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A novel seven-immune-gene-based model to improve 
prediction of prognosis of clear cell renal cell carcinoma
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A b s t r a c t

Introduction: The aim of our study was to investigate the correlation of 
immune-related genes with clear cell renal cell carcinoma (ccRCC) prognosis 
and the role of immune-related genes in the tumor immune microenviron-
ment (TIME) and to build a  new prognostic model and prognostic scoring 
system for renal cancer.
Material and methods: We downloaded the mRNA expression data of 610 
samples (538 ccRCC and 72 normal tissues) from the TCGA database and 
constructed an immune-related prognostic model using Cox regression anal-
ysis and LASSO analysis. Then we internally verified the scientific validity 
and accuracy of the model using Kaplan-Meier (KM) analysis and receiver 
operating characteristic (ROC) curves. Subsequently, Cytoscape was used to 
construct a TF-miRNA-mRNA network. The “CIBERSORT” package was used 
to perform the immune infiltration analysis. Finally, validation of key gene 
expression was performed by immunohistochemistry (IHC) and quantitative 
reverse transcription-PCR (qRT-PCR).
Results: The prognostic model constructed for ccRCC includes 7 genes 
(KLRC2, PGLYRP2, AGER, CHGA, AVPR1B, IL20RB, LAT). It was proven to have 
good prognostic performance through the K analysis and the ROC curves. 
We also constructed an accurate prognostic predictive scoring system by es-
tablishing a nomogram. Furthermore, the TF-miRNA-mRNA network revealed 
the potential mechanism of the model and the immune infiltration analysis 
revealed a correlation between this model and TIME.
Conclusions: The results suggest that the newly developed 7-immune-re-
lated-gene model can be a practical and reliable prognostic tool for ccRCC. 
It also shows T cell infiltration characteristics in TIME and can therefore be 
used as an immune biomarker for the diagnosis and treatment of ccRCC.

Key words: immune-related genes, prognostic model, TF-miRNA-mRNA 
regulatory network, tumor immune microenvironment.

Introduction

Renal cell cancer (RCC) is one of the most common and deadliest malig-
nancies of the urinary system [1]. In 2020, there were an estimated 431,288 
new cases of renal cancer, 179,368 deaths caused by the disease world-
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wide and 73,000 new cases diagnosed in China [2]. 
Clear cell renal cell carcinoma (ccRCC) is the most 
common type of renal cancer that is associated 
with different risk factors such as smoking, obesity, 
high blood pressure, germline, somatic mutations, 
etc. that predispose patients to ccRCC development 
[3]. Patients with localized RCC receiving treatments 
such as radiofrequency ablation, enucleoresection 
or simple nephrectomy have improved disease-free 
survival rates up to 90% [4, 5], while the treatment 
methods for advanced and metastatic ccRCC are 
still limited. Immunotherapy is currently used as 
a first-line treatment [6], but only a small proportion 
of patients can benefit from immunotherapy due to 
the complexity and highly modulated nature of the 
immune system [7]. Therefore, it is urgent to find 
more clues related to the prognosis of ccRCC from 
the perspective of immunity and seek new immune 
biomarkers to provide new ideas for the immuno-
therapy and prognosis of ccRCC.

The growth of research on the tumor immune 
microenvironment (TIME) has promoted the de-
velopment of immunotherapy for renal cancer. The 
ccRCC is considered an immunogenic tumor that 
is known to mediate immune dysfunction large-
ly by inducing infiltration of immunosuppressive 
cells into the TIME [8]. Existing studies suggest 
that TIME plays a  key role in the tumor’s initia-
tion, progression, metastasis and response to 
treatment [9]. However, research on TIME for re-
nal cancer remains rare. Further exploration of the 
immune microenvironment of ccRCC is needed for 
the discovery of new clues that can contribute to 
immunotherapy in renal cancer.

It is considered scientific to find prognostic fac-
tors using univariate and multivariate Cox regres-
sion analyses, which were also used in much rel-
evant literature [10, 11], while little research has 
been done on ccRCC prognostic models, let alone 
immune-related prognostic models. Given that most 
prognostic models focus on analyzing their impact 
on survival while neglecting to explore the mecha-
nism behind their impact, in our research we con-
structed a  significant prognostic model for ccRCC, 
the further mechanism of which was also explored. 
We attempted to investigate the possible mecha-
nisms affecting prognosis from the perspective of 
immune infiltration and the transcription factor 
(TF)-microRNA(miRNA)-mRNA regulatory network 
while searching for key targets or new biomarkers 
for renal cancer immunotherapy and prognosis.

Material and methods

Identification of differentially expressed 
immune genes (DEIGs) and functional 
enrichment

The gene expression data of ccRCC were down-
loaded from The Cancer Genome Atlas (TCGA) da-

tabase (https://portal.gdc.cancer.gov/) [12] as the  
training set (including 538 ccRCC samples and  
72 normal samples). We further collected the clini-
cal information of 537 ccRCC samples correspond-
ing to the transcriptome data. Then we used the 
“limma” package to screen the differentially ex-
pressed genes (DEGs ) of ccRCC (log2 |FC| > 2 and 
p-value <0.05 were considered statistically signifi-
cant). We collected the immune-related gene (IRGs) 
list from the Immunology Database and Analysis 
Portal (ImmPort) database (https://immport.niaid.
nih.gov/home, Supplementary Table SI) and mixed 
the immune-related genes with DEGs. The overlap 
of DEGs and immune-related genes was considered 
as differentially expressed immune-related genes 
(DEIGs). Results were visualized using volcano plots 
and Venn diagrams. Gene ontology (GO) [13] and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[14] analyses were executed using the “Cluster 
Profiler” R package to determine the biological pro-
cesses and enrichment pathways of DEIGs. KEGG is 
a database that integrates genomic, chemical and 
systemic functional information. GO databases are 
used to describe cellular components (CC), biolog-
ical processes (BP), and molecular functions (MF). 
The adjusted p-value less than 0.05 was consid-
ered statistically significant.

Development of immune risk scoring 
signature (IRSS) for prognosis and 
validation of IRSS

Univariate Cox regression analysis was per-
formed on DEIGs to identify important immune 
genes associated with prognosis. Next, indepen-
dent prognostic genes were obtained through 
least absolute shrinkage and selection operator 
(LASSO) regression analysis, and multivariate Cox 
regression analysis was used to obtain regression 
coefficients for the independent prognostic genes. 
Ultimately, 7 prognostic genes – KLRC2, PGLYRP2, 
AGER, CHGA, AVPR1B, IL20RB, and LAT – were 
selected. The immune risk score signature (IRSS) 
was established based on the 7 prognostic genes, 
with the formula as follows: IRSS = EXPgene1 × 
β1 + EXPgene2 × β2 + … + EXPgenen × βn (EXP: 
gene expression level, β: regression coefficient). 
Patients were divided into a high-risk group and 
a low-risk group with the median risk score deter-
mined as the cut-off value. The Kaplan-Meier (KM) 
curves were used to compare the overall survival 
(OS) of the two groups. The predictive value of the 
model was analyzed using the ROC curve. “Sur-
vival” packages were used to plot KM curves. ROC 
curves were drawn by the “survival ROC” package. 
To assess the universality of the IRSS, 538 tumor 
samples were randomly divided into two groups 
of equal size for internal validation. Due to lost 
clinical information of some samples, the final 
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sample size of test group 1 is 257, and the size of 
test group 2 is 236.

Immune risk score signature combined 
with clinicopathological information

Univariate and multivariate Cox regression anal-
yses combined with clinicopathological information 
were used to assess independent prognostic predic-
tors for ccRCC patients. Furthermore, to comprehen-
sively assess patient survival, independent prog-
nostic predictors such as risk score, age, stage and 
grade were combined to construct a  nomogram. 
The clinical application value of the nomogram was 
evaluated by decision curve analysis (DCA). 

Construction of transcription factor  
(TF)-microRNA(miRNA)-mRNA regulatory 
network

MiRNA and TF that may regulate target genes 
were detected using the miRNAs-target interac-
tion databases TargetScan (a web server that pre-
dicts biological targets of miRNAs) [15], TransmiR 
(a  database for TF-miRNA regulations) [16] and 
miRTarBase (a  database of experimentally vali-
dated miRNA targets) [17]. The TF-miRNA-mRNA 
network was constructed using Cytoscape (a soft-
ware platform for visualizing complex networks) 
[18] to determine the participation of the 7 genes, 
miRNAs and TFs in the network. By calculating the 
“node degree” of the interaction, the target genes, 
miRNAs and TFs were found to have the highest 
participation in the network.

Immunohistochemistry and quantitative 
real-time PCR (qRT-PCR)

Immunohistochemical results were obtained 
from the Human Protein Atlas (HPA) database [19] 
(htts://www.proteinatasorgL, clinical information of 
patients and the antibodies used are shown in Sup-
plementary Tables SII and SIII). We selected 24 tis-
sue samples of ccRCC and paired adjacent normal 
tissues (clinical information of patients is shown 
in Supplementary Table SIV) from the Department 
of Urology, the Second Affiliated Hospital of Fujian 
Medical University (2019.01.01–2020.01.01). The 
total RNA of ccRCC patients’ tissue samples was 
isolated by Tissue RNA Purification Kit Plus (RN-
002plus, ESscience Biotech, Shanghai, China). The 
total RNA quantity was measured by a NanoDrop 
spectrophotometer (ESscience Biotech, Shanghai, 
China). A Reverse Transcription Kit (CWBIO, Jiangsu, 
China) and UltraSYBR Mixture SYBR Green (CWBIO) 
were used to synthesize cDNA and for qRT-PCR de-
tection. Finally, qRT-PCR reactions were performed 
using the ABI7500 Fluorescent Quantitative PCR 
Instrument (CWBIO). The sequences of the AGER 
primers used were as follows: 5′-CACCTTCTCCTG-

TAGCTTCAGC-3′ (forward), 5′-AGGAGCTACTGCTC-
CACCTTCT-3′ (reverse). The sequences of the LAT 
primers used were as follows: 5′-ATCCTGGAGCG-
GCTAAGACTGA-3′ (forward), 5′-GTTCAGCTCCTG-
CAGATTCTCG-3′ (reverse).

For GAPDH (internal control), the primers were 
as follows: 5′-GGAGTCAACGGATTTGGT-3′ (for-
ward), 5′-GTGATGGGATTTCCATTGAT-3′ (reverse).

The relative expression level in this study was 
calculated with the 2–DDCT formula.

Analysis of immune infiltration 

Based on the “CIBERSORT.R” package, the re-
lationship between immune infiltration and the 
IRSS model was explored (p < 0.05). We used the 
transcriptome data from the immune infiltration 
file to obtain the infiltration volume of 22 immune 
cells in ccRCC. The difference in immune cell con-
tent between the distinct risk groups was also an-
alyzed. In addition, the immune cells with signifi-
cant differences in expression of the two groups 
were determined (p < 0.05). 

Ethics statement

This study was approved by the Research Ethics 
Committee of Fujian Provincial Hospital and com-
plied with the Helsinki Declaration (No. 2022469). 

Statistical analysis

The statistical analysis was performed in the R 
language software (version 4.1.2), through which 
the volcano plots, Venn diagrams, forest plots, KM 
curves and ROC curve visualization were obtained. 
The univariate and multivariate Cox parameter 
range of prognostic mRNA is p < 0.05. The LASSO  
parameter of the prognostic mRNA is p < 0.05. 
Univariate and multivariate Cox regression analy-
ses were used to analyze the relationship between 
clinical information and prognosis, and the entry 
criterion is p < 0.05. 

Results

Analysis of differentially expressed immune 
genes (DEIGs)

By comparing 538 ccRCC samples with 72 nor-
mal samples, we performed mRNA differential 
expression analysis. 6,498 DEGs were extracted 
after the analysis (Figure 1 A) and 427 DEIGs were 
obtained (Figures 1 B, C), including 77 down-regu-
lated DEIGs and 350 up-regulated DEIGs.

Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes 
(KEGG) Analyses

The functional enrichment analysis showed 
that most of the 427 DEIGs in BP, CC and MF were 
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Figure 1. Screening for differentially expressed immune genes (DEIGs) and establishing the IRSS signature.  
A – Volcano plot of 6498 differentially expressed genes (DEGs). Selection criteria: log2 |FC| > 2, p < 0.05. B – Volca-
no plot of 427 differentially expressed immune genes (DEIGs). C – Venn diagram of the intersection of DEGs and 
immune genes. D – Biological process of DEIGs. E – Cellular component of DEIGs. F – Molecular function of DEIGs
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Figure 1. Cont. G – KEGG pathway enrichment results of DEIGs. H – Univariate Cox regression analysis identified 
63 immune genes significantly associated with prognosis (p < 0.05)
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Table I. Multivariate CIX regression analysis

Gene Coefficient HR HR 95L Low HR 95H High P-value

KLRC2 0.343855309 1.410 1.033 1.925 0.030331184

PGLYRP2 0.408092916 1.504 1.186 1.907 0.000750895

AGER 2.92913597 18.711 4.712 74.304 3.14E-05

CHGA 0.331782282 1.393 1.108 1.753 0.004603584

AVPR1B –0.593999191 0.552 0.434 0.703 1.38E-06

IL20RB 1.170570329 3.224 2.155 4.822 1.21E-08

LAT –0.983455296 0.374 0.197 0.711 0.002682769

Figure 1. Cont. I – Univariate Cox regression analysis identified 63 immune genes significantly associated with 
prognosis (p < 0.05). J – Ten-fold cross-validation for tuning parameter selection in the LASSO model (p < 0.05); the 
model fitted best with the penalty coefficient of 7. K – Multivariate Cox regression analyses revealed 7 genes as 
prognostic predictors (p < 0.05), namely KLRC2, PGLYRP2, AGER, CHGA, AVPR1B, IL20RB, LAT
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enriched in immune-related pathways, including 
adaptive immune response, T cell receptor com-
plex, and antigen binding, which are the most 
common enrichment pathways (Figures 1 D–F). 
KEGG analysis revealed (Figure 1 G) that these 
DEIGs were significantly involved in cytokine-cy-
tokine receptor interactions, natural killer cell-me-
diated cytotoxicity and viral protein interactions 
with cytokines and cytokine receptors.

Construction and validation of IRSS

Univariate Cox regression analysis identified 63 
immune genes significantly associated with prog-
nosis (Figures 1 H, I). In the following LASSO re-
gression analysis (Figure 1 J), the model fitted best 
into the penalty coefficient of 7. In multivariate 
Cox regression analysis (Figure 1 K), the 7 immune 
genes (KLRC2, PGLYRP2, AGER, CHGA, AVPR1B, 
IL20RB, LAT) were determined as prognostic pre-
dictors with the corresponding regression coeffi-
cient β1β7 of 0.344, 0.408, 2.929, 0.332, −0.594, 
1.171 and −0.983, respectively. According to the 
above-listed formula, the IRSS was finally estab-
lished: IRSS = EXP KLRC2 × 0.344 + EXP PGLYRP2 
× 0.408 + EXP AGER × 2.929 + EXP CHGA × 0.332 
+EXP AVPR1B × −0.594 + EXP IL20RB × 1.171 + EXP 
LAT × −0.983.

According to the formula, the risk scores of 
ccRCC patients were calculated. The samples 
were then divided into a  high-risk group (245 
samples) and a  low-risk group (246 samples) 
based on the risk scores. As the risk score in-
creases, patients’ life span decreases (Figure 2 
A1). The heat map in Figure 2 A1 also shows the 
differential expression of the 7 DEIGs in the low- 
and high-risk groups.

The KM curves indicated that there was a sig-
nificant difference in overall survival (OS) between 
the low-risk group and the high-risk group (p < 
0.05), and the prognosis of the high-risk group 
was worse than that of the low-risk group (Figure 
2 A2). The area under the curve (AUC) of the ROC 
curve was 0.802 (Figure 2 A3), which showed that 
the model has excellent accuracy and realism. The 
time-dependent AUC values of 1 year, 2 years,  
3 years and 5 years were 0.803, 0.745, 0.745, and 
0.774, respectively (Figure 2 A4), showing that 
the model also has good predictive power for pa-
tients’ long-term survival. These results indicated 
that the model is robust and accurate in predict-
ing patient prognosis.

The test groups (test group 1, test group 2) were 
evaluated with the same formula to determine the 
reliability of the clinical prognostic model. Patients 
were divided into a high-risk group and a low-risk 
group according to the risk scores of the model. 
Increased risk score was associated with higher 
mortality (Figures 2 B1, C1), which meant that the 

OS of the high-risk group was lower than that of 
the low-risk group (Figures 2 B2, C2). Furthermore, 
the accuracy of the clinical prognostic model was 
evaluated. The AUC of the ROC curves were 0.719 
and 0.753 respectively (Figures 2 B3, C3) and the 
time-dependent AUC values were 0.721, 0.632, 
0.680, 0.701 and 0.763, 0.748, 0.717 and 0.812, 
respectively (Figures 2 B4, C4). The results showed 
that this clinical prognostic model has great pre-
dictive potential, which can accurately predict the 
prognosis of ccRCC patients.

Correlations of clinical traits  
of the prognostic model

The univariate and multivariate Cox regression 
analyses showed that risk score, age, stage, and 
grade are independent prognostic factors (Figures 
3 A, B). In addition, the association of risk scores 
with clinical demographic characteristics (age, 
sex, stage, and TNM stage) was analyzed (Figure 
3 C), and the results showed that the risk scores 
were significantly correlated with tumor grade 
and stage (p < 0.05). 

The model that incorporated the above inde-
pendent predictors was developed and present-
ed as a nomogram (Figure 3 D). The DCA results 
showed that the prognostic prediction ability of 
the nomogram in ccRCC was better than that of 
a single independent prognostic factor and proved 
that the nomogram combined with various clinical 
features has a better clinical application value (p < 
0.001) (Figure 3 G). Based on clinical features and 
IRSS, predictive nomograms of the test groups 
were established to predict the prognostic sur-
vival probability of patients at 1, 2, 3 and 5 years 
(Figures 3 E, F). The DCA curves of the test groups 
suggested that there was a clear benefit from in-
tervention following the results of the nomogram 
(p < 0.001) (Figures 3 H, I).

TF-miRNA-mRNA regulatory network

We constructed the TF-miRNA-mRNA regulato-
ry network based on the prognostic model of the 
7 DEIGs. The network was composed of 35 nodes 
(proteins) and 43 edges (interactions). Nodes that 
have the most interactions were considered hub 
genes. Among the 35 nodes, 2 were identified as 
hub genes (LAT and AGER) according to the crite-
ria of node degree > 10 (Supplementary Table SV). 
Therefore, LAT and AGER are determined to be the 
hub genes that interact extensively with miRNAs 
(Figure 4 A). MiR-584-5p was correlated with both 
hub genes and the correlation coefficient was  
> 0.6 (Supplementary Table SVI). E2F1 (degree = 4) 
is an important transcription factor in regulatory 
networks and interacts with hub genes AGER and 
LAT (Figure 4 B). 
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Figure 3. Independent prognostic analysis of clinical information and establishment and evaluation of nomograms 
for training group, testing group 1 and group 2. A, B – Univariate Cox regression analysis and multivariate Cox 
regression analysis of clinical information. Risk score, age, stage, and grade were independent prognostic factors  
(p < 0.05). C – Correlation between risk score and patients’ clinical and demographic characteristics
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Figure 3. Cont. C – Correlation between risk score and patients’ clinical and demographic characteristics. D–F - 2-, 
3-, and 5-year nomogram for predicting OS of ccRCC patients. There are four components in this nomogram: age, 
grade, stage, risk score
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Figure 3. Cont. E–F - 2-, 3-, and 5-year nomogram for predicting OS of ccRCC patients. There are four components 
in this nomogram: age, grade, stage, risk score
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Figure 3. Cont. G–H – Decision curve analysis (DCA) for evaluation of the net benefits at 1, 2, 3, and 5 years. The 
x-axis represents the percentage of the threshold probability, and the y-axis represents the net benefits. Net bene-
fits: when the threshold probability is exceeded, the use of column line plots to predict survival adds more benefit 
than all other prediction scenarios
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Figure 4. Interaction network of seven mRNA and reverse-predict miRNA and TF. A  – Construct miRNA-mRNA 
regulatory network. Red circles represent highly expressed mRNA, green circles represent lowly expressed mRNA, 
and blue circles represent miRNA. B – Construct TF-miRNA-mRNA regulatory network. Red cubes represent highly 
expressed mRNAs, green cubes represent lowly expressed mRNAs, blue circles represent miRNAs, and purple trian-
gle represents transcription factor (TF)

A BmiRNA-mRNA regulatory network TF-miRNA-mRNA regulatory network
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Immunohistochemistry (IHC) and qRT-PCR 
results of the hub genes

The results of immunohistochemistry showed 
that AGER was highly expressed and LAT was lowly 
expressed in ccRCC (Figure 5 A). This is consistent 
with the results we obtained from the TCGA data-
base. The qRT-PCR results showed that the expres-
sion of AGER in ccRCC samples was significantly 
higher and the expression of LAT was significantly 
lower (p < 0.01) compared with non-cancerous 
samples (Figure 5 B, detailed results are provid-
ed in Supplementary Table SVII). This means that 
the dysregulated expression of AGER and LAT may 
play a role in ccRCC development.

Immune infiltration characteristics of the 
prognostic model

To determine whether the immune prognostic 
model accurately reflects the state of the tumor 
immune microenvironment, we analyzed the rela-
tionship between the prognostic model and im-
mune cell infiltration. The proportions of follicular 
helper T cells (p < 0.001), CD8+ T cells (p < 0.001), 
regulatory T cells (Tregs) (p < 0.05), and CD4 
memory activated T cells (p < 0.01) in the high-
risk group were significantly higher than those in 

the low-risk group. However, the proportions of 
monocytes (p < 0.05), activated resting mast cells  
(p < 0.001), M0 macrophages (p < 0.001), M2 mac-
rophages (p < 0.001), neutrophils (p < 0.01), and 
activated dendritic cells (p = 0.01) in the high-risk 
group were significantly lower than those in the 
low-risk group (Figure 6 A). The results showed 
that the risk scores were significantly associated 
with T-cell infiltration, which was associated with 
poor prognostic factors (Figure 6 B). AGER was re-
lated to follicular helper T cells (cor = 0.22) and 
CD8 T cells (cor = 0.13). LAT was related to fol-
licular helper T cells (cor = 0.33), CD8 T cells (cor 
= 0.25) and Tregs (cor = 0.12). IL20RB was relat-
ed to Tregs (cor = 0.39), CD4 memory activated  
T cells (cor = 0.19) and follicular helper T cells (cor 
= 0.18). PGLYRP2 was related to Tregs (cor = 0.19),  
T cells CD8 (cor = 0.10) and follicular helper T cells 
(cor = 0.13). KLRC2 was related to CD8 T cells (cor 
= 0.39), follicular helper T cells (cor = 0.26) and 
Tregs (cor = 0.11). AVPR1B was related to resting 
dendritic cells, and CHGA was related to plasma 
cells (Figure 6 C–I).

Discussion

Several studies have constructed prognostic 
models for kidney cancer [20]; however, we at-

	 AGER	 LAT
 Normal        Tumor

Figure 5. IHC and qRT-PCR results. A – IHC showed the AGER and LAT protein levels in ccRCC and adjacent nontu-
mor tissues based on HPA database. B – AGER and LAT were analyzed by qRT-PCR assays in 24 ccRCC tissues and 
adjacent nontumor specimens from 24 patients
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Figure 6. Relationship between immune prognosis model and immune cell infiltration. A – Differences in immune 
cell infiltration between high-risk and low-risk groups in prognostic models. B – T cell infiltration is highly cor-
related with overall survival of ccRCC patients. C – Relationship between seven immune-related genes (IRGs) and 
immune cell infiltration
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Figure 6. Cont. D–G Relationship between seven immune-related genes (IRGs) and immune cell infiltration
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Figure 6. Cont. H–I Relationship between seven immune-related genes (IRGs) and immune cell infiltration

tempted to develop a  more accurate prognostic 
model through using univariate and multivariate 
Cox regression analyses and LASSO analysis. Dif-
ferent immune-related genes were obtained using 
various screening criteria, and the overlap of the 
two genes (AGER and LAT) [21] again confirmed 
the reliability of our established model. Addition-
ally, the prognostic model developed in this work 
appeared to be more accurate than previous re-
search based on the AUC value of the ROC curves. 
Most of the models in previous literature were not 
validated, but the model described in this paper 
showed significant scientific validity after rigorous 
internal validation. As the independent prognos-
tic analysis suggested that the model remained 
a strong independent prognostic predictor, it can 
be used as an independent prognostic indicator 
in the treatment of patients with ccRCC. The no-
mogram was plotted on the basis of the model 
to construct a new prognostic scoring system for 
renal cancer. It should be emphasized that the 
DCA decision curves showed that the predictive 
ability of the nomogram was better than that of 
a single independent prognostic factor, and could 
more sensitively predict the prognosis of patients 
with ccRCC. 

The prognostic risk model we constructed con-
tains 7 genes. Among these genes, AGER and LAT 
have been reported to act as immune prognostic 
factors for renal cancer [21]. This is similar to our 
findings. AVPR1B has rarely been studied in can-
cer and has only been found to be possibly associ-

ated with the development of Cushing’s syndrome 
[22]. Our study suggests that AVPR1B is associ-
ated with a good prognosis of kidney cancer and 
its high expression is associated with low grades 
and early stages of tumors, suggesting that it may 
play an anti-tumor role in kidney cancer and is 
a reliable biomarker. High expression of CHGA is 
negatively correlated with OS in prostate cancer 
[23] and is an important regulator of tumor an-
giogenesis and tumor cell migration [24]. IL20RB 
has been reported as a prognosis-related immune 
gene for pancreatic cancer [25], lung cancer [26] 
and colorectal cancer [27]; KLRC2 has also been 
predicted to play a role among many immune cell 
subpopulations [28, 29]. The current study also 
demonstrates that IL20RB and KLRC2 affect the 
infiltration of immune T-cell subsets in renal can-
cer, which is expected to further explain the mech-
anism of immune action of IL20RB and KLRC2 in 
renal cancer. PGLYRP2 is thought to play an anti- 
tumor role in immune surveillance and immuno-
therapy of liver cancer [30]. However, our research 
shows that it may be a risk factor for ccRCC prog-
nosis. These two contrasting mechanisms need to 
be further investigated.

To further explore the mechanism of this model 
in renal cancer, we constructed a TF-miRNA-mRNA 
regulatory network. Based on the node degrees, 
AGER and LAT are considered hub genes in the 
network, which suggests that they may play a key 
regulatory role in ccRCC. We further verified the 
differential expression of the key genes by IHC 
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and RT-PCR, and the results showed high expres-
sion of AGER and low expression of LAT in ccRCC. 
This is consistent with our results from the TCGA 
database analysis, which indicates the reliability 
of our study and shows the potential of AGER and 
LAT as immune markers for ccRCC. The results of 
multiple verification by TargetScan, TransmiR and 
miRTarBase showed that AGER and LAT may be 
the target genes of miR-584-5p. MiR-584-5p is 
a tumor suppressor that can limit the malignant 
progression of lung [31] and gastric cancers [32]. 
Our study also revealed that miR-584-5p improved 
the prognosis of patients with ccRCC (Supplemen-
tary Figure S1), suggesting that it may be able to 
act as silencers as immunotherapeutic targets for 
renal cancer. Thus, AGER and LAT may play an im-
portant role with miR-584-5p as a mediator, which 
deserves further exploration. In addition, among 
TFs, the oncogenic transcript E2F1 has the highest 
degree of interaction with genes such as AGER, 
CHGA, LAT and AVPR1B. In previous research the 
association of significantly up-regulated E2F1 ex-
pression in various cancers with poor prognoses 
was reported several times [33], which is consis-
tent with our results (Supplementary Figures S2 A, 
B). This suggests that E2F1 is expected to become 
an immune checkpoint for ccRCC treatment.

The results of GO and KEGG enrichment analy-
ses showed that DEIGs were significantly enriched 
in immune and tumor-related signaling pathways. 
This is consistent with previous studies which 
showed that inducing immune inflammation is 
one of the important mechanisms of tumorigen-
esis [34]. At the same time, it also suggested that 
the prognostic model is closely related to immu-
nity. Therefore, we further performed an immune 
infiltration analysis, whose results showed that 
T-cell infiltration (CD8 T cells, CD4 memory acti-
vated T cells, follicular helper T cells, and Tregs) 
was diagnostic and predictive of ccRCC. Previous 
studies have reported that Tfr and Tregs play an 
important role in tumor cells evading immune de-
tection and establishing immune tolerance [35, 
36]. Our results further demonstrate that T-cell in-
filtration may be an unfavorable prognostic factor 
for renal cancer. It may be an immune factor influ-
encing the prognosis of ccRCC in this model. An 
in-depth immune infiltration analysis of the seven 
genes showed that AGER and LAT were related to 
follicular helper T cells, IL20RB and PGLYRP2 were 
related to Tregs, and KLRC2 was related to T cells 
CD8. Therefore, AGER, IL20RB, KLRC2, LAT, and 
PGLYRP2 all have obvious T-cell infiltration charac-
teristics, which may be the immune mechanism of 
their poor prognosis. 

To sum up, the innovation of this study is that 
a new and more accurate ccRCC prognostic scor-
ing system based on immune-related genes has 

been constructed. After full internal validation, 
excellent consistency evaluation results were ob-
tained. This study also attempts to explore the 
possible regulatory mechanisms of these possible 
targets for new immunotherapy molecules in the 
future and preliminarily verify them through mo-
lecular experiments. The results of our study could 
help bring new ideas to the new immunotherapy 
for ccRCC.

In conclusion, in this study, we established 
a  prognostic model with good predictability and 
robustness. The chosen immune genes may be-
come immune biomarkers for ccRCC. The immune 
characterization of the model suggests that T-cell 
infiltration may be highly correlated with the clin-
ical prognosis of ccRCC. Our results may help re-
veal the clinical and biological implications of the 
ccRCC immune microenvironment.

Although this study established an immune-re-
lated prognostic model based on TCGA-KIRC 
mRNA expression profiles, there are still some 
limitations. First, differences in race, gender, age, 
and tumor stage of patients with ccRCC can lead 
to heterogeneity. Second, although our results 
were validated on the test set of the TCGA data-
set, these results were not validated by abundant 
experiments in vitro, which implies that further 
experiments on a  larger number of samples and 
clinical patients are needed.
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