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A b s t r a c t

Introduction: Sepsis is a  leading cause of mortality in intensive care units 
worldwide. Ferroptosis, a  form of regulated cell death dependent on iron, 
has been proven to be altered during sepsis, including increased iron trans-
port and uptake into cells and decreased iron export. A better understanding 
of the role of ferroptosis in sepsis should expedite the identification of bio-
markers for prognostic evaluation and therapeutic interventions.
Material and methods: We used the mRNA expression profiles of sepsis pa-
tients from Gene Expression Omnibus (GEO) to analyze the expression level 
of ferroptosis-related genes and construct molecular subtypes. 
Results: Two distinct ferroptosis patterns were determined, and the overall 
survival of the two clusters was highly significantly different. Gene compar-
ison analysis was performed on these two groups, and there were a total of 
106 differentially expressed genes (DEGs). Pathway enrichment analysis of 
these genes showed that ferroptosis and immune-related pathways were 
enriched, suggesting that immune pathways might be critically involved in 
sepsis. To systematically predict the prognosis of sepsis, we constructed 
a nomogram model; the calibration plot nomogram showed excellent con-
cordance for the 7-, 14-, and 28-day predicted and actual overall survival 
probabilities. Finally, the results of bioinformatics analysis were validated in 
animal and cell models
Conclusions: In this study, we construct a  ferroptosis-related nomogram 
that can be used for prognostic prediction in sepsis. In addition, we revealed 
that ferroptosis played a non-negligible role in immune cell infiltration and 
guiding more effective immunotherapy strategies.

Key words: sepsis, ferroptosis, immune cell infiltration, prognostic 
evaluation.

Introduction

Sepsis is a life-threatening organ dysfunction caused by a disorder of 
the body’s response to infection [1]. Sepsis has become one of the top 
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10 causes of death worldwide, and is a common 
cause of complications and death among patients 
in intensive care units (ICU) [2]. For many years, 
sepsis was thought to result from a highly inflam-
matory immune response in the host to infection 
[3]. Cytokines produced by severe inflammatory re-
sponses activate neutrophils and cause excessive 
production of reactive oxygen species (ROS), which 
can lead to tissue and organ damage and further 
development of organ dysfunction and failure [4]. 
However, the mechanism and biological role of 
sepsis induction are still not clear. Therefore, it is 
necessary to explore the role of immunity in sepsis 
from the perspective of molecular genetics [5]. 

In recent years, more and more attention has 
been paid to the role of abnormal metabolism of 
trace elements in sepsis [6–8]. Iron is an important 
trace element that is needed for many basic pro-
cesses, including DNA synthesis, energy produc-
tion and immune function [9]. Ferroptosis is a nov-
el iron-dependent mode of cell death discovered 
in recent years; its main characteristics are iron 
metabolism changes and lipid peroxidation [10]. 
Ferroptosis is a death pathway different from ne-
crosis, apoptosis and other typical characteristics 

of cell death [11]. The ultrastructure of ferroptosis 
showed that mitochondria became smaller, mito-
chondria cristae disappeared, membrane density 
increased, outer membrane rupture occurred and 
cell size decreased [11]. The main mechanism in-
volved iron divalent induced intracellular lipid per-
oxidation and decreased expression of glutathione 
peroxidase (GPX) and glutathione peroxidase 4  
(GPX4) [9]. Recent studies have shown that fer-
roptosis in sepsis can be alleviated by improving 
oxidative stress [12–14]. In this study, we explored 
the molecular mechanism of ferroptosis during 
sepsis, in order to provide ideas for prevention 
and treatment of sepsis.

The pathological mechanism of sepsis is com-
plex, and many cell death modes are involved [11, 
15, 16]. With the development of research on the 
mechanism of ferroptosis over the last decade, 
ferroptosis has been proved to play a role in the 
pathogenesis of diseases caused by microbial 
infection [12, 17, 18]. A  large number of studies 
have shown that ferroptosis plays an important 
role in inflammation. In addition, immune mech-
anisms can also regulate the sensitivity of cells to 
ferroptosis [12].

Figure 1. Flow chart of the overall analysis of the biological characteristics of sepsis
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Many studies have investigated the underly-
ing mechanisms of the occurrence and develop-
ment of various diseases from the perspective 
of ferroptosis, aiming to construct prognostic 
models based on bioinformatics analysis of fer-
roptosis [9, 10, 16, 18]. With the development of 
high-throughput sequencing technology, many 
studies have successfully constructed prognos-
tic models based on ferroptosis-related genes 
[19–21]. It shows potential clinical significance 
for prognostic prediction and development of 
molecular targeted drugs [22]. However, sepsis, 
the most common disease in the ICU, has no such 
prognostic model. Here, in this study, we develop 
a prognostic model based on ferroptosis-related 
genes and explore its prognostic effect on sepsis 
patients, and we also explore its association with 
immune infiltration.

Material and methods

Sepsis datasets source and preprocessing

The flow chart of the overall study is shown 
in Figure 1. We searched GEO (https://www.ncbi.
nlm.nih.gov/geo/) for experiments studying sep-
sis in human whole blood samples and found  
2 datasets (GEO accession numbers: GSE65682, 
GSE95233) [23, 24]. We downloaded the data us-
ing the GEOquery package of R software (version 
4.1.0, http://r-project.org/) [25]. GSE65682 was 
based on the GPL13667[HG-U219] Affymetrix Hu-
man Genome U219 Array platform, and the data-
set contained 802 blood samples, including 760 
sepsis cases and 42 healthy controls. GSE95233 
was based on the GPL570[HG-U133_plus_2] Affy-
metrix Human Genome U133 Plus 2.0 Array plat-
form, and the data set included 51 sepsis patients 
and 22 control patients, a  total of 73 patients. 
Blood samples from sepsis patients on the first 
day of ICU admission were included in the study. 
The expression profile data of sepsis samples 
from the above two data sets were combined into 
one data set, and data cleaning operations such 
as batch removal, standardized processing and 
annotation probe were carried out. The clinical 
information of dataset GSE65682 was extracted 
for clinical analysis. The next step was to obtain 
genes related to ferroptosis. Firstly, 304 genes 
related to ferroptosis were searched in the gen-
ecards database (https://www.genecards.org/) 
using ferroptosis as the keyword. Then a total of 
288 ferroptosis genes related to Driver, Suppres-
sor and Marker were obtained from the FerrDb 
database (http://www.zhounan.org/ferrdb/). Fi-
nally, a  total of 470 ferroptosis genes were ob-
tained after the combination of the two datasets 
and the removal of duplicate genes.

Consensus clustering for ferroptosis related 
genes 

Consensus clustering analysis was applied to 
identify distinct ferroptosis patterns based on the 
expression of ferroptosis related genes. We used 
the ConsensusClusterPlus package to perform the 
above steps; cluster1 and cluster2 are classified 
according to the results [26]. The correctness of 
the classification was verified by principal com-
ponent analysis (PCA) of the mRNA expression 
profile based on sepsis. Survival analysis was 
performed using the clinical data of GSE65682 to 
analyze whether the classification of ferroptosis 
subtypes was clinically significant. The “limma” 
R package was used to analyze the differentially 
expressed genes (DEGs) between the two clusters 
with a false discovery rate (FDR) < 0.05 and loga-
rithmic fold change (LFC) > 0.3 [27]. The ggplot2 R 
package was used to draw the volcano map and 
heat map of differential genes to show the expres-
sion of DEGs [28]. 

Evaluation of immune cell infiltration

We used CIBERSORT, an analytical algorithm 
that deconvolutes bulk samples with a  minimal 
representation for each immune cell type using 
support vector regression based on a  set of ref-
erence gene expression values [29]. CIBERSORT 
analyzes RNA expression data to evaluate the 
abundance of different immune cell subtypes in 
each sample, to examine immune cell types of 
sepsis and to estimate the proportion of infiltrat-
ing immune cells. Only samples with a CIBERSORT 
output of p < 0.05 were considered worthy of fur-
ther analysis. The ggplot2 R package was used to 
visualize the expression differences of 22 immune 
cells between cluster1 and cluster2. The Corrplot 
R package was used to draw correlation heat 
maps to visualize the correlation of 22 immune 
cells’ infiltration.

Gene set variation analysis (GSVA)  
and gene set enrichment analysis (GSEA)

To investigate the differences in biological pro-
cesses between cluster1 and cluster2, we per-
formed GSVA enrichment analysis using “GSVA” 
R packages [30]. GSVA, in a non-parametric and 
unsupervised method, is commonly employed for 
estimating the variation in pathway and biological 
process activity in the samples of an expression 
dataset. The gene sets of “c2.all.v7.4.symbols.
gmt” were downloaded for running GSVA analy-
sis. The rank-based approach GSEA was applied to 
evaluate the enrichment of ferroptosis genes. An 
adjusted p-value less than 0.05 was considered as 
statistically significant. 

http://r-project.org/
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Weighted gene co-expression network 
analysis (WGCNA) based on ferroptosis 
cluster

The WGCNA R package was applied to process 
data [31]. Firstly, the soft threshold value of net-
work construction is selected, and the adjacency 
matrix is the continuous value between 0 and 1, 
so that the constructed network accords with the 
power-law distribution and is closer to the real 
biological network state. Secondly, a  scale-free 
network was constructed by using the function of 
block modules, and then the co-expression mod-
ules were identified by block partitioning analysis, 
so that genes with similar expression patterns 
were grouped. These modules are defined by us-
ing a  dynamic tree cutting algorithm to cut the 
component branches of the cluster tree and as-
sign different colors for visualization. All modules 
are summarized by modular characteristic genes 
(ME), the most important major component of 
each module, which are calculated as synthetic 
genes representing the expression profile of all 
genes in a given module.

Functional enrichment analysis

We used the “clusterProfiler” R package to per-
form Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses of DEGs 
between cluster1 and cluster2 (FDR < 0.05) [32]. 
GO analysis is a common method for conducting 
large-scale functional enrichment studies, includ-
ing biological processes (BP), molecular functions 
(MF), and cellular components (CC).

Protein-protein interaction (PPI) network 
construction

In this study, we used the STRING database 
(http://string-db.org, version 11.09) to predict pro-
tein-protein interaction (PPI) and selected genes 
with a  database score greater than 0.4 to con-
struct PPI networks. Cytoscape software (v3.7.2) 
was used to perform network visualization, and 
the cytoHubba plug-in was used to screen the top 
20 hub genes according to the score.

Constructing regulatory network

The associations between hub genes and miR-
NAs were analyzed in this study after identifying 
the potential mRNAs and miRNAs through miRTar-
Base databases (http://mirtarbase.mbc.nctu.edu.
tw). An integrating network of regulatory connec-
tions of mRNAs and miRNAs was constructed with 
the R package multiMiR [32]. Cytoscape software 
(v3.7.2) was used to perform network visualiza-
tion. 

Construction of a predictive nomogram

We used Cox regression to detect the progno-
sis-associated ferroptosis-related gene signature. 
The Survival package and SurvMiner package 
were used to perform univariate Cox regression 
analysis on GSE65682. The risk factors were in-
cluded in the multivariate Cox regression analysis 
and the regression model was established. A no-
mogram was established based on the  multivar-
iate Cox model to predict the 28-day survival of 
sepsis patients. Finally, the correction curve was 
used to evaluate the accuracy and resolution of 
the nomogram.

Construction of animal and cell models

The healthy 8-week-old male rats used in this 
study were purchased from the Animal Laboratory 
of Nanchang University. The rat were reared in ster-
ile cages with humidity of 45–55% and a light/dark 
cycle of 12 h. The rats were adaptively reared for 
1 week before animal experiments. All animal ex-
periments were conducted in accordance with the 
Guidelines for The Use of Experimental Animal Care 
approved by the Ethics Committee of Nanchang 
University (Approval No.: 81960346). Next, the rat 
sepsis model was established by cecal ligation and 
puncture (CLP) and venous blood samples were 
obtained. The rats were anesthetized with sodium 
pentobarbital (50 mg/kg, intraperitoneal injection), 
and the cecum was exposed by cutting 1.5–2 cm 
along the midline of the abdomen. After stripping 
the mesentery, except for the sham group, half of 
the cecum was ligated with line 4. Except for the rat 
in the sham operation group, the cecum was punc-
tured at 1 cm from the distal end of the ligation with 
a no. 21 sterile needle and the wound was sutured. 
For fluid resuscitation, each rat received 1  ml of 
preheated saline (37°C). Analgesic treatment: Rats 
were injected with buprenorphine (0.05 mg/kg, 
subcutaneously) every 6 h for 2 consecutive days.

The NR8383 cell line (rat lung macrophage) and 
RLE-6TN cell line (rat lung epithelial type II cells) 
were inoculated in 6-well plates with 2 ml of me-
dium per well at a density of 106. When the cells 
grew to 50%, the cells were stimulated with 1 μg/
ml LPS, and collected 2 h and 9 h later, respective-
ly, to establish the sepsis cell model.

qRT-PCR verification

Total RNA was extracted with TRIzol reagent 
(Takara, Dalian, China). Prime-script RTase (Taka-
ra) was used for reverse transcription. With the 
help of premixed ex-Taq (Takara), gene expression 
levels were determined by qPCR and normalized 
to GAPDH expression levels. Expression levels 
were calculated using the 2–ΔCT method.

http://mirtarbase.mbc.nctu.edu.tw
http://mirtarbase.mbc.nctu.edu.tw
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Drug sensitivity analysis

According to the expression profile of the GDSC 
(www.cancerrxgene.org) cell line and TCGA gene, 
the pRRophetic algorithm was used to construct 
a ridge regression model to predict drug IC50, and 
drugs with significant differences between groups 
were screened out [33]. The top 20 drugs were se-
lected for visualization.

Statistical analysis 

All of the analyses were performed using R with 
a two-sided significance threshold of p < 0.05. For 
the comparison of the two groups of continuous 
variables, the statistical significance of the nor-
mally distributed variables was estimated using 
the independent Student t test, and the differenc-

es between the non-normally distributed variables 
were analyzed using the Mann-Whitney U test (i.e. 
Wilcoxon rank-sum test). The c2 test or Fisher’s 
exact test was used to compare and analyze the 
statistical significance between the two groups of 
categorical variables. 

Results

Subtype construction of sepsis based on 
ferroptosis

Firstly, ConsensusClusterPlus software was 
used to construct subtypes based on ferroptosis 
gene expression profiles to explore the biological 
differences among different ferroptosis subtypes 
of sepsis. The classification is reliable and stable 
when k = 2 (Figures 2 A–C). So we divided the 

Figure 2. Characteristics of sepsis subtypes. A – The consensus matrix when k = 2. Both rows and columns of the 
matrix represent samples. B – Consensus CDF; C – Delta area. D – Grouped by ferroptosis subtype, the difference 
in survival rate between the two groups p = 0.043
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samples into cluster1 and cluster2. Further, we 
conducted survival analysis based on clinical data 
from the GSE65682 dataset, and found that there 
was a  significant difference in the survival rate 
between cluster1 and cluster2 groups (p < 0.05), 
indicating that this grouping has clinical signifi-
cance (Figure 2 D). Therefore, it is of practical sig-
nificance for us to further explore the biological 
characteristics of ferroptosis.

PCA was used to further verify the correctness 
of classification of ferroptosis subtypes. It can 
be clearly seen that cluster1 group and cluster2 
groups are clearly distinguished (Figure 3 A). A dif-
ferential expression analysis using R package lim-

ma identified 106 differentially DEGs between the 
two groups, with a p. adjusted (FDR) value < 0.05 
and |log2FC (fold change) |> 0.3 as the cut-offs. 
Among these genes, 95 were downregulated and 
11 were upregulated (Figures 3 B, C).

Gene set variation analysis and gene set 
enrichment analysis

“c2.all.v7.4.symbols.gmt” was selected as the 
reference gene set for GSVA analysis. There were 
significant differences in the following 10 gene 
sets based on ferroptosis subtype grouping: VALK_
AML_CLUSTER_7, VALK_AML_CLUSTER_8, XIE_ST_
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Figure 3. Difference analysis of ferroptosis subgroups and GSVA analysis. A – PCA analysis of ferroptosis subgroup, 
light blue is cluster1, light red is cluster2; B – The heat map of the different analyses of ferroptosis subgroups, light 
blue is cluster1, purple is cluster2, small blue squares represent low expression, and small red squares represent 
high expression; C – The volcano map of the different analyses of ferroptosis subgroups. The light blue point rep-
resents low expression, and the light red point represents high expression; D – According to GSVA analysis, light 
blue is cluster1, purple is cluster2, small blue squares represent low enrichment, and small red squares represent 
high enrichment
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Table I. GSVA enrichment analysis results

Pathway name logFC AveExpr t P-value B

VALK_AML_CLUSTER_7 0.7660 –0.0268 31.0918 1.37E–140 310.5310

VALK_AML_CLUSTER_8 0.7967 –0.0305 30.0983 1.94E–134 296.4196

XIE_ST_HSC_S1PR3_OE_DN 0.6401 –0.0164 28.8664 8.53E–127 278.8851

WANG_LMO4_TARGETS_DN –0.3373 0.0109 –28.8027 2.12E–126 277.9779

CHYLA_CBFA2T3_TARGETS_DN 0.3751 –0.0067 28.3197 2.11E–123 271.0997

KYNG_RESPONSE_TO_H2O2_VIA_ERCC6 0.5893 –0.0084 28.2910 3.19E–123 270.6908

REACTOME_METABOLISM_OF_PORPHYRINS 0.5606 –0.0137 28.0679 7.74E–122 267.5122

BIOCARTA_AHSP_PATHWAY 0.7278 –0.0298 26.8280 3.81E–114 249.8658

NICK_RESPONSE_TO_PROC_TREATMENT_DN –0.4814 0.0131 –26.0573 2.25E–109 238.9187

NIKOLSKY_BREAST_CANCER_16P13_AMPLICON 0.4482 –0.0128 25.8906 2.41E–108 236.5542

HSC_S1PR3_OE_DN, WANG_LMO4_TARGETS_DN, 
CHYLA_CBFA2T3_TARGETS_DN, KYNG_RESPONSE_
TO_H2O2_VIA_ERCC6, REACTOME_METABOLISM_
OF_PORPHYRINS, BIOCARTA_AHSP_PATHWAY, 
NICK_RESPONSE_TO_PROC_TREATMENT_DN and 
NIKOLSKY_BRDEAST_CANCER_16P13_AMPLICON. 
Most of these different gene sets were related to 
iron metabolism, inflammation, oxidative stress, 
immunity, blood diseases and other pathways (Fig-
ure 3 D, Table I).

In order to explore the functional enrichment 
of sepsis, GSEA analysis was performed on genes 
in the sepsis expression profile, with the reference 
gene set h.all.v7.4.entrez.gmt. The results showed 
that differential genes were significantly enriched 
in data sets HALLMARK_HEME_METABOLISM, 
HALLMARK_TNFA_SIGNALING_VIA_NFKB, HALL-
MARK_MYOGENESIS, HALLMARK_APICAL_JUNC-
TION, HALLMARK_XENOBIOTIC_METABOLISM, 
HALLMARK_COAGULATION, HALLMARK_PROTEIN_
SECRETION, HALLMARK_INTERFERON_GAMMA_
RESPONSE, HALLMARK_ANDROGEN_RESPONSE, 
HALLMARK_INFLAMMATORY_RESPONSE (Figures 
4 A–I, Table II). It has an obvious correlation with 
inflammation, immunity, iron metabolism, coagu-
lation, etc.

Evaluation of immune cell infiltration

Both GSEA and GEVA enrichment analysis 
found that sepsis was highly correlated with im-
munity. In order to further explore immune-relat-
ed cell changes in sepsis patients, CIBERSORT was 
used to analyze the proportion of sepsis immune 
cells and construct 22 immune cell maps in sepsis 
samples (Figure 5 A). In addition, we analyzed the 
correlation between immune cells (Figure 5 B). The 
immune cell correlation matrix shows that the in-
filtration level of activated memory CD8+ T cells is 
highly correlated with neutrophils, indicating that 
these two types of immune cells play an important 

role in the course of sepsis (Figure 5 B). In addi-
tion, we compared the differences of immune cell 
infiltration between cluster1 and cluster2, and the 
results showed that B cells naïve, B cells memo-
ry, plasma cells, T cells CD8, T cells gd, monocytes, 
dendritic cells resting, mast cells resting, mast 
cells activated and neutrophils were significantly 
different between the two clusters (Figure 5 C).

WGCNA analysis based on ferroptosis 
subtypes

The gene coexpression networks of the data-
set were established via the WGCNA package 
(Figure 6 A). To establish scale-free networks, the 
soft thresholding power was set at β = 5 based on 
scale independence and mean connectivity (Fig-
ure 6 B). The dynamic tree cut package was used 
to generate a gene cluster dendrogram containing 
20 co-expression models (Figure 6 C). The mod-
ules with the highest correlation with immune 
characteristics are brown (r = 0.76, p = 7e–149) (Fig-
ure 6 D). We intersected 106 DEGs grouped based 
on ferroptosis characteristics with 1251 genes in 
the brown module to obtain 94 intersection genes 
(Figure 6 E).

Functional enrichment analysis

In order to understand the biological functions 
and mechanisms between intersection genes and 
ferroptosis, we used GO enrichment analysis and 
KEGG pathway analysis on the intersection genes 
in this study. Erythrocyte development, Myeloid 
cell development, erythrocyte differentiation, 
cortical cytoskeleton, hemoglobin complex, cell 
cortex part, drug transmembrane transporter ac-
tivity, 2 iron 2 sulfur cluster binding, Neutral ami-
no acid transmembrane transporter activity and 
other biological function or characteristic were 
significantly enriched. However, when it comes to 
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Figure 4. GSEA enrichment analysis. A–F – GSEA analysis of the most significant gene set
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Figure 4. GSEA enrichment analysis. G–I  – GSEA 
analysis of the most significant gene set

KEGG pathway enrichment analysis, only the ma-
laria pathway was significantly enriched (Figure 
7 A). In these inflammation, autophagy, apopto-
sis, iron metabolism and other related pathways, 
logFC is decreased, and the genes in them are 
also down-regulated (Figure 7 B). Correlations be-
tween CISD2, SNCA, SESN3, FLCN, STK11, OPTN, 
PIP4K2A, SLC4A1, DMTN, EPB42, BPGM, NPRL3 
and GO terms such as erythrocyte development, 
TORC1 signaling, negative regulation of TOR sig-
naling, regulation of autophagy, and positive reg-
ulation of autophagy were observed (Figure 7 C).

PPI and miRNA mRNA network construction

In order to explore the functions of hubgenes 
transcribed and translated proteins, we used Cy-
toscape software to build a PPI network based on 
the STRING database. 62 proteins had close in-
teractions with each other (Figure 7 D). The cyto-
Hubba plug-in was used to screen the key genes, 

and the top 20 genes in cytoHubba were selected 
as hub genes (Figure 7 E). The top 20 genes were 
SLC4A1, EPB42, AHSP, DMTN, SNCA, FECH, KLF1, 
GYPB, GYPA, CA1, HBD, OSBP2, ANK1, TNS1, BPGM, 
SELENBP1, TMOD1, SPTB, FKBP8, and GMPR. 

In order to further explore the upstream regu-
latory relationship, based on the miRTarBase V.8 
database, the results of “Functional MTI” evidence 
were selected to predict the miRNA interacting 
with hub genes. The mRNA transcribed from the 
hub genes interacted with 330 miRNA (Figure 7 F).

Construction of a predictive nomogram

The clinical characteristic data and the expres-
sion data of 20 hub genes were extracted from 
GSE65682 datasets for univariate Cox regression 
analysis. The results showed that AHSP, DMTN, 
KLF1, GYPB, GYPA, CA1, HBD, BPGM, SPTB and 
GMPR had statistical significance (p < 0.05). We 
further conducted multivariate Cox regression 
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analysis on these genes and constructed a multi-
variate Cox regression model, which was visual-
ized by a forest map (Figure 8 A, Table IV). Through 
the forest plot of Cox regression, we can see that 
genes such as AHSP, GYPA, CA1, and BPGM may 
have important value for the prognosis of sepsis 
(Figure 8 A). In addition, a  nomogram was con-
structed using this model to predict 7-day, 14-day, 
and 28-day survival for patients with sepsis (Fig-
ure 8 B). We further evaluated the predictive pow-
er of the line chart. The c-index of the line graph 
is 0.68, indicating that it has high confidence. The 

calibration curves of days 7, 14 and 28 were con-
sistent (Figures 8 C–E), indicating that the nomo-
gram has good accuracy and resolution.

Experimental validation

AHSP, DMTN, KLF1, GYPB, GYPA, CA1, HBD, 
BPGM, SPTB and GMPR were included in the 
previous multivariate Cox regression model con-
struction. We further verified the expression of 
these genes by constructing septic animal and cell 
models. We performed verification in CPL animal 

Table II. GSEA enrichment analysis results

Description Set-
Size

Enrichment-
Score

NES P-value Leading_edge

HALLMARK_HEME_METABOLISM 176 –0.8075 –3.6367 1.00E–10 tags = 58%, list = 7%, 
signal = 55%

HALLMARK_TNFA_SIGNALING_VIA_NFKB 150 0.4199 1.9435 1.56E–06 tags = 46%, list = 28%, 
signal = 34%

HALLMARK_MYOGENESIS 115 –0.4649 –1.9668 9.42E–06 tags = 50%, list = 25%, 
signal = 38%

HALLMARK_APICAL_JUNCTION 127 –0.4325 –1.8592 5.73E–05 tags = 33%, list = 15%, 
signal = 28%

HALLMARK_XENOBIOTIC_METABOLISM 132 –0.4069 –1.7689 1.78E–04 tags = 30%, list = 15%, 
signal = 26%

HALLMARK_COAGULATION 83 –0.4376 –1.7587 6.77E–04 tags = 45%, list = 26%, 
signal = 33%

HALLMARK_PROTEIN_SECRETION 86 0.3686 1.5548 5.27E–03 tags = 38%, list = 20%, 
signal = 31%

HALLMARK_INTERFERON_GAMMA_RESPONSE 175 0.2967 1.4080 7.36E–03 tags = 26%, list = 18%, 
signal = 21%

HALLMARK_ANDROGEN_RESPONSE 76 0.3756 1.5638 7.81E–03 tags = 34%, list = 18%, 
signal = 28%

HALLMARK_INFLAMMATORY_RESPONSE 149 0.3022 1.3985 9.95E–03 tags = 48%, list = 33%, 
signal = 33%
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Figure 5. Immune cell infiltration and immune correlation analysis. A – Barplot of the ratio of 22 kinds of immune 
cells in sepsis samples
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Figure 5. Cont. B – heat map of 22 kinds of immune cell infiltration; blue means positive correlation, red means 
negative correlation, the darker the color, the stronger the correlation; C – immune cells In the subtypes related to 
ferroptosis
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models and cell models. We found that the ex-
pression of BPGM in the sepsis model was signifi-
cantly higher than that in the control group, and 
the results were statistically significantly different 
(Figure 9 A). In addition, consistent results were 
obtained in the two cell models MR8383 and RLE 
cell lines (Figure 9 A). This proves that the expres-
sion of BPGM will increase significantly during 

the course of sepsis. Subsequently, we further 
verified several other genes included in the mod-
el, such as GYPA, AHSP, CA1, GMPR, SPTB, KLF1, 
HBG, and DMTN, and obtained consistent results. 
Since GYPB was not expressed in rat, other genes 
were used for subsequent experimental verifica-
tion. The results showed that the expression level 
in the blood of sepsis animals was significantly 
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	 WGCNA	 DEG

	 1157 (91.6%)	 94 (7.4%)	 12 (1.0%)

Figure 6. Construction of weighted co-expression network analysis. A – Clustering dendrogram based on Euclidean 
distance; B – Network topology analysis under various soft threshold powers. Left: The x-axis represents the soft 
threshold power. The y-axis represents the fit index of the scale-free topology model. Right: The x-axis represents 
the soft threshold power. The y-axis reflects the average connectivity (degrees); C – Cluster dendrograms of topo-
logically overlapping genes with different similarities and assigned module colors; D – Module-trait association. 
Each row corresponds to a module, and each column corresponds to a feature. Each cell contains the corresponding 
correlation and p-value. This table is color-coded according to the relevance of the color legend; E – Venn diagram 
of the intersection of WGCNA’s most relevant modular genes and differential genes
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A B

C

D
Figure 7. GO, KEGG en-
richment analysis, and PPI 
network analysis. A  – GO, 
KEGG analysis dot chart; 
B – GO, KEGG analysis 
circle chart, the center 
histogram represents the 
z-score score, dark green 
represents a  decline, light 
green represents an in-
crease, the middle dot 
represents genes, and blue 
represents down-regulated 
genes; C – Chord diagram 
of the selected 5 GO paths; 
D – The PPI network of 62 
common genes construct-
ed by STRING database, 
the greater the degree val-
ue of the gene, the darker 
the color and the larger the 
diameter
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higher than that in the control group, and similar 
results were obtained in cell experiments (Figure 
9 A–I).

Drug sensitivity analysis

Based on the IC50 of different cell lines for 
different small molecule drugs in the GDSC data-
base, we analyzed changes in sensitivity of differ-
ent ferroptosis classifications to these drugs. The 
results suggest that NU7441, AMG706, SL01011, 
GDC0941, sunitinib, metformin and other small 
molecule drugs have higher IC50 values in cluster2 
than cluster1, and the difference is statistically 

significant (p < 0.001) (Figures 10 A–T). The results 
showed that a different classification of ferropto-
sis may lead to changes in the sensitivity of sepsis 
to 54 different small molecule drugs. The results 
showed that 20 small molecule drugs were statis-
tically significant (Figures 10 A–T).

Discussion

Sepsis is a life-threatening medical emergency 
caused by a misregulated host response to inflam-
mation in which microbial biological processes 
play an important role [6]. Iron is an important el-
ement in microbial biological processes, and many 

Figure 7. Cont. E – For the first 20 HUB genes calculated by cytoHubba, the higher the enrichment score, the darker 
the color; F – The miRNA-mRNA interaction network, the light blue circle represents miRNA, and the brown triangle 
represents mRNA

E
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A B

Figure 8. Correlation analysis of clinical features. 
A – Multi-factor Cox regression analysis forest plot; 
B – Multi-factor Cox regression analysis nomogram 
plot; C–E – 7 days, 14 days, 28 days calibration 
curve

#Events: 114; Global p-value (Log-Rank): 2.2730e-07, AIC: 1463.83; 
Concordance Index: 0.68.
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studies have revealed a  relationship between 
changes in iron metabolism and sepsis [34]. Most 
microorganisms depend on iron for their patho-
genicity, and some bacteria such as Escherichia 
coli and Klebsiella pneumoniae have evolved the 
ability to remove iron from host iron-binding pro-
teins [35]. Previous studies have shown that iron 

imbalance is associated with lower survival rates 
in patients with sepsis [36–38]. 

A number of studies have proposed that ferro-
ptosis is a novel form of regulation of cell death 
closely related to iron overload [11, 18, 39]. Fer-
roptosis plays an important role in immune infil-
tration, but the specific mechanism remains un-
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Table III. GO, KEGG enrichment analysis results

ONTOLOGY ID Description Count P-value

BP GO:0048821 Erythrocyte development 5 4.19E–07

BP GO:0061515 Myeloid cell development 6 8.88E–07

BP GO:0030218 Erythrocyte differentiation 7 1.03E–06

BP GO:0038202 TORC1 signaling 4 4.72E–05

BP GO:0032007 Negative regulation of TOR signaling 4 9.30E–05

BP GO:0010506 Regulation of autophagy 8 1.43E–04

BP GO:0010508 Positive regulation of autophagy 5 2.18E–04

BP GO:1903432 Regulation of TORC1 signaling 3 6.77E–04

BP GO:2001240 Negative regulation of extrinsic apoptotic signaling pathway in 
absence of ligand

3 4.87E–04

BP GO:2001239 Regulation of extrinsic apoptotic signaling pathway in absence 
of ligand

3 1.09E–03

CC GO:0030863 Cortical cytoskeleton 5 2.11E–04

CC GO:0005833 Hemoglobin complex 2 1.38E–03

CC GO:0044448 Cell cortex part 5 1.71E–03

MF GO:0015238 Drug transmembrane transporter activity 5 8.98E–05

MF GO:0051537 2 iron, 2 sulfur cluster binding 3 1.65E–04

MF GO:0015175 Neutral amino acid transmembrane transporter activity 3 4.67E–04

KEGG hsa05144 Malaria 4 1.61E–04

KEGG hsa04150 mTOR signaling pathway 4 1.05E–02

Table IV. Univariate and multivariate COX analysis results

Variables Univariate analysis Multivariate analysis

HR 95% CI of HR P-value HR 95% CI of HR P-value

Gender 1.04 0.71–1.51 0.832

Age 1.22 0.84–1.76 0.284

SLC4A1 1.08 0.94–1.22 0.271

EPB42 1.11 0.97–1.24 0.109

AHSP 1.15 1.01–1.29 0.029 0.67 0.44–0.99 0.047

DMTN 1.18 1.00–1.39 0.046 1.08 0.67–1.72 0.741

SNCA 1.01 0.89–1.12 0.923

FECH 1.06 0.95–1.18 0.261

KLF1 1.22 1.08–1.37 0.001 1.06 0.78–1.44 0.697

GYPB 1.18 1.05–1.31 0.003 1.23 0.89–1.7 0.201

GYPA 1.26 1.13–1.39 0.000 1.37 1.09–1.71 0.007

CA1 1.24 1.11–1.37 0.000 1.94 1.45–2.58 0.000

HBD 1.18 1.05–1.31 0.004 1.09 0.71–1.66 0.701

OSBP2 1.09 0.94–1.24 0.224

ANK1 1.11 0.98–1.24 0.075

TNS1 1.12 0.97–1.27 0.106

BPGM 1.12 1.01–1.23 0.018 0.62 0.47–0.81 0.001

SELENBP1 1.06 0.94–1.18 0.348

TMOD1 1.07 0.93–1.22 0.303

SPTB 1.22 1.02–1.46 0.029 0.85 0.58–1.24 0.412

FKBP8 1.17 0.98–1.39 0.080

GMPR 1.16 1.00–1.32 0.037 0.76 0.47–1.2 0.239
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Figure 9. Expression of the genes in sepsis prognostic models increased in vivo and in vitro. The expression of 
BPGM (A), GYPA (B), AHSP (C), CA1 (D), GMPR (E), SPTB (F)
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clear [40–42]. In this study, 10 ferroptosis-related 
genes were used to construct a sepsis prognostic 
model. Nine of these genes were validated in an-
imal and cell models. Some of these genes have 
been shown to play different roles in immune 
infiltration. For example, the KLF1 gene is asso-
ciated with immune activation [43]. Other genes 
may play an important role in ferroptosis. Sepsis 
is a  highly heterogeneous disease. In the past, 
many studies have explored the biomarkers and 
prognostic models of sepsis, but these studies are 
limited to a  single hematological index and do 
not comprehensively consider the level of gene 
expression. In addition, these predictive models 
are only valuable in one type of population, but 
have limited accuracy in another type of patient. 
Our prediction model is based on the expression 
of iron death-related genes, which is more accu-
rate. The present prognostic model provides sig-
nificantly better performance than previous prog-
nostic models [44–46]. In addition, our nomogram 

can provide personalized prediction of mortality 
risk, which is of great significance to clinicians in 
clinical application. 

In this study, we constructed subtypes based 
on the expression profile of ferroptosis genes to 
explore the biological differences among different 
types of ferroptosis subtypes of sepsis. Further-
more, 106 DEGs were studied and genes related 
to OS were screened out. Functional enrichment 
analysis showed that the DEGs were significantly 
correlated with inflammation, immunity and iron 
metabolism. The mechanism of inflammation 
susceptibility to ferroptosis has been a  hot topic 
of research in the past decades, but the complex 
relationship between immunity and ferroptosis is 
still unknown [12, 47]. Studies have shown that 
inflammation can easily induce ferroptosis, and 
the activation of ferritin related pathways under 
inflammation may provide a new therapeutic tar-
get for the treatment of sepsis [12, 47]. We further 
explored the relationship between ferroptosis and 

Figure 9. Cont. KLF1 (G), HBD (H) and DMTN (I) in 
the previous multivariate Cox regression model 
construction
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immune cell infiltration. Notably, we found that fer-
roptosis significantly affected both B lymphocyte 
and CD8+ T cell function in the analysis of infiltrat-
ing immune cells. The correlation matrix of immune 
cells showed that the infiltration level of activated 
memory CD8+ T cells was highly correlated with 
neutrophil cells. However, we found that these re-
sults are somewhat similar to studies of features 
associated with ferroptosis in other diseases.

Through the GDSC database [48], based on the 
differential genes associated with ferroptosis, sev-
eral small molecule drugs targeting the character-
istic components associated with ferroptosis were 
identified. The results showed that 20 small mol-
ecule drugs were statistically significant. These 
small molecule drugs may provide a  new thera-
peutic target for the treatment of sepsis.

There are some limitations to the study. Due to 
limited knowledge of ferroptosis, most of the char-
acteristic components of our study involve not only 
ferroptosis-related pathways, but also other path-
ways. In addition, our research lacks validation of 
animal models. Our follow-up studies will further 
conduct IHC and FISH experiments on animal mod-
els of sepsis in order to provide pathological evi-
dence. Moreover, because of our small sample size, 
it is difficult for our risk score to fully accurately 
assess the role of ferroptosis in sepsis. Therefore, 
our predictive model should be further validated in 
a cohort of sepsis from multicenter studies.

In conclusion, we identified two molecular 
subgroups by analyzing the expression of a ma-
trix based on genes associated with ferroptosis in 
this study. The two molecular subgroups showed 
significantly different survival rates and immune 
status. Moreover, a sepsis prognostic model based 
on ferroptosis-related genes was developed and 
its predictive efficiency was well demonstrated. In 
addition, gene function enrichment analysis indi-
cated that ferroptosis-related genes could affect 
the immune cell infiltration and then affect the 
occurrence, development and prognosis of sepsis. 
Our research indicated the important role of ferro-
ptosis and immune interaction in the occurrence 
and development of sepsis, and provides a  new 
idea for exploring the molecular mechanism and 
treatment of sepsis.
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