Alternate-day fat diet and exenatide modulate brain leptin JAK2/STAT3/SOCS3 pathway in fat diet-induced obesity and insulin resistance mouse model

Keywords
ADF, exenatide, hyperinsulinemia, HFD, Leptin

Abstract
Introduction
Introduction: Obesity is one of the most burdensome health problems closely linked to leptin resistance. The study examined whether alternate-day high-fat diet (ADF)- and / or GLP-1 agonist (exenatide) modulate brain leptin resistance caused by high-fat diet (HFD).

Material and methods
Sixty adult male mice were divided into 6 groups: (i) normal palatable diet (NPD), (ii) exenatide control (NPD received exenatide) (iii) HFD, (iv) ADF treated, (v) exenatide treated, (vi) ADF and exenatide treated. All animal groups were fed on HFD for 8 weeks, before they received treatment (ADF and/or Exenatide) for 8 additional weeks. Body weight was assessed at the start and at the end of the experiment, lipid profile, brain leptin and its receptor expression with the leptin-sensitive pathway, JAK2/STAT3/SOCS3/PTP1B, fasting blood glucose (FBG), serum insulin, Liver metabolic handling via its regulators IRS1/PI3K/GLUT4 for hyperinsulinemia/obesity-induced PDK3/NAFLD2 modification, and liver enzymes were determined at the end of the experiment.

Results
ADF and exenatide reduced body weight and FBG in HFD-obese mice (p < 0.05). The combined ADF and exenatide regimen enhanced the brain anorexigenic leptin/JAK2/STAT3 and attenuated the SOCS3/PTP1B pathway (p < 0.05). The ADF/exenatide anorexigenic brain effect also modulated liver glucose via IRS1/PI3K/GLUT4 expression (p < 0.05), attenuating NAFLD2 and PDK3 expression (p < 0.05). Liver enzymes and the histopathological profile confirmed the improvement.

Conclusions
In HFD caloric consumption, a combination of ADF and GLP-1 agonist enhances the brain leptin anorexigenic effect with the improvement of the metabolic sequel as hyperinsulinemia, hyperlipidemia and liver steatosis.
Title

Alternate-day fat diet and exenatide modulate brain leptin JAK2/STAT3/SOCS3 pathway in fat diet-induced obesity and insulin resistance mouse model

Mona K. Tawfik, Dahlia I. Badran*, Mohammed M. Keshawy, Samy Makary, Mohamed Abdo

a Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

b Department of Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

c Department of Biochemistry, Faculty of Medicine, Badr University, Cairo, Egypt.

d Department of Internal Medicine; Nephrology division, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

e Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

Correspondent authors

* Correspondence should be addressed to:

Dahlia I. Badran

Department of Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
Department of Biochemistry, Faculty of Medicine, Badr University, Cairo, Egypt.

E-mail address: dalia_badran@med.suez.edu.eg

Cell Phone: 002-01222424174

No of figures: 9
Abstract

Introduction: Obesity is one of the most burdensome health problems closely linked to leptin resistance. The study examined whether alternate-day high-fat diet (ADF)—and/or GLP-1 agonist (exenatide)—modulate brain leptin resistance caused by high-fat diet (HFD).

Materials and Methods: Sixty adult male mice were divided into six groups: (i) normal palatable diet (NPD), (ii) exenatide control (NPD received exenatide) (iii) HFD, (iv) ADF treated, (v) exenatide treated, (vi) ADF and exenatide treated. All animal groups were fed on HFD for 8 weeks, before they received treatment (ADF and/or Exenatide) for 8 additional weeks. Body weight was assessed at the start and at the end of the experiment, lipid profile, brain leptin and its receptor expression with the leptin-sensitive pathway, JAK2/STAT3/SOCS3/PTP1B, fasting blood glucose (FBG), serum insulin, Liver metabolic handling via its regulators IRS1/PI3K/GLUT4 for hyperinsulinemia/obesity-induced PDK3/NAFLD2 modification, and liver enzymes were determined at the end of the experiment.

Results: ADF and exenatide reduced body weight and FBG in HFD-obese mice (p < 0.05). The combined ADF and exenatide regimen enhanced the brain anorexic leptin/JAK2/STAT3 and attenuated the SOCS3/PTP1B pathway (p < 0.05). The ADF/exenatide anorexigenic brain effect also modulated liver glucose via IRS1/PI3K/GLUT4 expression (p < 0.05), attenuating NAFLD2 and PDK3 expression (p < 0.05). Liver enzymes and the histopathological profile confirmed the improvement.

Conclusions: In HFD caloric consumption, a combination of ADF and GLP-1 agonist enhances the brain leptin anorexigenic effect with the improvement of the metabolic sequel as hyperinsulinemia, hyperlipidemia and liver steatosis.

Keywords: Leptin, hyperinsulinemia, ADF, HFD, exenatide
1. Introduction

Obesity is a leading health problem worldwide, that is associated with leptin resistance, insulin resistance, and hyperlipidemia[1].

It had been reported that the HFD is associated with metabolic disorders (weight gain, insulin and leptin resistance), disturbed serum profiles (hyperglycemia, hyperinsulinemia, hypercholesterolemia, hypertriglyceridemia) and abnormal liver aminotransferases activity as well as histopathological changes (hepatic steatosis and pericentral fibrosis) similar to the humans with non-alcoholic susceptibility gene NAFLD phenotype [2,3].

The administration of high-fat diet for 24 hours could results in change in glucose metabolism, triggering a reduced level of circulating leptin and thus contribute to a high-fat diet in promoting weight gain [4].

Leptin resistance is defined as decreased leptin receptor sensitivity with a consequent reduction in leptin appetite suppression and subsequent obesity [1].

The binding of leptin to its receptor in the hypothalamus enhances the Janus kinase JAK2/signal transducer and activator of the transcription (JAK2/STAT3, anorectic signal) signaling pathway inducing a satiety state, through activating the cytokine signaling 3 suppression(SOCS3) that ends leptin signaling effect on JAK2/STAT3 by terminating the JAK2 activity through ubiquitination [5]. Therefore, abnormal food intake is a state of disturbance of the suppressor SOCS3 on the leptin-JAK2/STAT3 signaling [6,7].

Protein tyrosine phosphatase 1B (PTP1B) is another negative regulator of leptin via dephosphorylation of the upstream activator molecules, JAK2 and STAT3, representing the direct substrate of PTP1B [8].

Obesity and insulin resistance are targeted by glucagon-like peptide-1 (GLP-1) receptor agonists (Exenatide; exendin-4) the common standard therapy used for hyperglycemia [9]. The liver is one of the primary target organs for GLP-1 agonists to exert its plasma-lowering effect in hyperglycemia via insulin-regulated glucose transporter GLUT4 [10]. The GLUT4 regulates body adiposity through crosstalk genes between leptin and insulin signaling promoting GLUT4 translocation and glucose transport in an insulin receptor substrate-1 (IRS-1)/ Phosphatidylinositol 3-kinase (PI3K) dependent manner[11].
Up to our knowledge, no previous studies had been investigated the effect of ADF and/or exenatide on brain leptin signaling pathway and leptin resistance.

Pyruvate dehydrogenase kinase isoenzyme 3 (PDK3) which is a part of pyruvate dehydrogenase complex (PDC) and the non-alcoholic susceptibility 2 gene (NAFLD2) are two novel adipogenesis regulators that have an apparent role in the pathogenesis of obesity and could contribute to liver steatosis [12,13]. However, no study reported the effect of ADF and/or exenatide on their expression in HFD-induced liver steatosis.

The objective of the present study is to investigate effects of ADF and/or exenatide, administered once daily for 8 weeks to mice with HFD–induced obesity and insulin resistance, on brain leptin resistance, insulin sensitivity and hepatic steatosis.

2. Materials and Methods

2.1. Experimental Animals

Sixty male Swiss mice (22±4 g) were purchased from Vacsera (Egypt). The Research Ethics Committee approved the protocol of the present study at the Faculty of Medicine, Suez Canal University with approval number: 4264 according to the National Institute of Health Guide (National Institute of Health Publications No. 80-23, Revised 1978) for the care and use of Laboratory Animals for the experimental procedure.

2.2. Drugs and chemicals

Exenatide injection [BYDUREON vials (2mg/2ml solution) AstraZeneca Pharmaceuticals, Wilmington, DE, USA] was diluted with sterile saline[14].

2.3. Dietary protocols

HFD was used to induce obesity and insulin resistance[2]. Animals were fed on HFD for 8 weeks (Fig. 1B supplementary). The HFD composition was as follows (g/kg): Powdered NPD 365, Lard 310, Casein 250, Cholesterol 10, Vitamins, and minerals mix 60 as were described [15–17]. While mice subjected to ADF: received NPD alternating with HFD, every other day, modified from smith et al.[18].

2.4. Experimental design

The mice (n = 60) were randomly divided into 6 groups (n: 10/group) and assigned to as follows: Group (i): mice fed with NPD. Group (ii) exenatide control (NPD mice received exenatide, 10 μg/kg.
Group (iii) HFD control, mice fed HFD [18]. Group (iv) ADF treated, mice fed ADF regime: (NPD/ADF) every other day. On day 1 they received as much HFD food as desired during the entire 24-h period. On day 2 they received NPD food and so on.[18]. Group (v) exenatide treated, HFD mice received exenatide (HFD+ exenatide, 10 μg/kg, s.c.) [14]. Group (vi) ADF and exenatide treated, HFD mice fed on ADF regimen and received exenatide (ADF+ exenatide, 10 μg/kg, s.c.). All animal groups were fed on HFD for 8 weeks, before they received the corresponding treatment (ADF and/or Exenatide) for 8 additional weeks. For exenatide groups, drug administration was every 24 hours. Body weight was measured at the start and at the end of the study.

2.6. Serum levels of sugar and insulin resistance

FBG was tested using (Bio diagnostics, Cairo, Egypt) by the automated analyzer (Cobas 6000, Cobas c501, Roche).

Serum fasting insulin level was determined by ELISA mouse kit (catalog #90080; Crystal Chem, Downers Grove, IL). Insulin resistance was determined using the Homeostatic Model Assessment of Insulin Resistance HOMA-IR index which was calculated according to the formula: fasting insulin (microU/L) x fasting glucose (nmol/L)/22.5 [19].

2.7. Blood and tissue sample collection

At the end of the study, sera were collected from anesthetized mice (80 mg/kg ketamine HCl, i.p.) and stored at -80 °C till further assayed. Serum samples were tested for liver enzymes activities alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and lipid profile were measured by spectrophotometer. Then, brain and liver biopsies were taken, one part from which was fixed in neutral formalin 10 % (v/v) and then paraffin-embedded for further histopathology and immunohistochemistry. Other parts of the brain and liver biopsies were processed for Real-Time Polymerase Chain Reaction qRT-PCR, western blotting, and ELISA assays [20].

2.8. Assessment of brain leptin level

Brain tissue was homogenized and centrifuged using the supernatant to assess leptin content by ELISA kit (Elabscience Biotechnology, USA, Catalog #: MBS012834).

2.9. Estimation of brain leptin receptor and liver PDK3, GLUT4 and NAFLD2 genes expression by Real-Time Polymerase Chain Reaction (qRT-PCR)
Expression profiling of brain leptin receptor (F: 5’- AGA ATT GTT CCT GGG CAC AAG -3’), and liver PDK3 (F: 5’-TGGAGATGGTGGCCCTAATG-3’), GLUT4 (F: 5’-GAGCCTGAATGCTATGGAG-3’, R: 5’GAGAGAGAGCGTCCAATGTC-3’), and NAFLD2 (F: 5’-GCCAGTTACTGTCTCTCTTG-3’, R: 5’-CCCTGGGAGCTATGTTTAT-3’) genes were carried out using qRT-PCR following the guidelines of the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE). All reactions were run using SYBR Green Master Mix (Applied Biosystems) under the following thermal cycling parameters [95°C for 10 min (1 cycle), 95°C for 15 s, and 60°C for 1 min (40 cycles)]. gene-specific primer pairs were designed with Gene Runner Software (Hasting Software, Inc., Hasting, NY) from RNA sequences from the gene bank as described previously [16]. Relative expression of studied gene mRNA was calculated using the comparative 2−ΔΔCt method of analysis as described by Livak and Schmittgen [21]. All values were normalized to beta actin which was used as the control housekeeping gene and reported as fold change over background levels detected in the diseased groups. [16].

2.10 Estimation of brain JAK2, STAT3, SOCS3, PTP1 and liver IRS-1 and PI3K proteins expression by Western Blot technique

The brain JAK2, STAT3, SOCS3, PTP1B proteins, and the liver IRS-1 and PI3K proteins were assessed by Western Blot technique achieved by extraction from tissue homogenates using ice-cold radioimmunoprecipitation assay (RIPA), using V3 Western Workflow™ Complete System, Bio-Rad® Hercules, (CA, USA) as described previously [22]. Protein bands were visualized using enhanced chemiluminescence (Pierce ECL Western blotting substrate) and Alliance gel doc (Alliance 4.7 Gel doc, UK). UV Tec software (UK) was used to semi-quantify protein bands. All protein bands were normalized against β-actin protein. Band intensity was analyzed by ChemiDocTM imaging system with Image Lab TM software version 5.1 (Bio-Rad Laboratories Inc., Hercules, CA, USA).

2.11 Lipid profile and liver enzymes

The serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) were measured by the enzymatic colorimetric method [23,24], and the liver enzymes, Alanine aminotransferase (ALT) and aspartate aminotransferase (AST)
were measured by the kinetic method stated by Bergmeyer and Hørder 1980, (Bio diagnostics, Cairo, Egypt), with a Roche P800 automatic biochemical analyzer (Roche, U.S.A.) [25].

2.12 Liver histopathological examination

Livers were dissected and fixed in a 10% phosphate-buffered paraformaldehyde solution. Tissues were dehydrated and embedded in paraffin and sectioned at 4-μm, stained with H&E, and then examined blindly under a light microscope. The severity and extent of steatosis were observed for each case. The findings were classified into the following degrees: grade (0): No change; grade (1): mild steatosis, occasional ballooning degeneration in zone 3, mild lobular inflammation with or without mild portal inflammation; grade (2): moderate steatosis in 33-66% of lobules, ballooning degeneration in zone 3, moderate lobular inflammation with mild to moderate portal inflammation; grade (3): severe steatosis in>66% of lobules, marked ballooning especially in zone 3, scattered lobular acute and chronic inflammation with moderate portal inflammation and perivenular and pericellular fibrosis limited to zone 3 [26].

2.13. Statistical Analysis

Data was expressed as Mean ± SD. The difference between groups was analyzed using one-way analysis of variance (ANOVA) and Kruskal–Wallis test followed by Tukey's post-hoc test for multiple comparisons. The difference between group means was considered statistically significant when the p-value< 0.05. Data were analyzed using the statistical package for the social sciences (SPSS), version 17. (Chicago, Illinois, USA).

3. Results

There are no statistical differences between the NPD and exenatide control group

Effect of ADF and/or exenatide on body weight

Weight of mice was assessed at the start and at the end of the experiment (after eight weeks) HFD-fed animals’ body weights were significantly higher than NPD-fed animals. ADF combined exenatide group showed decreased weight when compared with exenatide treated group (Fig. 1A; p<0.05).

Effect of ADF and/or exenatide on lipid profile
Fig. 2 showed a significant increase in the following lipid profile parameters (TC, TG, LDL, and VLDL) but a decrease in HDL in HFD group compared to NPD. Treatment with ADF alone or the combined ADF + exenatide had reduced the elevated lipid profile parameters and normalized HDL compared to HFD group (P<0.05). The same significant effect on TC, HDL, and LDL levels had been exerted also by exenatide treatment (P<0.05).

Effect of ADF and/or exenatide on leptin resistance:

i. Effect of ADF and/or exenatide on brain leptin level and expression

Figure 3 shows that HFD was associated with increased brain leptin level (Fig. 3A) and mRNA expression of leptin receptors in comparison with NPD control group (p<0.05, Fig. 3B). Treatment with ADF and/or exenatide revealed effectiveness in reducing the leptin level and the expression of leptin receptors compared to the HFD control group. The combined ADF / exenatide treated group downregulated (P<0.05) the high levels of leptin and leptin receptor expression compared to exenatide-treated group.

ii. Effect of ADF and/or exenatide on brain leptin-sensitive cytokine receptor signaling: JAK2, STAT3, SOCS3 and PTP1B pathway

Figure 4 illustrates that the leptin-sensitive proteins JAK2 (Fig. 4A) and STAT3 (Fig. 4B) expression were decreased in HFD-fed mice in comparison to NPD-fed mice, with increased protein expression of the inhibitors SOCS3 (Fig. 4C) and PTP1B (Fig. 4D) (p<0.05). Treatment with ADF and exenatide revealed effectiveness in increasing JAK2/STAT3 and inhibiting SOCS3 and PTP1B proteins in comparison with HFD group and exenatide groups, it was more beneficial in upregulating the leptin-sensitive JAK2/STAT3 and attenuating the severity of the activated SOCS3 and PTP1B signaling pathway compared to exenatide treated group (p<0.05, Fig. 4) leading to decrease weight (Fig. 1)

Effect of ADF and/or exenatide on insulin resistance

i. Effect of ADF and/or exenatide on insulin resistance markers

Fig. 5 illustrates the elevation exerted by HFD compared to the control group, on FBG (5A), insulin (5B) and HOMA-IR levels (5C) to confirm the diabetic, insulin resistance model. A significant
decrease in FBG is observed after the administration of ADF and/or exenatide. However, ADF combined with exenatide showed a statistically significant reduction in FBG level compared to exenatide treated group. Treatment with ADF and/or GLP-1 agonist, exenatide, improved insulin level resistance and HOMA-IR (P<0.05) compared to HFD group.

ii. Effect of ADF and/or exenatide on insulin signaling pathway

Figures 6 and 7 A show the effect of ADF and exenatide on mice liver relative expression of insulin resistance genes, IRS-1/PI3K/GLUT4 in HFD-induced obesity and insulin resistance liver mice. Liver IRS-1 (Fig.6A), PI3K (Fig.6B), and GLUT4 (Fig.7A) expression were decreased in HFD-fed mice in comparison to NPD-fed mice. ADF and exenatide revealed effectiveness in increasing the expression of IRS-1/PI3K/GLUT4 signaling pathway in comparison with HFD group. Combined ADF and exenatide treatment was more beneficial in the activation of IRS-1/PI3K/GLUT4 genes signaling pathway compared to exenatide treated group (p<0.05), decreasing fat deposit.

Effect of ADF and/or exenatide on hepatic steatosis markers

i. Effect of ADF and/or exenatide on the hepatic adipogenicity genes

Figure 7B and C demonstrate the effect of ADF and exenatide on the relative expression of adipogenicity genes PDK3 and NAFLD2 expression in HFD-induced obesity and insulin resistance respectively indicating increased mRNA expression in HDF group in comparison, with NPD control, while the combined ADF and exenatide treated group downregulated the high levels of these genes compared to exenatide treated group (p < 0.05).

ii. Effect of ADF and/or exenatide on liver enzymes

Fig. 8 Shows a significant reduction in ALT levels noted in the combined ADF and exenatide group with no improvement noted in ADF group in comparison to exenatide treated group (p<0.05). No statistically significant difference is noted between the studied groups regarding levels of AST.

iii. Effect of ADF and/or exenatide on the hepatic histopathological picture
The histopathological examination (Fig 9.) of the hepatic tissues revealed that the control group feeding on NPD as well as the NPD+exenatide groups showed preservation of the normal arrangement of hepatocytes (Fig 9 I). However, hepatic tissues in HF-fed mice exhibited disturbed architecture (Fig 9-Ia), with an increase in the mean histopathological score and percent area (%) in comparison with the NPD group (p<0.05, Fig 9-II, III).

These deleterious effects associated with HFD were ameliorated by the administration of either ADF or exenatide (Fig 9-Ic) with a reduction in the mean histopathological score in comparison with HFD control group. However, treatment with combined ADF and exenatide was more beneficial in attenuating the severity of steatosis and improving the histopathological score and percent area compared with the exenatide-treated group (p<0.05, Fig 9-II, III).

4. Discussion

ADF and/or exenatide had significantly decreased the mice's body weight, similar to previous studies [27,28]. Exenatide inhibits gastric motility and induces satiety which goes toward weight reduction. However, the combined administration of ADF and exenatide revealed significant decreased weight when compared with the solitary administered ADF or exenatide groups. GLP-1 acts by decreasing hepatic free fatty acids uptake and reversing dyslipidemia [29]. Nevertheless, The combined regime did not differ from the solitary intervention of any of them on reducing lipid profile parameters.

In the present study, HFD causes hyperleptinemia and leptin resistance by downregulating JAK2/STAT3 signaling cascade and induces SOCS3 and PTP1B expression. Similarly, Bian et al., demonstrated that HFD promotes SOCS3 expression and the activation of STAT3 resistance by leptin in proopiomelanocortin neurons in rodents [26].

The current study demonstrated that the ADF/ exenatide augmented the anorexic nervous system leptin-JAK2/STAT3 signaling and inhibited their suppressor SOCS3. In addition, the combined ADF and exenatide treatment was associated with decreased CNS leptin level and receptor expression, improving leptin resistance due to disturbance in the JAK2/STAT3 sensitivity to the self-regulated proteins, SOCS3/PTP1B [30]. This could be attributed to the activated JAK2 autophosphorylation and consequently phosphorylation of tyrosine residues on the leptin receptor intracellular domain; allowing STAT proteins binding with their subsequent nuclear translocation where they act as transcription factors.
and results in regaining of leptin’s anorexigenic effects (suppression of appetite and induction of weight loss). Olofsson et al., declared that shifting from high-fat to low-fat diets decreases SOCS3 expression and ameliorate neuronal leptin resistance [29].

Regarding insulin sensitivity, it was obvious that treatment with ADF and/or GLP-1 agonist, exenatide, ameliorated the elevated FBG and improved insulin levels and HOMA-IR, showing a normalization of the insulin resistance picture developed by HFD. The combined ADF and exenatide treatment showed a further improvement in FBG levels. The combined regime did not differ from the solitary intervention of any of them on the insulin level or HOMA-IR. One plausible explanation is the need for longer period to normalize these metabolic disturbances.

Moreover, multiple signaling molecules (protein and kinases) are involved in the insulin signaling pathways that promote liver GLUT4 trafficking, one of these pathways is IRS1/PI3K-mediated insulin signaling pathway which becomes activated upon binding of insulin to its receptor triggering the translocation of GLUT4 from its storage vesicles to the plasma membrane [11]. The PI3K signaling cascade is strongly associated with insulin resistance incidence[30]. In the current study, Hyperleptinemia and hyperinsulinemia abolished Glut4 translocation through the downregulation of IRS1/PI3K /GLUT4 signaling pathway as showed in HFD mice group. In addition, the elevated levels of these inhibitors, SOCS3 and PTP1B, could aggravate insulin resistance by suppressing the expression of IRS-1 (the main substrate in insulin signaling pathway representing the main crosstalk point between insulin and leptin signaling pathways).

ADF combined with exenatide in the current study upregulates IRS1/PI3K /GLUT4 expression, this could improve the insulin receptor sensitivity which could be also attributed by the suppressing effect exerted by the combined treatment on SOCS3 and PTP1B expression.

In agreement with the present study, Kim et al. (2014) showed a decrease in the hepatic GLUT4 expression in knock-out ob/ob mice, and the GLUT4 expression was increased by exenatide treatment [31]. Previous studies stated that exenatide exerts its antidiabetic effect mainly through the augmentation of insulin-dependent glucose uptake through GLUT4 translocation on the plasma membrane[11,32]. Exenatide, via its insulin-dependent effect, can correct the worsened HFD diabetogenic impact on GLUT4 expression in liver cells [33].
Regarding its effect on liver steatosis, GLP-1 analogs ameliorate hyperlipidemia and liver steatosis and delay its progression to steatohepatitis [34] as observed in the current study which can be linked to the effect exerted by GLP-1 agonist, exenatide, on the overexpression of leptin receptor signaling cascade and the improved leptin sensitivity. Hackl et al, 2019 demonstrated that brain leptin protects from hepatic steatosis by minimizing de novo lipogenesis beside the induction of triglyceride export through signaling in the dorsal vagal complex, where the efferent vagal motor neurons are located [35].

Consistently, the current study revealed the highest reduction in the HFD-induced expression of PDK 3 associated with the combined ADF-exenatide treatment. PDK3 is one of the adipogenicity markers acting as a part of pyruvate dehydrogenase complex (PDC), representing the central linker between glucose and lipid metabolism since the accumulation of fat droplets in the hepatocytes is the cornerstone in the pathogenesis of liver steatosis, concluded that deficiency of PDK3 improved liver steatosis [36]. Furthermore, this PDK3 downregulation was associated with amelioration of NAFLD2 expression, one of the most recent fatty liver disease associated gene, reversing the distorted hepatic histopathological picture seen in HFD group with the degree of steatosis.

In conclusion, the current study demonstrated the beneficial effects of ADF combined with GLP-1 agonist (exenatide) on the brain and liver levels. Centrally, ADF/exenatide reversed leptin resistance and its associated genes, including JAK2/STAT3 signaling pathway, and attenuated the inhibitors: SOCS3 and PTP1B which consequently improved the insulin resistance-related genes, including liver IRS-1/PI3K/GLUT4 and boost liver lipid export and improve hepatic steatosis via receptors expressed in the CNS. Therefore, high fat-diet induced obesity with leptin and insulin resistance and liver steatosis is manageable by ADF and GLP-1 agonist, exenatide.

Acknowledgments

The authors thank Prof Laila Rashed, Faculty of Medicine, Kasr El-Einy University, and Mohamed Kamal El-Kherbetawy, Faculty of Medicine, Suez Canal University for their help.

Conflict of interest

The authors declare no conflict of interest.
References

Figure captions

Fig. 1. A: Mice body weight at start and end of the study; B: The dietary protocol. Values are mean ± SD (n= 10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.

Fig. 2. Effect of ADF and/or exenatide on lipid profile parameters in HFD-induced obesity in mice. Values are mean ± SD (n=10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. TG: Triglycerides, HDL: High-density lipoprotein, LDL: Low-density lipoprotein, VLDL: Very low-density lipoprotein, NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.

Fig. 3. Effect of ADF and/or exenatide on brain leptin content and receptor expression in HFD-induced obesity in mice. High calories fed obese mice showed HFD-enhanced brain leptin level and receptor expression. A: ELISA detected leptin “ng/ml”, B: qRT-PCR, the relative expression of leptin receptor gene in HFD-induced leptin resistance in mice brain. Values are mean ± SD (n=10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. * * * # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.

Fig. 4. Effect of ADF and/or exenatide on brain leptin-related pathway protein expression levels in HFD-induced obesity in mice. Effect of ADF and exenatide on: A: JAK2; B: STAT3; C: SOCS and D: PIP1B protein expression level in mice brain. Values are mean ± SD (n=10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. * * * # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. JAK2: the Janus kinase/signal transducer-2, STAT3: activator of the transcription 3, SOCS: cytokine signaling 3, PTP1B: Protein tyrosine phosphatase 1B, NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.

Fig. 5. Effect of ADF and/or exenatide on fasting blood glucose and insulin resistance in HFD-induced obesity in mice. Values are mean ± SD (n=10), analyzed by one-way ANOVA followed by Tukey’s multiple
comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. HOMA: Homeostatic model assessment, IR: insulin resistance, FBG: fasting blood glucose, NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.

Fig. 6. Effect of ADF and/or exenatide on liver insulin phosphorylation signal proteins expression levels in HFD-induced obesity in mice. A: IRS1 is insulin transmitting signals to intracellular pathways B: PI3K. Values are mean ± SD (n= 10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. * * * p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group.IRS1: Insulin receptor substrate 1, PI3K: Phosphatidylinositol 3-kinase, NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.

Fig. 7. Effect of ADF and/or exenatide on liver GLUT4 and PDK3/NAFLD2 gene expression in HFD-induced obesity in mice. ADF and exenatide were able to reverse the HFD-induced diseases associated genes. A: GLUT4; B: PDK3; C: NAFLD2 in mice liver. Values are mean ± SD (n= 10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. * * * p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group.GLUT4: glucose transporter 4, PDK3: Pyruvate dehydrogenase kinase, NAFLD2: Non-alcoholic susceptibility 2 gene, NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.

Fig. 8. Effect of ADF and/or exenatide on liver enzymes in HFD-induced obesity in mice. Values are mean ± SD (n= 10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. ALT: Alanine transaminase, AST: Aspartate transaminase, NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.

Fig. 9. Effect of ADF and/or exenatide on hepatic histopathology in HFD-induced obesity in mice (I): Photomicrographs of hepatic sections stained with H&E for morphometric analysis. Sections from normal rats (a) showed preserved architecture with lobules formed of hepatocytes (Dashed arrow) arranged in plates of one to two cell thickness showing abundant eosinophilic cytoplasm and central nucleus surrounded by blood sinusoids (arrowhead), portal areas (arrow) showed bile ductules and portal vessels. Sections from high diet fed rats (b) showed disturbed architecture with marked cytoplasmic clear vacuolation displacing nucleus (steatosis is more than 66%), there is also ballooning degeneration of some hepatocytes. Additionally, there is scattered lobular inflammatory cells infiltration (arrowhead). Rats’ livers of ADF treated group (c) showed moderate
ballooning degeneration and moderate focal steatosis, there is moderate portal inflammation with congested vessels. On the other hand, rats’ livers of exenatide treated group (d) showed few hepatocytes with moderate ballooning degeneration, there is mild lobular focal inflammation with mild portal inflammation with few congested vessels. However, combined ADF and exenatide treated group (e) showed preserved architecture with lobules formed of hepatocytes arranged in thin plates showing abundant eosinophilic cytoplasm with residual focal mild ballooning degeneration and focal residual mild steatosis, there is no lobular inflammation. (H & E 400 ×). (II): Effect of ADF and/or exenatide on the histopathological score in HFD-induced obesity in mice. Values are mean ± S.D. (n= 10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. (III): Effect of ADF and/or exenatide on the histopathological percent area (%) in HFD-induced obesity in mice. Values are mean ± S.D. (n= 10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p< 0.05; ¶ compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.

Graphical abstract: The combined treatment of ADF and exenatide: improve insulin and leptin resistance and liver steatosis through: 1. Upregulates the expression of leptin receptor and activate the JAK2/STAT3 signaling (main pathway in leptin signaling) downregulate the expression of inhibitors (SOCS3 and PTP1) the negative regulators of leptin (suppressors) thereby decreasing leptin resistance. SOCS3 and PTP1 also suppress IRS1 causing aggravation of insulin resistance. 2. Increase the expression of IRS1/PI3K/GLUT4/ signaling pathway and promote the translocation of GLUT4 to the cell membrane for uptake of glucose thereby decreasing insulin resistance. 3. Decrease the mRNA expression of adipogenicity genes: PDK3 and NAFLD2 decreasing the fat accumulation in the liver and decrease liver steatosis. ADF: Alternate-day high-fat diet, HFD: High-fat diet, JAK2: the Janus kinase/signal transducer-2 , STAT3: activator of the transcription 3, SOCS: cytokine signaling 3, PTP1B: Protein tyrosine phosphatase, IRS1: Insulin receptor substrate 1, PI3K: Phosphatidylinositol 3-kinase, GLUT4: glucose transporter 4, PDK3: Pyruvate dehydrogenase kinase, NAFLD2: Non-alcoholic susceptibility 2 gene.
Fig. 1. A: Mice body weight at start and end of the study; B: The dietary protocol. Values are mean ± SD (n= 10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.
Fig. 2. Effect of ADF and/or exenatide on lipid profile parameters in HFD-induced obesity in mice. Values are mean ± SD (n= 10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. TG: Triglycerides, HDL: High-density lipoprotein, LDL: Low-density lipoprotein, VLDL: Very low-density lipoprotein, NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.
Fig. 3. Effect of ADF and/or exenatide on brain leptin content and receptor expression in HFD-induced obesity in mice. High calories fed obese mice showed HFD-enhanced brain leptin level and receptor expression. A: ELISA detected leptin “ng/ml”, B: qRT-PCR, the relative expression of leptin receptor gene in HFD-induced leptin resistance in mice brain. Values are mean ± SD (n= 10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet
Fig. 4. Effect of ADF and/or exenatide on brain leptin-related pathway protein expression levels in HFD-induced obesity in mice. Effect of ADF and exenatide on: A: JAK2; B: STAT3; C: SOCS and D: PIP1B protein expression level in mice brain. Values are mean ± SD (n=10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p<0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. JAK2: the Janus kinase/signal transducer-2, STAT3: activator of the transcription 3, SOCS: cytokine signaling 3, PTP1B: Protein tyrosine phosphatase 1B, NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.
Fig. 5. Effect of ADF and/or exenatide on fasting blood glucose and insulin resistance in HFD-induced obesity in mice. Values are mean ± SD (n= 10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group.
Fig. 6. Effect of ADF and/or exenatide on liver insulin phosphorylation signal proteins expression levels in HFD-induced obesity in mice. A: IRS1 is insulin transmitting signals to intracellular pathways B: PI3K. Values are mean ± SD (n=10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. IRS1: Insulin receptor substrate 1, PI3K: Phosphatidylinositol 3-kinase, NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.
Fig. 7. Effect of ADF and/or exenatide on liver GLUT4 and PDK3/NAFLD2 gene expression in HFD-induced obesity in mice. ADF and exenatide were able to reverse the HFD-induced diseases associated genes. A: GLUT4; B: PDK3; C: NAFLD2 in mice liver. Values are mean ± SD (n= 10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. GLUT4: glucose transporter 4, PDK3: Pyruvate dehydrogenase kinase, NAFLD2: Non-alcoholic susceptibility 2 gene, NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.
Fig. 8. Effect of ADF and/or exenatide on liver enzymes in HFD-induced obesity in mice. Values are mean ± SD (n= 10), analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group. ALT: Alanine transaminase, AST: Aspartate transaminase, NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.
Fig. 9. Effect of ADF and/or exenatide on hepatic histopathology in HFD-induced obesity in mice (I): Photomicrographs of hepatic sections stained with H&E for morphometric analysis. Sections from normal rats (a) showed preserved architecture with lobules formed of hepatocytes (Dashed arrow) arranged in plates of one to two cell thickness showing abundant eosinophilic cytoplasm and central nucleus surrounded by blood sinusoids (arrowhead), portal areas (arrow) showed bile ductules and portal vessels. Sections from high diet fed rats (b) showed disturbed architecture with marked cytoplasmic clear vacuolation displacing nucleus (steatosis is more than 66%), there is also ballooning degeneration of some hepatocytes. Additionally, there is scattered lobular inflammatory cells infiltration (arrowhead). Rats' livers of ADF treated group (c) showed moderate ballooning...
degeneration and moderate focal steatosis, there is moderate portal inflammation with congested vessels. On the other hand, rats' livers of exenatide treated group (d) showed few hepatocytes with moderate ballooning degeneration, there is mild lobular focal inflammation with mild portal inflammation with few congested vessels. However, combined ADF and exenatide treated group (e) showed preserved architecture with lobules formed of hepatocytes arranged in thin plates showing abundant eosinophilic cytoplasm with residual focal mild ballooning degeneration and focal residual mild steatosis, there is no lobular inflammation. (H & E 400 ×).

(II): Effect of ADF and/or exenatide on the histopathological score in HFD-induced obesity in mice. Values are mean ± S.D. (n=10), analyzed by one-way ANOVA followed by Tukey's multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group.

(III): Effect of ADF and/or exenatide on the histopathological percent area (%) in HFD-induced obesity in mice. Values are mean ± S.D. (n=10), analyzed by one-way ANOVA followed by Tukey's multiple comparisons test. ¶, *, # p< 0.05; ¶ Compared with NPD control group, * Compared with HFD control group, # compared with exenatide treated group.

NPD: Normal palatable diet, HFD: High-fat diet, ADF: Alternate-day high-fat diet.