723
_CHEMOTAX					
IS					
GO_KERATA					
N_SULFATE_	24	0 702066	2 022007	0	0.016752
METABOLIC_	54	0.703966	2.033007	0	0.016/52
PROCESS					
GO_NEGATIV					
E_REGULATI					
ON_OF_PEPTI	143	0.545066	2.033508	0	0.016756
DE_SECRETI					
ON					
GO_REGULA					
TION_OF_AC					
TIN_FILAME	378	0.463275	2.02989	0	0.016795
NT_BASED_P					
ROCESS					
GO_GOLGI_A					
SSOCIATED_	100	0 16 195	2 022005	0	0.01/007
VESICLE_ME	109	0.46485	2.032095	0	0.016807
MBRANE					
GO_REGULA					
TION_OF_CE	61	0.558547	2.029092	0	0.016836
LL_SUBSTRA					

Table S2. TOP 100 enriched GO functions in high risk group

TE_JUNCTIO					
N_ASSEMBL					
Y					
GO_NEGATIV					
E_REGULATI					
ON_OF_ESTA					
BLISHMENT_	193	0.480561	2.036274	0	0.016851
OF_PROTEIN					
_LOCALIZATI					
ON					
GO_PHOSPH					
ATIDYLINOSI					
TOL_3_PHOS	39	0.603632	2.09271	0	0.016859
PHATE_BIND					
ING					
GO_NEGATIV					
E_REGULATI					
ON_OF_CYTO	293	0.573397	2.030152	0	0.016872
KINE_PRODU					
CTION					
GO_CELLUL					
AR_RESPONS					
E_TO_MECH	79	0.611249	2.026857	0	0.016873
ANICAL_STI					
MULUS					
GO_NEGATIV					
E_REGULATI					
ON_OF_RESP	89	0.572212	2.024789	0	0.016951
ONSE_TO_W					
OUNDING					
GO_PLATELE					
T_AGGREGA	60	0.628384	2.027013	0.001866	0.016969
TION					
GO_COLLAG					
EN_CONTAIN					
ING_EXTRAC	407	0.578836	2.025475	0	0.016979
ELLULAR_M					
ATRIX					
GO_COLLAG	69	0 (79(25	2.02(210	0	0.017010
EN_BINDING	08	0.078035	2.036319	0	0.017019
GO_CELL_SU					
BSTRATE_JU	00	0 556705	2 00255	0.001042	0.017022
NCTION_ORG	98	0.330/93	2.09355	0.001942	0.017022
ANIZATION					

GO_RESPONS					
E_TO_MECH	211	0.512(1	2.027109	0	0.017022
ANICAL_STI	211	0.51361	2.03/198	0	0.01/033
MULUS					
GO_CELLUL					
AR_RESPONS					
E_TO_EXTRA	261	0.446498	2.027829	0	0.017058
CELLULAR_S					
TIMULUS					
GO_EPIBOLY	32	0.669239	2.027167	0	0.01711
GO_CELLUL					
AR_GLUCAN	74	0.551499	2.00.42.42	0	0.017120
_METABOLIC	/4	0.551488	2.094342	0	0.017129
_PROCESS					
GO_GROWTH					
_FACTOR_BI	137	0.602065	2.037377	0	0.017166
NDING					
GO_ACTIN_FI					
LAMENT_BU	70	0.572732	1.964708	0	0.017168
NDLE					
GO_PHAGOC					
YTIC_VESICL	131	0.604129	2.099622	0	0.017195
Е					
GO_POSITIVE					
_REGULATIO					
N_OF_DNA_B					
INDING_TRA	258	0.478985	1.964856	0.002012	0.017211
NSCRIPTION_					
FACTOR_ACT					
IVITY					
GO_REGULA					
TION_OF_HE	444	0.510226	1.967051	0.002004	0.017215
MOPOIESIS					
GO_RESPONS	49	0 5529	1 968744	0	0.017233
E_TO_COLD	47	0.332)	1.708744	0	0.017255
GO_ORGANE					
LLE_DISASSE	99	0.393933	2.000475	0	0.017242
MBLY					
GO_POSITIVE					
_REGULATIO					
N_OF_EPITHE	163	0.501388	1.964088	0	0.017246
LIAL_CELL_					
MIGRATION					

GO_CELL_MI					
GRATION_IN					
VOLVED_IN_	07	0.5.01.00	1.0.00001	0.000000	0.015050
SPROUTING_	87	0.569169	1.968201	0.003899	0.017252
ANGIOGENES					
IS					
GO_ACTIN_C					
YTOSKELET	100	0.527101	1.0(29(1	0	0.017054
ON_REORGA	100	0.52/181	1.963861	0	0.01/254
NIZATION					
GO_REGULA					
TION_OF_GL					
YCOGEN_ME	34	0.585097	1.96719	0	0.017257
TABOLIC_PR					
OCESS					
GO_REGULA					
TION_OF_VA					
SOCONSTRIC	58	0.658629	2.038044	0	0.017258
TION					
GO_ORGANE					
LLE_SUBCO	376	0.402996	1.96774	0	0.017261
MPARTMENT					
GO_GROWTH					
CEPTOR BIN	133	0.523218	1.964897	0	0.017279
DING					
GO_CELLUL					
AR_TRANSITI					
ON_METAL_I	110	0.452484	1.968806	0	0.017296
ON HOMEOS					
TASIS					
GO_FAT_SOL					
UBLE_VITAM					
IN_METABOL	43	0.649742	1.96726	0	0.017303
- IC PROCESS					
GO POSITIVE					
– REGULATIO					
N OF MYEL					
OID CELL DI	92	0.627052	2.066803	0	0.017307
FFERENTIATI					
ON					
GO NEGATIV					
E_REGULATI	31	0.580518	1.973933	0.001876	0.017308
ON_OF_SIGN					

AL_TRANSD UCTION_BY_ P53_CLASS_ MEDIATOR GO_NEGATIV E_REGULATI ON_OF_CYST EINE_TYPE_E NDOPEPTIDA SE_ACTIVITY GO_SYNCYTI UM_FORMAT ION GO_REGULA TION_OF_ER **BB_SIGNALI** NG_PATHWA Y GO_REGULA TION_OF_BIC ELLULAR_TI GHT_JUNCTI ON_ASSEMB LY GO_PLACENT A_DEVELOP MENT GO_HEPARIN _BINDING GO_INTRINSI C_COMPONE NT_OF_ENDO PLASMIC_RE TICULUM_M EMBRANE GO_RECEPTO R_CATABOLI C_PROCESS GO_REGULA TION_OF_SY STEMIC_ART ERIAL_BLOO

D_PRESSURE _MEDIATED_

0.555556	2.000807	0	0.017312
0.585111	1.978205	0	0.017318
0.497655	1.97653	0	0.01732
0.750304	1.969197	0	0.017321
0.518545	2.038586	0	0.017324
0.549429	1.964969	0	0.017331
0.443332	1.970077	0.001992	0.017334
0.543197	1.963301	0.002101	0.017334
0.621355	1.970477	0	0.017336
	0.555556 0.585111 0.497655 0.750304 0.518545 0.549429 0.443332 0.543197 0.543197	0.5555562.0008070.5851111.9782050.4976551.976530.7503041.9691970.5185452.0385860.5494291.9649690.4433321.9700770.5431971.9633010.6213551.970477	0.555556 2.000807 0 0.585111 1.978205 0 0.497655 1.97653 0 0.750304 1.969197 0 0.518545 2.038586 0 0.549429 1.964969 0 0.443332 1.970077 0.001992 0.543197 1.963301 0.002101 0.621355 1.970477 0

38	0.729836	1.974052	0	0.017349
40	0.5(7701	1.070//2	0	0.01725
40	0.307791	1.970003	0	0.01755
176	0.462833	1.982401	0	0.017354
140	0 610148	1 065172	0.004008	0.017265
140	0.010148	1.905175	0.004008	0.017505
15	0.672656	1.98318	0	0.017366
324	0 549361	1 978416	0.003868	0.017369
324	0.549361	1.978416	0.003868	0.017369
324	0.549361	1.978416	0.003868	0.017369
324 219	0.549361 0.613631	1.978416 1.974839	0.003868 0.001927	0.017369 0.017371
324 219	0.549361 0.613631	1.978416 1.974839	0.003868 0.001927	0.017369 0.017371
324 219	0.549361 0.613631	1.978416 1.974839	0.003868 0.001927	0.017369 0.017371
324 219	0.549361 0.613631	1.978416 1.974839	0.003868 0.001927	0.017369 0.017371
324 219 348	0.549361 0.613631 0.557128	1.978416 1.974839 1.980678	0.003868 0.001927 0.001927	0.017369 0.017371 0.017372
324 219 348	0.549361 0.613631 0.557128	1.978416 1.974839 1.980678	0.003868 0.001927 0.001927	0.017369 0.017371 0.017372
324 219 348	0.549361 0.613631 0.557128	1.978416 1.974839 1.980678	0.003868 0.001927 0.001927	0.017369 0.017371 0.017372
324 219 348	0.549361 0.613631 0.557128	1.978416 1.974839 1.980678	0.003868 0.001927 0.001927	0.017369 0.017371 0.017372
324 219 348	0.549361 0.613631 0.557128	1.978416 1.974839 1.980678	0.003868 0.001927 0.001927	0.017369 0.017371 0.017372
324 219 348 216	0.549361 0.613631 0.557128 0.586325	1.978416 1.974839 1.980678 2.097044	0.003868 0.001927 0.001927 0	0.017369 0.017371 0.017372 0.017375
324 219 348 216	0.549361 0.613631 0.557128 0.586325	 1.978416 1.974839 1.980678 2.097044 	0.003868 0.001927 0.001927 0	0.017369 0.017371 0.017372 0.017375
	38 40 176 140	38 0.729836 40 0.567791 176 0.462833 140 0.610148 15 0.672656	38 0.729836 1.974052 40 0.567791 1.970663 176 0.462833 1.982401 140 0.610148 1.965173 15 0.672656 1.98318	38 0.729836 1.974052 0 40 0.567791 1.970663 0 176 0.462833 1.982401 0 140 0.610148 1.965173 0.004008 15 0.672656 1.98318 0

GO_RESPONS					
E_TO_PEPTID	433	0.408034	1.969336	0	0.017377
E_HORMONE					
GO_PLATELE					
T_ALPHA_GR		0.654564	1.07(500	0	0.017270
ANULE_LUM	66	0.654564	1.976582	0	0.017379
EN					
GO_REGULA					
TION_OF_TU					
MOR_NECRO					
SIS_FACTOR_	57	0.571639	2.001105	0.003929	0.017379
MEDIATED_S					
IGNALING_P					
ATHWAY					
GO_CELL_AD					
HESION_MED	60	0.501004	1.000116		0.017202
IATOR_ACTI	60	0.591884	1.980116	0	0.017382
VITY					
GO_REGULA					
TION_OF_RE					
SPONSE_TO_	183	0.595775	2.094889	0	0.017387
CYTOKINE_S					
TIMULUS					
GO_RHO_PR					
OTEIN_SIGN	202	0.400050	1.070010	0.000000	0.017200
AL_TRANSD	203	0.488859	1.970913	0.003922	0.01/389
UCTION					
GO_POST_TR					
ANSLATIONA					
L_PROTEIN_	363	0.38525	1.982594	0	0.01739
MODIFICATI					
ON					
GO_RAS_PRO					
TEIN_SIGNAL	110	0 422282	1 077479	0.001061	0.01720
_TRANSDUC	440	0.455282	1.977478	0.001961	0.01739
TION					
GO_POSITIVE					
_REGULATIO					
N_OF_MAP_K	253	0.462041	1.981245	0	0.017399
INASE_ACTI					
VITY					
GO_EXTRAC					
ELLULAR_ST	370	0.589636	2.021354	0	0.017403
RUCTURE_O					
RGANIZATIO					
-------------	-----	----------	----------	----------	----------
Ν					
GO_REGULA					
TION_OF_SY					
STEMIC_ART	92	0.562044	1.975784	0	0.017405
ERIAL_BLOO					
D_PRESSURE					
GO_POSITIVE					
_REGULATIO					
N_OF_COLD_					
INDUCED_TH	97	0.520958	1.986694	0	0.01741
ERMOGENESI					
S					
GO_EPITHELI					
AL_CELL_AP	100				
OPTOTIC_PR	108	0.547505	1.969491	0.003854	0.017412
OCESS					
GO_POSITIVE					
_REGULATIO					
N_OF_SMOO		0.44477	1 050105		0.015415
TH_MUSCLE_	44	0.646477	1.979135	0	0.017415
CELL_MIGRA					
TION					
GO_REGULA					
TION_OF_EX					
TRINSIC_APO					
PTOTIC_SIGN					
ALING_PATH	58	0.637008	1.974223	0	0.017416
WAY_VIA_D					
EATH_DOMA					
IN_RECEPTO					
RS					
GO_RESPONS					
E_TO_STEROI	383	0.438781	1.988199	0	0.017422
D_HORMONE					
GO_PEPTIDA					
SE_REGULAT	221	0 525822	1 065861	0	0.017425
OR_ACTIVIT	221	0.323822	1.903801	0	0.017423
Y					
GO_RUFFLE	170	0.487888	1.9749	0.003891	0.017426
GO_MICROVI	Q1	0 536121	1 096199	0	0 017429
LLUS	04	0.330131	1.900188	U	0.01/428
GO_INTRACE	276	0 126116	1 072006	0	0.017420
LLULAR_REC	270	0.420410	1.9/2900	U	0.017429

EPTOR_SIGN					
ALING_PATH					
WAY					
GO_REGULA					
TION_OF_LIP					
ID_METABOL	410	0.422613	1.980725	0	0.01743
IC_PROCESS					
GO ENZYME					
INHIBITOR	372	0.441698	1.987476	0	0.01743
ACTIVITY					
GO_ACUTE_I					
NFLAMMATO					
RY RESPONS	107	0.642459	1.965262	0	0.017431
E					
GO INOSITO					
L PHOSPHAT					
E MEDIATED	56	0.555441	1.972326	0	0.017431
SIGNALING					
GO LIPID DR					
OPLET	82	0.515753	2.065356	0	0.017434
GO LIPID TR					
ANSPORTER	122	0.515524	1.979408	0	0.017435
ACTIVITY				-	
GO REGULA					
TION OF T C					
ELL RECEPT					
OR SIGNALI	39	0.704616	1.981707	0	0.017437
NG PATHWA					
Y					
GO INTEGRI					
N BINDING	135	0.617678	2.03874	0	0.017437
GO AMINOG					
LYCAN MET					
ABOLIC PRO	168	0.535746	1.98328	0	0.017443
CESS					
GO REGULA					
TION OF GL					
UCAN BIOSY	28	0.576106	1.97848	0	0.017447
NTHETIC PR	-0	0.070100	10,7010	Ũ	01017117
OCESS					
GO AZUROP					
HIL GRANUL	90	0.594462	1.975098	0.001957	0.017447
E_LUMEN	- ~				

GO_NEGATIV					
E_REGULATI	222	0.500244	1 007050	0	0.017440
ON_OF_SECR	232	0.509244	1.987058	0	0.01/448
ETION					
GO_NEGATIV					
E_REGULATI					
ON_OF_CYTO	74	0.675757	2.067154	0	0.01745
KINE_SECRE					
TION					
GO_LAMELLI	102	0 480021	1 091271	0	0.01745
PODIUM	192	0.489031	1.981371	0	0.01743
GO_VASCUL					
AR_ENDOTH					
ELIAL_GROW					
TH_FACTOR_	93	0.520131	1.970931	0.00381	0.01745
RECEPTOR_S					
IGNALING_P					
ATHWAY					
GO_TISSUE_	330	0 474941	1 061502	0	0.017453
MIGRATION	557	0.474941	1.901392	0	0.017455
GO_RESPONS					
E_TO_ESTRO	72	0.56475	2.018291	0	0.017457
GEN					
GO_POSITIVE					
_REGULATIO					
N_OF_PROTE					
IN_LOCALIZ	19	0.639788	1.971108	0	0.017458
ATION_TO_C					
ELL_SURFAC					
E					
GO_NEGATIV					
E_REGULATI					
ON_OF_HYD	449	0.433331	1.976588	0	0.017459
ROLASE_ACT					
IVITY					
GO_POSITIVE					
_REGULATIO					
N_OF_LEUKO	86	0.635829	2.018765	0.001873	0.017466
CYTE_CHEM					
OTAXIS					
GO_FICOLIN_					
1_RICH_GRA	60	0.659707	2.001215	0	0.017468
NULE_MEMB	~ ~			~	
RANE					

NAME	SIZE	ES	NES	NOM p-val	FDR q-val
GO_PROTEIN					
_TARGETING	101	0.400.40	0.04047	0.002002	0.01042
_TO_MEMBR	191	-0.48049	-2.24347	0.003992	0.01843
ANE					
GO_CYTOPL					
ASMIC_TRAN	98	-0.61306	-2.27214	0	0.022863
SLATION					
GO_RIBOSO					
ME_ASSEMB	62	-0.66049	-2.10312	0	0.0247
LY					
GO_NUCLEA					
R_TRANSCRI					
BED_MRNA_	207	-0.55866	-2.07574	0.001873	0.024959
CATABOLIC_					
PROCESS					
GO_RIBONUC					
LEOPROTEIN					
_COMPLEX_S	192	-0.53448	-2.09275	0	0.025232
UBUNIT_ORG					
ANIZATION					
GO_RIBOSO					
ME	228	-0.6062	-2.10696	0.004	0.026858
GO_RIBOSO					
MAL_LARGE			• • • • • •	-	0.05=
_SUBUNIT_BI	68	-0.68735	-2.07719	0	0.027156
OGENESIS					
GO_SPLICEO					
SOMAL_COM					
PLEX_ASSEM	56	-0.63149	-2.13051	0	0.02803
BLY					
GO_MATURA					
TION_OF_LS	21	-0.73033	-2.06032	0	0.028154
U_RRNA					
GO_RIBOSO					
– MAL_SMALL					
SUBUNIT BI	68	-0.66741	-2.11472	0	0.028521
OGENESIS					
GO SNRNA P					
ROCESSING	36	-0.66135	-2.0477	0	0.030251

 Table S3. Enriched GO functions in low risk group

GO_TRANSL					
ATIONAL_INI	192	-0.55057	-2.13742	0.001905	0.032196
TIATION					
GO_ESTABLI					
SHMENT_OF_					
PROTEIN_LO	221	0.07144	2.017	0.000007	0.0277.00
CALIZATION	321	-0.37144	-2.017	0.002037	0.037769
_TO_MEMBR					
ANE					
GO_NUCLEA					
R_TRANSCRI					
BED_MRNA_					
CATABOLIC_	120	0 (000)	2 0225	0.001040	0.000100
PROCESS_NO	120	-0.68894	-2.0227	0.001942	0.038108
NSENSE_ME					
DIATED_DEC					
AY					
GO_RIBONUC					
LEOPROTEIN	417	0.54025	2 0000		0.020400
_COMPLEX_B	417	-0.54035	-2.0088	0	0.039489
IOGENESIS					
GO_POLYSO	70	0 (00 40	2 1200 4	0.001024	0.041744
ME	/3	-0.60048	-2.13994	0.001934	0.041/44
GO_MRNA_S					
PLICE_SITE_S	30	-0.66613	-1.9933	0	0.042847
ELECTION					
GO_LARGE_R					
IBOSOMAL_S	117	-0.66087	-1.99741	0.005941	0.043215
UBUNIT					
GO_RIBOSO					
MAL_SUBUNI	186	-0.64563	-1.98322	0.008114	0.043735
Т					
GO_MATURA					
TION_OF_SS					
U_RRNA_FRO					
M_TRICISTR					
ONIC_RRNA_	35	-0.66001	-1.9859	0	0.044647
TRANSCRIPT					
_SSU_RRNA_					
5_8S_RRNA_L					
SU_RRNA					
GO_SNRNA_3					
_END_PROCE	30	-0.64969	-1.96689	0.002	0.045122
SSING					

GO_SMALL_S					
UBUNIT_PRO	38	-0.66466	-1.97394	0	0.045952
CESSOME					
GO_RIBOSO					
MAL LARGE					
SUBUNIT A	29	-0.73032	-1.96923	0	0.045967
SSEMBLY					
GO_RIBOSO					
ME_BIOGENE	289	-0.55207	-1.93556	0.005837	0.049691
SIS					
GO_NBAF_C					
OMPLEX	15	-0.72875	-1.95412	0	0.049698
GO CYTOSO					
LIC RIBOSO	104	-0.71368	-1.92759	0.006048	0.049911
_ ME					
GO RIBOSO					
MAL SMALL					
SUBUNIT A	19	-0.71972	-1.93693	0.001931	0.050372
SSEMBLY					
GO DNA HE					
LICASE COM	15	-0.70093	-1.92901	0	0.050446
PLEX					
GO NUCLEA					
R FXOSOME					
RNASE CO	16	-0.76396	-1.93022	0	0.051276
_MPLEX					
GO MATURA					
TION OF SS	47	-0.62708	-1.91035	0.001942	0.051491
U RRNA		0.02700	101000	0.00017.2	01001.01
GO INO80 T					
YPE COMPLE	25	-0.62175	-1 9034	0.003937	0.051517
X		0102170	11,000	0.0002707	01001017
GO SMALL					
RIBOSOMAL	73	-0.62197	-1 91461	0.01004	0.051568
SUBUNIT	10	0102177	191101	0101001	01001000
GO CYTOSO					
LIC SMALL					
RIBOSOMAL	44	-0.72424	-1.90546	0.004016	0.051658
SUBUNIT					
GO SNRNA					
METABOLIC	45	-0.60853	-1.93777	0.003937	0.051679
PROCESS					
GO PROTEIN					
LOCALIZATI	136	-0.5312	-1.91682	0.015748	0.0518

ON_TO_END					
OPLASMIC_R					
ETICULUM					
GO_RRNA_M					
ETABOLIC_P	221	-0.54191	-1.91131	0.007752	0.052155
ROCESS					
GO_REGULA					
TION_OF_MR	17	0 61744	1 0195	0	0.052191
NA_POLYAD	17	-0.01744	-1.9185	0	0.032181
ENYLATION					
GO_ESCRT_C	26	0.50008	1 02072	0.007052	0.052260
OMPLEX	20	-0.30998	-1.92073	0.007952	0.052509
GO_ESTABLI					
SHMENT_OF_					
PROTEIN_LO					
CALIZATION	111	-0.6477	-1.89939	0.007905	0.052712
_TO_ENDOPL					
ASMIC_RETI					
CULUM					
GO_PRERIBO	77	0 62277	1 00574	0.007813	0.052732
SOME	,,,	-0.02277	-1.90374	0.007815	0.052752
GO_TRANSL					
ATIONAL_EL	133	-0.46319	-1.93911	0.033268	0.052746
ONGATION					
GO_CYTOPL					
ASMIC_TRAN	31	-0 58886	-1 89717	0.001883	0 052782
SLATIONAL_I	51	0.50000	1.09717	0.001005	0.052702
NITIATION					
GO_NCRNA_	374	-0.52259	-1.89137	0.009766	0.052823
PROCESSING			1107107	01007700	0.002020
GO_PROTEIN	425	-0.30207	-1.89203	0.003968	0.0536
_TARGETING		0.00207	1107200	01002700	0100000
GO_RNA_SPL					
ICING_VIA_T					
RANSESTERI	343	-0.45807	-1.93986	0.009434	0.054147
FICATION_RE					
ACTIONS					
GO_TRANSL					
ATION_INITI					
ATION_FACT	51	-0.4763	-1.8838	0.007859	0.054715
OR_ACTIVIT					
Y					

GO_POLYSO					
MAL_RIBOSO	32	-0.7682	-1.89204	0.00198	0.054785
ME					
GO_U2_TYPE					
_SPLICEOSO	02	0.5202.4	1.00524	0.005006	0.055110
MAL_COMPL	93	-0.53824	-1.88524	0.005906	0.055112
EX					
GO_HISTONE					
_H3_ACETYL	59	-0.50965	-1.88061	0.005803	0.055415
ATION					
GO_STRUCT					
URAL_CONS					
TITUENT_OF	162	-0.6/042	-1.94065	0.010246	0.055611
_RIBOSOME					
GO_TRANSL					
ATION_PREI					
NITIATION_C	18	-0.7125	-1.8672	0	0.061622
OMPLEX					
GO_VIRAL_G					
ENE_EXPRES	192	-0.52075	-1.86758	0.015267	0.062602
SION					
GO_NUCLEA					
R_TRANSCRI					
BED_MRNA_					
CATABOLIC_	35	-0.6123	-1.85864	0.007797	0.064142
PROCESS_EX					
ONUCLEOLY					
TIC					
GO_90S_PRE					
RIBOSOME	32	-0.61128	-1.85978	0.007767	0.064484
GO_VIRION_					
ASSEMBLY	39	-0.43279	-1.85456	0.00789	0.065451
GO_RESPIRA					
TORY_CHAIN					
_COMPLEX_I	24	-0.57034	-1.85277	0.019763	0.065491
V_ASSEMBL					
Y					
GO_TRANSL					
ATION_ELON					
GATION_FAC	20	-0.57385	-1.85997	0.012	0.065563
TOR_ACTIVI					
TY					
GO_SMALL_		0.500 10	1.05005	0.00707.1	0.04550
NUCLEAR_RI	66	-0.53248	-1.85095	0.007874	0.065586

BONUCLEOP					
ROTEIN_COM					
PLEX					
GO_TRANSL					
ATION_FACT					
OR_ACTIVIT	85	-0.41632	-1.84158	0.019417	0.068772
Y_RNA_BIND					
ING					
GO_EXORIBO					
NUCLEASE_C	26	-0.6274	-1.84234	0.001949	0.069289
OMPLEX					
GO_PROTEIN					
_MATURATI					
ON_BY_IRON	15	0 (1494	1 94277	0.004057	0.000246
_SULFUR_CL	15	-0.64484	-1.84377	0.004057	0.069346
USTER_TRAN					
SFER					
GO_RRNA_BI	(2)	0 5224	1.02046	0.02047	0.000021
NDING	62	-0.5234	-1.83840	0.02947	0.009931
GO_CHAPER					
ONE_COMPL	22	-0.52839	-1.82641	0.009434	0.076538
EX					
GO_MRNA_M	22	0 62 407	1 92752	0.001072	0.076942
ODIFICATION	22	-0.02497	-1.82732	0.001972	0.070845
GO_FORMATI					
ON_OF_CYTO					
PLASMIC_TR	16	0 70601	1 82141	0	0.07033
ANSLATION_	10	-0.70001	-1.82141	0	0.07933
INITIATION_					
COMPLEX					
GO_COTRAN					
SLATIONAL_					
PROTEIN_TA	99	-0.72461	-1.81843	0.005988	0.08072
RGETING_TO					
_MEMBRANE					
GO_RNA_SPL	431	-0 41768	-1 81217	0 024904	0.08327
ICING	751	-0.41700	-1.01217	0.024904	0.00327
GO_EUKARY					
OTIC_48S_PR	15	-0 73597	-1 81246	0	0.084235
EINITIATION	15	-0.75597	-1.81240	0	0.084233
_COMPLEX					
GO_MITOCH					
ONDRIAL_RE	95	-0.50974	-1.80943	0.044444	0.084279
SPIRATORY_					

CHAIN_COM					
PLEX_ASSEM					
BLY					
GO_IRON_SU					
LFUR_CLUST					
ER_ASSEMBL	22	-0.54778	-1.80088	0.022774	0.089932
Y					
GO_NUCLEOI					
D	42	-0.52355	-1.79849	0.019455	0.090717
GO_MRNA_P					
ROCESSING	498	-0.40716	-1.78769	0.045627	0.092635
GO POSTSYN					
APTIC SPECI					
_ ALIZATION	34	-0.67327	-1.78794	0.015968	0.093654
ORGANIZATI					
ON					
GO CYTOCH					
- ROME COMP					
LEX ASSEMB	34	-0.49464	-1.78917	0.032	0.093902
– LY					
GO TRANSL					
- ATION_REGU					
LATOR ACTI					
- VITY NUCLE	109	-0.3963	-1.7904	0.013944	0.094174
IC ACID BIN					
DING					
GO_NCRNA_					
METABOLIC_	450	-0.46841	-1.79178	0.015779	0.094191
PROCESS					
GO_MRNA_CI					
S_SPLICING_					
VIA_SPLICEO	34	-0.54017	-1.79253	0.009634	0.09475
SOME					
GO_EUKARY					
OTIC_TRANS					
LATION_INIT					
IATION_FAC	16	-0.68698	-1.77829	0.003846	0.099917
TOR_3_COMP					
LEX					
GO_CYTOSO					
LIC_LARGE					
RIBOSOMAL	57	-0.75558	-1.76673	0.004008	0.109939

GO_HISTONE					
_DEUBIQUITI	22	-0.60087	-1.76352	0.011429	0.111796
NATION					
GO_RNA_POL					
YADENYLAT	46	-0.49275	-1.75518	0.023438	0.116335
ION					
GO_SM_LIKE					
_PROTEIN_F		0.50/777	1 75701	0.021272	0.116407
AMILY_COM	//	-0.50677	-1./5/81	0.031373	0.116497
PLEX					
GO_MITOCH					
ONDRIAL_GE	1.00	0.46000	1	0.041144	0.115005
NE_EXPRESSI	160	-0.46009	-1./55/6	0.061144	0.117205
ON					
GO_INHIBITO					
RY_POSTSYN			. =		
APTIC_POTE	16	-0.75349	-1.74226	0.01046	0.123108
NTIAL					
GO_DNA_TE					
MPLATED_T					
RANSCRIPTI	111	-0.43912	-1.74231	0.030769	0.124478
ON_ELONGA					
TION					
GO_PROTEIN					
_ACETYLTRA					
NSFERASE_C	95	-0.48756	-1.74493	0.035294	0.124544
OMPLEX					
GO_PEPTIDY					
L_LYSINE_TR					
IMETHYLATI	41	-0.53053	-1.74333	0.023392	0.124847
ON					
GO_EXON_E					
XON_JUNCTI					
ON_COMPLE	20	-0.56062	-1.73849	0.011742	0.125733
Х					
GO_VIRAL_B					
UDDING	25	-0.48639	-1.74507	0.024145	0.125902
GO_ATPASE_					
COMPLEX	82	-0.47688	-1.73439	0.043738	0.127328
GO_NCRNA_3					
_END_PROCE	48	-0.5108	-1.73567	0.022	0.127389
SSING					

GO_EXCITAT					
ORY_SYNAPS	26	-0.68787	-1.73277	0.016	0.127698
E_ASSEMBLY					
GO_RNA_CA	24	0 49292	1 70645	0.010646	0 120077
PPING	54	-0.48383	-1./2043	0.019040	0.152077
GO_SPLICEO					
SOMAL_COM	185	-0.47184	-1.72654	0.043478	0.133374
PLEX					
GO_REGULA					
TION_OF_TR					
ANSCRIPTIO					
N_ELONGATI	21	0.51040	1 7150	0.022465	0 141145
ON_FROM_R	31	-0.51849	-1./158	0.033465	0.141145
NA_POLYME					
RASE_II_PRO					
MOTER					
GO_MITOCH					
ONDRIAL_RN	16	0.62228	1.71.00	0.007/24	0.1400000
A_PROCESSI	16	-0.62328	-1./162	0.007634	0.142233
NG					
GO_NEURON					
_CELL_CELL	16	-0.73569	-1.70679	0.004049	0.14791
_ADHESION					
GO_SAGA_T					
YPE_COMPLE	28	-0.50231	-1.70685	0.030361	0.149355
Х					
GO_U1_SNRN	21	0.50/00	1 7070	0.010646	0.140406
Р	21	-0.59628	-1./0/9	0.019646	0.149486
GO_RNA_POL					
YMERASE_II_	01	0 41571	1 7022	0.054717	0 15076
HOLOENZYM	81	-0.415/1	-1.7033	0.054717	0.15076
Е					
GO_CATALY					
TIC_STEP_2_	86	0.50000	1 70022	0.027255	0 152122
SPLICEOSOM	80	-0.30900	-1.70033	0.037255	0.155155
Е					
GO_REGULA					
TION_OF_EX					
CITATORY_S	15	-0.74903	-1.69871	0.006122	0.153862
YNAPSE_ASS					
EMBLY					
GO_SNORNA					
_METABOLIC	16	-0.56597	-1.69566	0.019608	0.156082
_PROCESS					

GO_POSTSYN					
APSE_ASSEM	31	-0.63774	-1.68765	0.025	0.16482
BLY					
GO_RNA_SU	15	0.6677	1 (9501	0.011710	0.165192
RVEILLANCE	15	-0.0077	-1.08501	0.011/19	0.105162
GO_RNA_3_E					
ND_PROCESS	150	-0.42402	-1.68344	0.061538	0.16572
ING					
GO_REGULA					
TION_OF_PO					
STSYNAPTIC	16	0 65942	1 69521	0.020576	0 166421
_DENSITY_O	10	-0.03842	-1.08551	0.020376	0.100421
RGANIZATIO					
Ν					
GO_TRNA_M	20	0.57257	1 (792	0.024	0 170900
ETHYLATION	38	-0.57257	-1.6/83	0.034	0.170823
GO_POSTSYN					
APTIC_SPECI	21	0.71052	1 (()7(0.000004	0 170101
ALIZATION_	21	-0./1853	-1.66276	0.026804	0.1/2121
ASSEMBLY					
GO_PRECAT					
ALYTIC_SPLI	51	-0.56565	-1.66375	0.033865	0.172173
CEOSOME					
GO_RNA_ME					
THYLTRANS		0.50050	1 44400	0.04550	0 150000
FERASE_ACT	66	-0.50973	-1.66439	0.045726	0.172833
IVITY					
GO_MITOCH					
ONDRIAL_RE					
SPIRATORY_	20	0.51200	1 (742)	0.025000	0.172026
CHAIN_COM	20	-0.54388	-1.6/438	0.035088	0.1/3026
PLEX_IV_ASS					
EMBLY					
GO_PEPTIDY					
L_LYSINE_A	167	-0.39595	-1.66493	0.04065	0.173565
CETYLATION					
GO_TRANSC					
RIPTION_ELO					
NGATION_FR	22	0.4022	1	0.055110	0.150005
OM_RNA_PO	83	-0.4032	-1.67495	0.055118	0.173905
LYMERASE_I					
I_PROMOTER					
GO_INTRACE	40	0.01510	1	0.025.122	0.151000
LLULAR_PRO	48	-0.36568	-1.66565	0.035433	0.1/4093

TEIN_TRANS					
MEMBRANE_					
TRANSPORT					
GO_PEPTIDY					
L_LYSINE_DI	10	0.54520	1 (700)	0.00000.1	0 17 41 5 6
METHYLATI	18	-0.54538	-1.6/236	0.009804	0.1/4156
ON					
GO_METHYL					
TRANSFERAS	113	-0.48412	-1.66651	0.083495	0.174404
E_COMPLEX					
GO_TRNA_T					
HREONYLCA					
RBAMOYLAD	1.6	0.50.41	1 44401	0.016	0 1550 65
ENOSINE_ME	16	-0.5861	-1.66691	0.016	0.175365
TABOLIC_PR					
OCESS					
GO_PRC1_CO	15	0 (2412	1 < < 70.7	0.015444	0.175500
MPLEX	15	-0.63413	-1.66/8/	0.015444	0.175509
GO_SNORNA	26	0.5071.4	1 ((070	0.025225	0.17(00)
_BINDING	26	-0.52716	-1.66978	0.035225	0.1/6096
GO_MITOCH					
ONDRIAL_TR	134	-0.4493	-1.66822	0.093204	0.176609
ANSLATION					
GO_REGULA					
TION_OF_TR	17	0.55445	1 (540	0.005007	0.170565
ANSLATIONA	17	-0.55445	-1.6549	0.025097	0.1/8565
L_FIDELITY					
GO_TRANSC					
RIPTION_ELO					
NGATION_FR	20	0.51026	1 (557)	0.022210	0.170065
OM_RNA_PO	30	-0.51936	-1.65576	0.032319	0.1/8865
LYMERASE_I					
_PROMOTER					
GO_BITTER_					
TASTE_RECE	22	0 (222	1 (5(()	0.022576	0 170001
PTOR_ACTIVI	22	-0.6223	-1.03000	0.023576	0.179081
TY					
GO_MLL1_2_	20	0 54225	1 (5071	0.052724	0 192097
COMPLEX	29	-0.54225	-1.650/1	0.052734	0.183087
GO_NEGATIV					
E_REGULATI	21	0 52079	1 64012	0.017579	0 102025
ON_OF_MRN	21	-0.52078	-1.04912	0.01/5/8	0.183835
A_SPLICING_					

VIA_SPLICEO					
SOME					
GO_SEH1_AS					
SOCIATED_C	17	-0.53917	-1.64653	0.039526	0.185847
OMPLEX					
GO_MATURA					
TION_OF_5_8	26	-0.59723	-1.64389	0.028169	0.186425
S_RRNA					
GO_METHYL					
ATED_HISTO	66	-0.5017	-1.64483	0.064453	0.186605
NE_BINDING					
GO_PROTEIN					
_PHOSPHATA	10	0.5005.6	1 (1001	0.0411.50	0 1000 (1
SE_TYPE_2A_	19	-0.50056	-1.64001	0.041152	0.188961
COMPLEX					
GO_TRNA_M		0.51.610	1 (1070		0.100005
ODIFICATION	84	-0.51619	-1.64078	0.04	0.189325
GO_TRANSL					
ATION_REGU	120	0.22466	1 62055	0.040544	0.100656
LATOR_ACTI	139	-0.33466	-1.63855	0.048544	0.189656
VITY					
GO_ADA2_G					
CN5_ADA3_T					
RANSCRIPTI	15	0.5502	1 (2122	0.02(122	0 10 40 50
ON_ACTIVAT	15	-0.5503	-1.63122	0.036122	0.194252
OR_COMPLE					
Х					
GO_IONOTRO					
PIC_GLUTAM					
ATE_RECEPT	26	0.(2270	1 (2100	0.027540	0 104577
OR_SIGNALI	20	-0.02379	-1.03199	0.037349	0.194377
NG_PATHWA					
Y					
GO_HISTONE					
_METHYLTR	96	0.40420	1 (2259	0.000272	0 105242
ANSFERASE_	80	-0.49439	-1.02558	0.090373	0.193242
COMPLEX					
GO_PROTEIN					
_LOCALIZATI	15	0.075	1 (22.42	0.021550	0 105400
ON_TO_NUC	15	-0.60/5	-1.63242	0.031558	0.195428
LEOLUS					
GO_O_METH	22	0.45770	1 (2212	0.050405	0.105004
YLTRANSFER	23	-0.43//9	-1.02212	0.050485	0.195884

ASE_ACTIVIT					
Y					
GO_HISTONE					
_H4_ACETYL	64	-0.41691	-1.6288	0.065606	0.19608
ATION					
GO_TRANSL					
ATIONAL_TE	104	-0.45739	-1.62373	0.107422	0.196353
RMINATION					
GO_SPLICEO					
SOMAL_TRI_	21	0.55001	1 (2442)	0.000704	0 10 (7 12
SNRNP_COM	31	-0.55981	-1.62443	0.060784	0.196/43
PLEX					
GO_REGULA					
TION_OF_MR	141	0.26078	1 (2245	0.068250	0 10 (974
NA_PROCESS	141	-0.36978	-1.63245	0.068359	0.1968/4
ING					
GO_RNA_ME	79	0.48076	1 (252	0.070079	0 107010
THYLATION	/8	-0.48076	-1.6252	0.072978	0.197018
GO_U2_SNRN	21	0.52024	1 (259	0.041220	0 107572
Р	21	-0.52034	-1.6258	0.041339	0.197575
GO_NEGATIV					
E_REGULATI					
ON_OF_UBIQ					
UITIN_DEPEN	48	-0.36478	-1.62615	0.043137	0.198445
DENT_PROTE					
IN_CATABOL					
IC_PROCESS					
GO_REGULA					
TION_OF_MR					
NA_SPLICING	102	-0.38697	-1.61917	0.043137	0.198493
_VIA_SPLICE					
OSOME					
GO_MITOCH					
ONDRIAL_TR					
ANSLATIONA	89	-0.49126	-1.61595	0.094488	0.201714
L_TERMINAT					
ION					
GO_RETROG					
RADE_TRAN					
SPORT_ENDO	87	-0.35713	-1.61477	0.068136	0.202048
SOME_TO_G					
OLGI					
GO_N_TERMI	29	-0 46342	-1 61106	0 042380	0 20/756
NAL_PROTEI	27	-0.+0342	-1.01170	0.072307	0.204730

N_AMINO_A					
CID_MODIFIC					
ATION					
GO_PROTEIN					
_DNA_COMP	10	0.56140	1 (0002	0.020220	0.005056
LEX_DISASS	19	-0.56443	-1.60893	0.038229	0.205056
EMBLY					
GO_REGULA					
TION_OF_CH	26	0.50.000	1 (0000	0.00000	0.00/005
ROMATIN_SI	26	-0.58609	-1.60903	0.039293	0.206287
LENCING					
GO_PEPTIDE_					
N_ACETYLTR	7.4	0.40225	1 (0700	0.000000	0.00(107
ANSFERASE_	/4	-0.48226	-1.60708	0.092338	0.206427
ACTIVITY					
GO_PCG_PRO					
TEIN_COMPL	47	-0.48965	-1.60922	0.053571	0.207409
EX					
GO_DEACET					
YLASE_ACTI	45	-0.3911	-1.59965	0.03125	0.208882
VITY					
GO_RRNA_M	25	0.50001	1 50001	0.0577.50	0.000000
ODIFICATION	35	-0.50801	-1.59991	0.057769	0.209833
GO_RETROM					
ER_COMPLE	20	-0.50312	-1.60082	0.059055	0.209925
Х					
GO_PRESPLI	10	0.57100	1 (0110	0.02	0.010000
CEOSOME	19	-0.37122	-1.00112	0.03	0.210882
GO_TRNA_BI	52	0 47227	1 6012	0.060207	0.211022
NDING	33	-0.47557	-1.0013	0.069307	0.211952
GO_POSTSYN					
APTIC_MEMB	10	0 4922	1 60160	0.056112	0.212705
RANE_ORGA	40	-0.4852	-1.00109	0.030112	0.212795
NIZATION					
GO_NAD_DE					
PENDENT_PR					
OTEIN_DEAC	16	-0.50427	-1.5911	0.038986	0.219707
ETYLASE_AC					
TIVITY					
GO_RNA_POL					
YMERASE_III	16	-0.52309	-1.58592	0.050881	0.220402
_ACTIVITY					
GO_NEUROM	51	0 42152	1 50/05	0.025782	0 220451
USCULAR_PR	51	-0.43152	-1.38685	0.035782	0.220451

OCESS_CONT					
ROLLING_BA					
LANCE					
GO_NEGATIV					
E_REGULATI	26	0.46064	1 50504	0.040212	0 00 10 0 1
ON_OF_RNA_	26	-0.46864	-1.58/26	0.049213	0.221231
SPLICING					
GO_N_ACET					
YLTRANSFER	02	0.4000	1 50004	0.004	0 00 10 45
ASE_ACTIVIT	93	-0.4209	-1.58904	0.094	0.221345
Y					
GO_APOLIPO					
PROTEIN_BIN	17	-0.55518	-1.58728	0.044807	0.222564
DING					
GO_ORGANE					
LLAR_RIBOS	87	-0.476	-1.57646	0.114286	0.228993
OME					
GO_REGULA					
TION_OF_DN					
A_TEMPLATE	51	0 44022	1 57702	0.097475	0 220554
D_TRANSCRI	51	-0.44022	-1.37703	0.087475	0.229334
PTION_ELON					
GATION					
GO_CELL_DI					
FFERENTIATI	10	0 63245	-1 57445	0.052314	0 230733
ON_IN_HIND	17	-0:03243	-1.57445	0.052514	0.250755
BRAIN					
GO_RNA_POL					
YMERASE_III	18	-0.51223	-1.57706	0.046875	0.230896
_COMPLEX					
GO_U12_TYP					
E_SPLICEOSO	26	-0.53874	-1.57293	0.05098	0.231734
MAL_COMPL	20	0.0007	1107270	0.02070	0.201701
EX					
GO_TRNA_M					
ETHYLTRAN	34	-0.53994	-1.57736	0.071287	0.231798
SFERASE_AC					
TIVITY					
GO_UBIQUITI					
N_DEPENDE					
NT_PROTEIN	22	-0.44701	-1.57097	0.047619	0.233278
_CATABOLIC					
_PROCESS_VI					
A_THE_MUL					

TIVESICULA					
R_BODY_SOR					
TING_PATHW					
AY					
GO_PROTEIN					
_TRANSMEM					
BRANE_IMPO					
RT_INTO_INT	33	-0.40029	-1.56656	0.064516	0.235804
RACELLULA					
R_ORGANEL					
LE					
GO_CEREBEL					
LAR_PURKIN					
JE_CELL_LA	24	-0.493	-1.56676	0.047035	0.236842
YER_DEVEL					
OPMENT					
GO_TRANSC					
RIPTION_INIT					
IATION_FRO	37	0.4606	1 56746	0.073585	0 237217
M_RNA_POL	57	-0.4000	-1.30740	0.073385	0.237217
YMERASE_I_					
PROMOTER					
GO_PROTEIN	244	0 32034	1 56332	0.067485	0 23028
_ACYLATION	244	-0.32934	-1.50552	0.007485	0.23928
GO_NEGATIV					
E_REGULATI					
ON_OF_TRAN					
SCRIPTION_R	21	-0.482	-1.56152	0.018036	0.240552
EGULATORY					
_REGION_DN					
A_BINDING					
GO_CEREBEL					
LAR_CORTE	21	-0 58637	-1 55994	0.054902	0 241553
X_FORMATIO	21	0.50057	1.55774	0.034702	0.241555
Ν					
GO_MITOCH					
ONDRIAL_LA					
RGE_RIBOSO	57	-0.49032	-1.55512	0.108738	0.247431
MAL_SUBUNI					
Т					
GO_POSITIVE					
_REGULATIO	38	-0 36738	-1 55186	0 056974	0 248242
N_OF_TOR_SI	50	0.50750	1.55100	0.000774	0.270272
GNALING					

GO_CLEAVA					
GE_INVOLVE	21	0.5957	1 55212	0.058020	0.240002
D_IN_RRNA_	21	-0.3837	-1.55515	0.038939	0.249093
PROCESSING					
GO_REGULA					
TION_OF_RN	138	-0.35167	-1.55197	0.083499	0.249457
A_SPLICING					

NAME	SIZE	ES	NES	NOM p-val	FDR q-val
KEGG_REGU					
LATION_OF_		0		0.0010	0.040=5
ACTIN_CYTO	213	0.532176	2.135438	0.001996	0.018736
SKELETON					
KEGG_FOCA					
L_ADHESION	199	0.60119	2.159939	0	0.025345
KEGG_ECM_					
RECEPTOR_I	84	0.706835	2.00091	0	0.027063
NTERACTION					
KEGG_GLYC					
OSAMINOGL					
YCAN_BIOSY					0.000.000
NTHESIS_KE	15	0.791504	2.005785	0	0.030407
RATAN_SULF					
ATE					
KEGG_REGU					
LATION_OF_	35	0.538732	1.814661	0.00611	0.030557
AUTOPHAGY					
KEGG_TOLL_					
LIKE_RECEP					
TOR_SIGNAL	102	0.552883	1.815774	0.008048	0.031269
ING_PATHW					
AY					
KEGG_PERO					
XISOME	78	0.435385	1.816214	0.006198	0.032209
KEGG_MAPK					
SIGNALING	266	0.432993	1.821241	0.003868	0.032285
PATHWAY					
KEGG_AMIN					
O_SUGAR_A					
ND_NUCLEO	10	0 - 100	1010555	0.001077	0.000
TIDE_SUGAR	43	0.543255	1.843618	0.001938	0.032562
_METABOLIS					
М					
KEGG_VEGF_					
SIGNALING_	76	0.44881	1.829905	0.001953	0.032643
PATHWAY					
KEGG_NATU					
RAL_KILLER	132	0.547422	1.821792	0.009747	0.033062
_CELL_MEDI					

Table S4. Enriched KEGG pathways in high risk group

ATED_CYTO					
TOXICITY					
KEGG_STAR					
CH_AND_SU	50	0.540202	1 50 (120	0	0 022250
CROSE_MET	52	0.540293	1.796439	0	0.033358
ABOLISM					
KEGG_INTES					
TINAL_IMMU					
NE_NETWOR	45	0.769699	1.834458	0.003846	0.03362
K_FOR_IGA_					
PRODUCTION					
KEGG_VIRAL					
_MYOCARDI	68	0.591547	1.823457	0.017045	0.033639
TIS					
KEGG_RENA					
L_CELL_CAR	69	0.439259	1.830185	0.008197	0.033711
CINOMA					
KEGG_PATH					
OGENIC_ESC					
HERICHIA_C	56	0.489727	1.844087	0.009709	0.033931
OLI_INFECTI					
ON					
KEGG_B_CEL					
L_RECEPTOR	75	0.552006	1 7075	0.020644	0.024212
SIGNALING	75	0.553006	1.7975	0.029644	0.034212
PATHWAY					
KEGG_GALA					
CTOSE_MET	26	0.546625	1.800383	0.005725	0.034318
ABOLISM					
KEGG_COMP					
LEMENT_AN					
D_COAGULA	69	0.68129	1.867047	0.001894	0.034443
TION_CASCA					
DES					
KEGG_CYTO					
KINE_CYTOK					
INE_RECEPT	263	0.59799	1.871848	0.003759	0.035106
OR_INTERAC					
TION					
KEGG_TYPE_					
I_DIABETES_	41	0.744304	1.845382	0.007692	0.035149
MELLITUS					
KEGG_LEUK	116	0 506425	2 01 497	0	0.025255
OCYTE_TRA	110	0.390423	2.0148/	U	0.055255

NSENDOTHE					
LIAL_MIGRA					
TION					
KEGG_SYSTE					
MIC_LUPUS_	.	0.5.0010	1 00000	0.002016	0.005000
ERYTHEMAT	56	0.769012	1.880306	0.003846	0.035923
OSUS					
KEGG_RIG_I_					
LIKE_RECEP					
TOR_SIGNAL	70	0.482615	1.783497	0.003906	0.035972
ING_PATHW					
AY					
KEGG_SMAL					
L_CELL_LUN	84	0.544594	1.857676	0.010183	0.036378
G_CANCER					
KEGG_GLYC					
OLYSIS_GLU		0.465065	1.046560	0.004000	0.00.6750
CONEOGENE	62	0.465965	1.846569	0.004082	0.036/59
SIS					
KEGG_LYSOS	101	0.4002.00	1.004052	0.011020	0.0260.40
OME	121	0.489369	1.894862	0.011928	0.036949
KEGG_ARRH					
YTHMOGENI					
C_RIGHT_VE					
NTRICULAR_	74	0.560281	1.871955	0	0.037232
CARDIOMYO					
PATHY_ARV					
С					
KEGG_AUTOI					
MMUNE_THY	50	0.72221	1 001050	0.002801	0.029122
ROID_DISEAS	30	0.72231	1.881839	0.003891	0.058122
Ε					
KEGG_T_CEL					
L_RECEPTOR	108	0 558027	1 02024	0.005020	0.028202
SIGNALING	108	0.338937	1.93024	0.003929	0.038203
PATHWAY					
KEGG_LEISH					
MANIA_INFE	69	0.707043	1.847399	0.003914	0.038237
CTION					
KEGG_INSUL					
IN_SIGNALIN	137	0.436948	2.037023	0.00207	0.038649
G_PATHWAY					
KEGG_NICOT	24	0.6386	1 800020	0.002105	0 038760
INATE_AND_	24	0.0500	1.077027	0.002105	0.030709

NICOTINAMI					
DE_METABO					
LISM					
KEGG_PENT					
OSE_PHOSPH	2.4	0.151/000	1 5500 15	0.00000	0.020014
ATE_PATHW	26	0.474623	1.772345	0.00998	0.038914
AY					
KEGG_CELL_					
ADHESION_	101	0 (15005	1 010220	0.00000	0.020125
MOLECULES	131	0.615927	1.919338	0.003929	0.039135
_CAMS					
KEGG_PATH					
WAYS_IN_CA	324	0.451288	1.938272	0.003929	0.039624
NCER					
KEGG_GLYC					
OSAMINOGL	21	0 (0001	1 76507	0.012645	0.040456
YCAN_DEGR	21	0.60801	1./659/	0.013645	0.040456
ADATION					
KEGG_HEMA					
TOPOIETIC_C	0.5	0 (12071	1 7 (0905	0.000542	0.041000
ELL_LINEAG	85	0.643074	1.760825	0.009542	0.041222
Ε					
KEGG_APOPT	07	0.522122	1 200152	0.002004	0.042204
OSIS	87	0.532123	1.899153	0.002004	0.042294
KEGG_FC_GA					
MMA_R_MED	06	0 105112	1 75 400 6	0.026477	0.040472
IATED_PHAG	96	0.495443	1.754226	0.026477	0.042473
OCYTOSIS					
KEGG_JAK_S					
TAT_SIGNALI	155	0.559(74	1.042242	0.002007	0.042157
NG_PATHWA	155	0.538074	1.942243	0.003900	0.045157
Y					
KEGG_TIGHT	122	0 28527	1 722956	0.005827	0.044617
_JUNCTION	132	0.38337	1.755850	0.003857	0.044017
KEGG_PHEN					
YLALANINE_	19	0 622964	1 74092	0.002802	0.045125
METABOLIS	10	0.033804	1.74082	0.003802	0.043123
Μ					
KEGG_TYRO					
SINE_METAB	42	0.51101	1.734968	0	0.045161
OLISM					
KEGG_HYPE	on	0 500714	1 7/2025	0.005620	0.04525
RTROPHIC_C	02	0.300714	1.743833	0.003029	0.04555

ARDIOMYOP					
ATHY_HCM					
KEGG_GNRH					
SIGNALING	101	0.430955	1.727888	0.011299	0.04598
PATHWAY					
KEGG_ARGIN					
INE_AND_PR	5 4	0.402054	1 525242	0.005050	0.046040
OLINE_META	54	0.483954	1.735242	0.005859	0.046049
BOLISM					
KEGG_ABC_T					
RANSPORTE	44	0.518584	1.713487	0.010438	0.04608
RS					
KEGG_PANT					
OTHENATE_	16	0 (17240	1 719025	0.015504	0.046006
AND_COA_BI	16	0.647349	1./18925	0.015504	0.046206
OSYNTHESIS					
KEGG_CHEM					
OKINE_SIGN	100	0.404106	1 70 41 1	0.011799	0.046517
ALING_PATH	188	0.484186	1./2411	0.011788	0.046517
WAY					
KEGG_PPAR_					
SIGNALING_	69	0.480392	1.714984	0.011928	0.046545
PATHWAY					
KEGG_ALLO					
GRAFT_REJE	35	0.800731	1.720984	0.01165	0.046594
CTION					
KEGG_ADIPO					
CYTOKINE_S	67	0.431698	1 70/126	0 003839	0.047504
IGNALING_P	07	0.451070	1.704120	0.005057	0.047504
ATHWAY					
KEGG_GRAF					
T_VERSUS_H	37	0 780134	1 705041	0.017208	0 048156
OST_DISEAS	57	0.700101	1.700011	0.017200	0.010100
Ε					
KEGG_PRIMA					
RY_IMMUNO	35	0.699832	1.694537	0.031068	0.048653
DEFICIENCY					
KEGG_GLUT					
ATHIONE_ME	49	0.466375	1.683739	0.016064	0.049096
TABOLISM					
KEGG_DILAT					
ED_CARDIO	89	0.481324	1.695542	0.015355	0.049282
MYOPATHY					

KEGG_CYTO					
SOLIC_DNA_		0.514501	1 (50501	0.010102	0.04042
SENSING_PA	54	0.514581	1.679721	0.018182	0.04943
THWAY					
KEGG_TRYPT					
OPHAN_MET	39	0.50625	1.684761	0.012245	0.049647
ABOLISM					
KEGG_GLYC					
OSPHINGOLI					
PID_BIOSYNT	15	0.609943	1.695923	0.021318	0.050022
HESIS_GANG					
LIO_SERIES					
KEGG_ANTIG					
EN_PROCESS	01	0.546542	1 (052)((0.042280	0.050220
ING_AND_PR	81	0.546542	1.685366	0.042389	0.050338
ESENTATION					
KEGG_N_GL					
YCAN_BIOSY	46	0.495394	1.68634	0.026639	0.05081
NTHESIS					
KEGG_RENIN					
_ANGIOTENS	17	0.610401	1.662158	0.029644	0.054666
IN_SYSTEM					
KEGG_VASC					
ULAR_SMOO					
TH_MUSCLE_	115	0.424752	1.638976	0.015534	0.063276
CONTRACTIO					
Ν					
KEGG_NEUR					
OTROPHIN_SI	126	0 368647	1 630128	0.049281	0.067061
GNALING_PA	120	0.500047	1.050120	0.049201	0.007001
THWAY					
KEGG_NITRO					
GEN_METAB	23	0.569326	1.625885	0.021359	0.067842
OLISM					
KEGG_EPITH					
ELIAL_CELL_					
SIGNALING_I	68	0 403531	1 62049	0 024857	0 069348
N_HELICOBA	00	0.405551	1.02049	0.024037	0.007540
CTER_PYLOR					
I_INFECTION					
KEGG_ETHE					
R_LIPID_MET	33	0.479678	1.610254	0.027613	0.072916
ABOLISM					

KEGG_ADHE					
RENS_JUNCT	73	0.421583	1.59993	0.047722	0.074717
ION					
KEGG_GLYC					
OSAMINOGL					
YCAN_BIOSY	•				
NTHESIS_HE	26	0.511454	1.601347	0.038388	0.0/5111
PARAN_SULF					
ATE					
KEGG_O_GL					
YCAN_BIOSY	30	0.529865	1.60279	0.029354	0.075441
NTHESIS					
KEGG_AXON	100				
_GUIDANCE	129	0.425279	1.578991	0.048733	0.083028
KEGG_ASTH	• •				
MA	28	0.722417	1.580982	0.046	0.083357
KEGG_GLYC					
EROPHOSPH		0.050501	1.555004	0.001505	0.000.450
OLIPID_MET	77	0.379531	1.575834	0.021526	0.083478
ABOLISM					
KEGG_PRION	25	0.4707.00	1 570072	0.054	0.004076
_DISEASES	35	0.478762	1.570973	0.054	0.084876
KEGG_FC_EP					
SILON_RI_SI	70	0 4171 40	1.5(0005	0.046042	0.007201
GNALING_PA	79	0.417149	1.562325	0.046243	0.08/301
THWAY					
KEGG_PANC					
REATIC_CAN	69	0.431012	1.563278	0.054393	0.087892
CER					
KEGG_ACUT					
E_MYELOID_	57	0.414891	1.55866	0.068136	0.087903
LEUKEMIA					
KEGG_TYPE_					
II_DIABETES	47	0.477193	1.549571	0.044444	0.091664
_MELLITUS					
KEGG_NOD_					
LIKE_RECEP					
TOR_SIGNAL	62	0.491906	1.544686	0.096045	0.092807
ING_PATHW					
AY					
KEGG_PRIMA					
RY_BILE_ACI	16	0 597059	1 520746	0.055441	0.007054
D_BIOSYNTH	10	0.38/238	1.332/40	0.055441	0.097954
ESIS					

KEGG_ENDO CYTOSIS	181	0.320968	1.507206	0.075547	0.110194
KEGG_PROST					
ATE_CANCE	89	0.397656	1.509029	0.070833	0.110523
R					
KEGG_ARAC					
HIDONIC_ACI	58	0 420252	1 480312	0.0/1096	0 110465
D_METABOLI	58	0.427252	1.407512	0.041070	0.117405
SM					
KEGG_BASA					
L_CELL_CAR	55	0.446184	1.485905	0.046843	0.120231
CINOMA					
KEGG_MELA	101	0.27(02)	1 479700	0.045922	0 102570
NOGENESIS	101	0.376036	1.478702	0.045855	0.125579
KEGG_GLIO	<i>(</i> 5	0.29(72	1 476176	0.004227	0 102070
MA	05	0.38073	1.4/01/0	0.084337	0.125878
KEGG_FRUC					
TOSE_AND_	22	0 292101	1 400500	0.052254	0.124
MANNOSE_M	33	0.382101	1.469568	0.053254	0.124
ETABOLISM					
KEGG_PHOSP					
HATIDYLINO					
SITOL_SIGNA	76	0.419983	1.470028	0.075547	0.125026
LING_SYSTE					
М					
KEGG_GLYC					
OSYLPHOSPH					
ATIDYLINOSI	25	0.450008	1 471004	0 10241	0 125201
TOL_GPI_AN	25	0.450008	1.4/1894	0.10241	0.125301
CHOR_BIOSY					
NTHESIS					
KEGG_MELA	71	0.20026	1 464740	0.045000	0 125050
NOMA	/1	0.39926	1.404/42	0.045908	0.125959
KEGG_BLAD					
DER_CANCE	42	0.426059	1.454506	0.068093	0.127945
R					
KEGG_RETIN					
OL_METABO	64	0.427193	1.457819	0.049242	0.128806
LISM					
KEGG_FATT					
Y_ACID_MET	42	0.372328	1.455226	0.063872	0.128814
ABOLISM					
KEGG_SNAR	20	0 226202	1 421702	0 000077	0 142214
E_INTERACTI	58	0.330303	1.431/23	0.060827	0.142214

ONS_IN_VESI					
CULAR_TRA					
NSPORT					
KEGG_CALCI					
UM_SIGNALI					
NG_PATHWA	177	0.421922	1.427873	0.117424	0.143381
Y					
KEGG_DRUG					
_METABOLIS					
M_CYTOCHR	71	0.416455	1.422031	0.042969	0.145689
OME_P450					
KEGG_GAP_J					
UNCTION	90	0.371276	1.395919	0.109589	0.160227
KEGG_INOSI					
TOL_PHOSPH					
ATE_METAB	54	0.386076	1.393756	0.130178	0.160269
OLISM					
KEGG_ALPH					
A_LINOLENI					
C_ACID_MET	19	0.467995	1.396366	0.090349	0.161382
ABOLISM					
KEGG_VALIN					
E_LEUCINE_					
AND_ISOLEU	44	0.370271	1.397755	0.124211	0.161999
CINE_DEGRA					
DATION					
KEGG_MATU					
RITY_ONSET					
DIABETES	25	0.473197	1.380732	0.078838	0.16866
OF_THE_YOU					
NG					
KEGG_ALDO					
STERONE_RE					
GULATED_S	42	0.414853	1.353165	0.131474	0.184841
ODIUM_REA					
BSORPTION					
KEGG_MISM					
ATCH_REPAI	23	0.540216	1.353886	0.204211	0.186215
R					
KEGG_DRUG					
_METABOLIS				0.00.00	
M_OTHER_E	51	0.392828	1.354961	0.094675	0.187002
NZYMES					

KEGG_BETA_					
ALANINE_ME	22	0.383454	1.340556	0.141717	0.19298
TABOLISM					
KEGG_ERBB_					
SIGNALING_	87	0.335174	1.326931	0.162162	0.202677
PATHWAY					
KEGG_PURIN					
E_METABOLI	154	0.291601	1.324655	0.106509	0.203209
SM					
KEGG_WNT_					
SIGNALING_	150	0.304075	1.306515	0.133056	0.216372
PATHWAY					
KEGG_META					
BOLISM_OF_					
XENOBIOTIC	69	0.380683	1.294113	0.120921	0.224856
S_BY_CYTOC					
HROME_P450					
KEGG_GLYC					
OSPHINGOLI					
PID_BIOSYNT					
HESIS_LACT	26	0.407436	1.28775	0.150476	0.228836
O_AND_NEO					
LACTO_SERI					
ES					
KEGG_OTHE					
R_GLYCAN_	16	0 484077	1 270600	0 220408	0 222221
DEGRADATI	10	0.484077	1.279099	0.220408	0.233321
ON					
KEGG_MTOR					
SIGNALING	52	0.315152	1.2739	0.191057	0.233728
PATHWAY					
KEGG_HEDG					
EHOG_SIGNA	56	0.36064	1 2751/2	0 141414	0 73/88/
LING_PATHW	50	0.30004	1.2/3143	0.141414	0.234004
AY					

NAME	SIZE	ES	NES	NOM p-val	FDR q-val
KEGG_RIBOS OME	88	-0.79292	-1.87133	0	0.115899
KEGG_RNA_P	29	-0.53494	-1.77905	0.01232	0.126753
KEGG_SPLIC	127	-0.47047	-1.72958	0.054326	0.128102
EOSOME KEGG_TERPE					
NOID_BACKB ONE_BIOSYN	15	-0.68308	-1.68396	0.018987	0.135814
THESIS					
KEGG_SELEN OAMINO_ACI	25	0.46771	1.50004	0.052041	0.160260
D_METABOLI	25	-0.40771	-1.39004	0.052941	0.169369
KEGG_RNA_					
DEGRADATI ON	59	-0.46737	-1.59005	0.090361	0.203243

Table S5. Enriched KEGG pathways in low risk group

Flow chart of study design.

Screening of IncRNAs used for constructing the risk signature for lower-grade gliomas (LGG).

Identification of the autophagy-related differentially expressed IncRNAs (ATG DEIncRNA).

Characteristics of the autophagy-related differentially expressed IncRNAs (ATG DEIncRNA) risk signature in the training cohort.

Efficacy of the autophagy-related differentially expressed IncRNAs (ATG DEIncRNA) risk signature in the validation cohort.

Assessment of the survival prognostic value of the risk signature, as well as clinical (grade, age, and gender) and molecular variables (IDH status and MGMT status) in LGG patients.

Evaluation of the performance of the nomogram for survival prediction.

The relationships between the six autophagy-related differentially expressed IncRNAs and their co-expressed genes shown by Sankey diagram

Functional roles of the risk signature by the gene set enrichment analysis (GSEA)