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A b s t r a c t

Introduction: Glioblastoma (GBM) as a frequently diagnosed primary intracra-
nial tumor has a significantly poor prognosis. Only a few studies have probed 
into the  immune profile associated with GBM. This study explored the  role 
of immune features of GBM in prognosis and immunotherapy response.
Material and methods: GBM samples were subtyped by evaluating 15 im-
mune-related pathways and genes using consensus clustering. GISTIC2 ana-
lyzed copy number variations and the  impute package was used to perform 
methylation analysis. Immune characteristics were unveiled by using ssGSEA, 
ESTIMATE, and CIBERSORT. Immunotherapy and chemotherapeutic drug re-
sponses were calculated with the TIDE and pRRophetic package respectively. 
Weighted gene co-expression network analysis (WGCNA), Cox regression, Lasso, 
and stepAIC were used to develop a prognostic immune score (IMscore) model. 
Results: GBM was categorized into 3 subtypes: immune-deprived (Immune-D) 
(low enrichment of  immune pathways and high enrichment of DNA damage 
repair pathways); stromal-enriched (Stromal-E) (high enrichment of  immune 
pathways, oncogenic pathways and stromal pathways); and immune-enriched 
(Immune-E) (low enrichment of DNA damage repair pathways and high enrich-
ment of  immune pathways). Methylation differences were found in TWIST1, 
CDH2 and CDH1 among 3 subtypes. Immune-E responded better to immuno-
therapy, while Immune-D was more sensitive to chemotherapeutic drugs. This 
study established a  prognostic model with five genes (OSMR, SPP1, CUL1, 
CTBP2, NGFR) for GBM.
Conclusions: Three subtypes had different prognosis and response to immu-
notherapy and chemotherapy. A  five-gene prognostic model was robust to 
predict prognosis in GBM as well as pan-cancer. The subtyping and prognostic 
model may facilitate individualized prognosis management and personalized 
therapeutic intervention.

Key words: glioblastoma, immune-related pathways, immune subtyping, risk 
model, prognosis.

Introduction

In adults, glioblastoma (GBM) as a frequently detected primary cen-
tral nervous system (CNS) malignancy has an incidence of approximately 
5–7/100,000, with a  significantly poor prognosis. The  median survival 
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time of GBM patients is shorter than 15 months 
[1]. Safe tumor resection accompanied with post-
operative concurrent radiotherapy is the  most 
common clinical modality in GBM treatment, but 
still the recurrence rate is as high as 90% [2, 3]. Im-
mune checkpoint inhibitors (ICIs) represented by 
PD-1/PD-L1 could successfully improve the prog-
nosis of some GBM patients, but most patients do 
not benefit from them effectively [4, 5]. Findings 
of  recent clinical trials indicated an urgent need 
to accurately identify potential GBM beneficiaries 
of immunotherapy. Given that no new therapeutic 
approach is able to prolong GBM survival [6, 7], it 
is important to actively explore the pathogenesis 
of GBM so as to discover new therapeutic targets 
for GBM and improve the  prognosis of  the  pa-
tients.

GBM development is the result of a combina-
tion of  factors internal to tumor cells that have 
an external tumor microenvironment (TME) [8, 9]. 
Exogenous components and intrinsic mechanisms 
of  GBM cells determine the  immunosuppressive 
state of  the  glioma microenvironment and are 
one of the greatest obstacles to achieving the ef-
fectiveness of immunotherapy [10]. Immune path-
ways such as antigen processing and presentation 
[11], natural killer cell mediated cytotoxicity [12], 
and T cell receptor signaling [13] have been report-
ed to have great potential to confer the response 
to immunotherapy in glioblastoma. The  interac-
tions of secreted components from stromal cells 
and immune cells orchestrate TME and regulate 
the response to immunotherapy. A  large amount 
of evidence has confirmed the role of oncogenic 
pathways such as Wnt signaling [14], PI3K-Akt 
signaling and TGF-β signaling [15] in promoting 
GBM development. In addition, DNA repair path-
ways have been uncovered to play critical roles 
in the  maintenance of  genomic stability that is 
responsible for tumorigenesis [16]. We supposed 
that by using the  features of  the  above related 
pathways, we may establish an accurate subtyp-
ing system for classifying GBM patients and guid-
ing immunotherapy. 

To some extent, the failure of immunotherapy 
is related to inaccurate preclinical models, as pre-
clinical studies do not consistently demonstrate 
drug responses that are therapeutically active in 
patients and are not able to classify patients cor-
rectly. To explore the immune features of GBM and 
improve immunotherapy for GBM patients, we 
collected immune and stroma-related pathways, 
used gene expression data to construct molecu-
lar subtyping of GBM immune using Consensus-
ClusterPlus. Gene mutation, methylation and im-
mune state were analyzed to reflect the distance 
among molecular subtypes. Furthermore, we also 
performed validation analysis in the GBM immu-

notherapy dataset to provide new evidence for 
a deeper understanding of the immunomolecular 
mechanisms of GBM and individualized immuno-
therapy.

Material and methods

Patient data and gene expression profile 
data sources

Clinical and chip data of  GBM patients from 
The  Cancer Genome Atlas (TCGA) GDC API and 
the  Chinese Glioma Genome Atlas (CGGA) data-
base (http://www.cgga.org.cn/) were obtained. 
This study was approved by The  First Affiliated 
Hospital of  Jiamusi University and patients’ con-
sent was waived by the  institution. The  GBM 
datasets, including CGGA693 and CGGA325, were 
downloaded from the CGGA database. These two 
datasets were preprocessed in the following steps: 

1) Downloading the normalized datasets; 
2) Keeping the samples with complete survival 

time and status; 
3) Merging the CGGA693 and CGGA325 data-

sets; 
4) Using the  limma package removeBatchEf-

fect function to remove the batch effect between 
the two datasets [17], and the final dataset was 
named as CGGA.

After the  two groups of  data were prepro-
cessed, there were 524 samples in TCGA and 374 
samples in the CGGA dataset.

Subtyping of GBM patients

Fifteen immune-related pathways and corre-
sponding genes belonging to DNA damage repair, 
stromal pathways, oncogenic pathways, and im-
mune pathways were collected from a published 
study [18]. Then, in the TCGA and CGGA datasets, 
we used the  single sample gene set enrichment 
analysis (ssGSEA) method to evaluate the scores 
of these 15 pathways, based on which the sam-
ples were clustered using the ConsensusCluster-
Plus R package. With the cumulative distribution 
function (CDF), we determined the optimal num-
ber of  clusters. The  optimal classification was 
determined based on CDF and samples’ molec-
ular typology was acquired through calculating 
the consistency matrix [19].

Analysis of immune genes and driver 
genes among the molecular subtypes

We obtained chemokine and receptor genes, 
MHC from published literature [20], and then 
compared the distribution of these genes as well 
as CTLA4 and PDCD1 in the  different typologies 
of  GBM and whether there was concordance in 
the different datasets.
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Driver genes were obtained from existing stud-
ies; 159 out of 172 genes had copy data [21]. Next, 
we compared the mutation profiles of these 172 
driver genes across GBM subtypes and differ-
ences in tumor mutation burden (TMB). We used 
GISTIC2 to analyze the variation of copy number 
in different fractions, with a ratio > 0.2 being de-
fined as gain, ratio < 0.2 being defined as loss, and 
the rest being defined as diploid.

Pathway analysis

We obtained the  genes corresponding to the 
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSI-
TION (EMT) pathway from the  h.all.v7.4.symbols.
gmt file on the  CGGA website, and then used 
the ssGSEA method to calculate the EMT score for 
both the TCGA and CGGA datasets. Next, the genes 
of cytolytic activity were collected from a previous 
paper [22]. The method of ssGSEA was applied to 
calculate the cytolytic activity score for both TCGA 
and CGGA datasets between the subtypes. ssGSEA 
in the GSVA R package first normalizes gene ex-
pression values of a given sample by rank order, 
and then calculates the  enrichment score using 
the empirical CDF [23]. 

Methylation analysis between molecular 
subtypes and drug sensitivity analysis

The 450K methylation data of glioma samples 
from the  TCGA dataset were downloaded, and 
then to complete the missing values [24], we used 
the  KNN algorithm of  the  impute package. Fur-
ther, 7 EMT promoting genes [25] were obtained 
from existing studies, and we analyzed the mean 
beta values of  these genes across different sub-
types and calculated the Pearson correlation be-
tween the  gene expression values and the  beta 
values of  methylation. Next, the  differences in 
chemotherapy and immunotherapy in molecu-
lar subtypes were compared. We used the  TIDE 
(http://tide.dfci.harvard.edu/) software to assess 
the potential clinical effects of immunotherapy on 
our defined molecular subtypes, with higher TIDE 
prediction scores indicating a stronger likelihood 
of immune escape, which also suggested less im-
munotherapy benefit [26]. Finally, we performed 
drug sensitivity prediction for LGG with the pRRo-
phetic package [27].

Weighted gene co-expression network 
analysis (WGCNA) among the molecular 
subtypes

Molecular subtype-correlated gene modules 
were defined by the WGCNA package [28]. The sam-
ples were first clustered to filter the co-expression 
modules. To determine the  connection points 
of the co-expression network, it was specified that 

the log(k) of the node with occurrence connectivity 
k had to be negatively correlated with the log(P(k)) 
of the probability of occurrence of the node, with 
a  correlation coefficient greater than 0.85. In 
the next step, the expression matrix was converted 
into an adjacency matrix, which was then trans-
formed into a topology overlap matrix (TOM). Based 
on the TOM, we used the average-linkage hierar-
chical clustering method to cluster the genes ac-
cording to the criteria of dynamic tree cut; the min-
imum number of genes per gene network module 
was set to 80. After this, the eigenvalues (eigen-
genes) of each module were calculated, and then 
the modules were clustered, followed by merging 
close modules into a new module.

Construction and validation of prognostic 
model IMscore

In the TCGA dataset, the 15 pathways were first 
scored by one-way Cox regression analysis, fol-
lowed by calculation of the Pearson correlation to 
select the positively correlated genes in the path-
way. Next, for the pathway-related genes, we ran-
domly divided the GBM samples in the TCGA data-
set into a Train group and a validation (Test) group 
at a ratio of 3 : 2, and then reduced the number 
of pathway-related genes by the Lasso regression, 
which can better solve the  problem of  multicol-
linearity in regression analysis through compress-
ing some coefficients and at the same time setting 
some coefficients to zero. The number of  factors 
was determined when the  coefficients of  inde-
pendent variables tend to zero, with the gradual 
increase of  lambda. Next, the  Akaike informa-
tion criterion (AIC) was performed with stepwise 
regression, which could consider the  model sta-
tistical fit as well as parameter number to fit it. 
Here, a smaller value indicates a model with bet-
ter performance, meaning that the  model may 
have a  sufficient fit but with fewer parameters 
[29]. After that, in the TCGA Train dataset, the sur-
vminer package was used to find the best cutoff 
of the IMscore, based on which the GBM was di-
vided into two groups. Finally, survival differences 
were compared by log-rank test between the two 
groups.

To verify the robustness of the IMscore model, 
we downloaded the expression profiles and clinical 
data of the remaining 32 cancer types in the TCGA 
database, and then used the IMscore model to cal-
culate the IMscore of each cancer type to obtain 
the  best cutoff. The  survival curve analysis was 
performed on the high and low IMscore.

Statistical analysis

The limma package was used in group compar-
ison, while differences in mean gene expression 
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among the  samples were analyzed using the  in-
dependent t-test. We used the MASS package for 
stepAIC analysis [29]. Enrichment pathway anal-
ysis was carried out using ssGSEA [23]. We per-
formed KM survival analysis, univariate [30] and 
multivariate Cox proportional risk analysis and 
model development [31] in the Survival package, 
and visualized the results in the survminer pack-
age [32]. Lasso regression analysis was conduct-
ed in the glmnet package [32]. Unless otherwise 
specified, all statistical tests were bilateral and all 
statistical analyses were performed using R soft-
ware (version 4.1.3, https://www.r-project.org/).  
P < 0.05 was defined as statistically significant.

Results

Glioma subtyping based on the pathway 
scores

We first used the  limma package to remove 
the batch effect of CGGA693 and CGGA325 data-
sets, and the  data before and after the  removal 
of  the  batch effect were presented by principal 
component analysis (PCA) plots (Supplementary 
Figure S1). The results demonstrated that the sam-
ples of different datasets changed from indepen-
dent distribution into uniform mixed distribution 
after removing the  batch effect. Next, based on 
the 15 pathways and gene scores, it can be seen 
from the CDF Delta area curve that the clustering 
results were more stable when the  cluster num-
ber was 3; therefore, the tri-correlation subtyping  
(k = 3) was obtained.

To more clearly demonstrate the pathway dif-
ferences among the  three subtypes, we drew 
a  pathway heatmap based on the  scores. GBM 
patients could be roughly classified into three 
subtypes, namely, immune-Deprived (Immune-D), 
stromal-enriched subtype (Stromal-E) and im-
mune-enriched subtype (Immune-E), by the path-
way scores. The  Immune-E phenotype showed 
a higher immune pathway score, while Stromal-E 
phenotype had a  significantly enriched stromal 
pathway score, and the oncogenic pathways were 
also significantly enriched. However, Immune-D 
was the opposite to that of  Immune-E. As easily 
observed, there was consistency in the two data-
sets, and a clear boundary between different sub-
types, supporting the  reliability and prevalence 
of our subtypes in different datasets.

Comparison of immune scores between 
different GBM subtypes

The  stromal and immune composition of  dif-
ferent GBM subtypes was assessed according to 
the purity of  the microenvironment and immune 
cell infiltration using ESTIMATE [33]. The  results 
showed that in TCGA and CGGA subtypes Immun-

eScore was higher in Immune-E and Stromal-E 
than in Immune-D; StromalScore was the  lowest 
in Immune-D and the  highest in Stromal-E; ES-
TIMATEScore and TumorPurity were consistent 
in both subtypes (Figures 1 A–D). Subsequently, 
the  ssGSEA method calculated EMT scores and 
cytolytic activity in the TCGA and CGGA datasets, 
and significant differences were detected among 
the  three subtypes (Figures 1 E, F). Furthermore, 
in order to investigate the differences in immune 
cells and immune function of patients in different 
subtypes, we used the  ssGSEA algorithm to cal-
culate the relative abundance of 28 immune cells. 
The results showed that the TCGA and CGGA data 
were consistent, with the  highest score in Im-
mune-E (Figure 1 G). These results also had signifi-
cant differences in the immune microenvironment 
among the  three GBM subtypes. Furthermore, 
the  differences in immune cells and functions 
of  patients of  different subtypes were assessed 
through calculating the relative abundance of 28 
immune cells using the ssGSEA algorithm. Consis-
tency in the TCGA and CGGA data was observed, 
with the highest score in Immune-E (Figure 1 G). 
These data indicated significant differences in 
the  immune microenvironment among the  three 
GBM subtypes.

Comparative analysis of the distribution 
of immune genes and MHC  
in the subtyping

To investigate whether the immune differences 
among the subtypes were caused by immune genes, 
we compared the expression differences of repre-
sentative genes PDCD1 and CTLA4 in the TCGA and 
CCGA datasets, and it was observed that the two 
genes were expressed the  highest in Immune-E 
(Figures 2 A, B). Further expression analysis on 
chemokine, MHC, and receptor genes showed that 
in Immune-E in different datasets, the expression 
of MHC genes was higher (Figure 2 C). 

Comparison of cancer driver gene variants 
in different subtypes

Next, we explored the  differences in immune 
microenvironment leading to GBM in different 
subtypes based on cancer driver genes. Fish-
er’s test detected significant differences in 5 
of  the  172 cancer driver genes, with ZNF208 
showing the  highest mutation frequency in Im-
mune-E typing (Figure 3 A), but there was no 
statistically significant difference in TMB (Figure 
3 B). Meanwhile, the survival curve (KM) analysis 
in driver genes with mutations or in the wild-type 
samples showed that the  mutant phenotypes 
of  eight genes were significantly different from 
that of  the wild type (Figure 3 C). Further inves-

https://www.r-project.org/
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Figure 2. Comparative analysis of immune checkpoint genes and MHC in different subtypes of GBM. A – Density 
distribution of  PDCD1 gene in different subtypes of  GBM; B – Density distribution of  CTLA4 gene in different 
subtypes of GBM; C – Comparative distribution of MHC gene in different subtypes of GBM. *P < 0.05; **p < 0.01;  
***p < 0.001; ****p < 0.0001. ns – not significant
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Figure 3. Mutation analysis of cancer driver genes in different subtypes of GBM. A – Mutation distribution of some 
driver genes; B – Difference analysis of TMB distribution in different subtypes; C – Mutation and wild-type survival 
analysis of some genes; ns – not significant
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tigation on the mutation pattern of cancer driver 
genes was performed with copy number variation 
(CNV) analysis. The results showed that all the 159 
cancer driver genes had amplification deletions, 
and to more directly show the  CNV, we plotted 
a waterfall diagram, and some results are shown 
in Figure 4 A. Additionally, we analyzed the TCGA 
data for LOH (loss of  heterozygosity), NtAI (al-
lelic imbalance extending to the  telomere), LST 
(large-scale state transitions) and HRDScore for 
all three combined, and found that these scores 
were the  lowest in the  Stromal-E subtype and 
highest in the Immune-D subtype (Figures 4 B–E). 
Also, the  expression of  the  genes corresponding 
to the subgroup in which gain occurred was high-
er, while that corresponding to the  subgroup in 
which loss occurred was lower (Figure 4 F).

Clinical features analysis in different 
subtypes

In the TCGA and CGGA datasets, we compared 
the  distribution of  different clinical features in 
the three subtypes to determine whether the clin-
ical features differed. The  results revealed that 
Stromal-E had the most favorable prognosis, while 
that of the Immune-D was the worst (Figures 5 A, 
B). We also compared the distribution of IDH mu-
tation in different subtypes, and found that it was 
significantly different in the three subtypes, while 
no significant differences were found for sex, 
MGMT, or age (Figures 5 C, D).

Methylation analysis and drug sensitivity 
prediction in different subtypes

To investigate the methylation of  cancer driv-
er genes, we collected 7 EMT-promoting genes 
[24] from an existing study, and then analyzed 
the  differences in the  mean methylation β val-
ues of  these genes in the  subtypes. There were 
no differences in the  methylation beta values 
of VIM, ZEB2, and CLDN1, ZEB1 among the three 
subtypes, while CDH1 and TWIST1, CDH2 were 
greatly different (Figure 6 A). Pearson’s correlation 
test demonstrated a  clear negative correlation 
between the methylation degree and expression 
values of ZEB2 and TWIST1, while the other genes 
were less correlated (Figure 6 B). Furthermore, 
we analyzed the differential distribution of β val-
ues of  cg probe of  TWIST1 in the  subtypes and 
observed that cg22498251 and cg20121142 were 
distributed significantly differently. Other loci are 
shown in Figure 6 C. The beta values of some cg 
loci had a  significant negative correlation with 
TWIST1 gene expression, as shown in Figure 6 D. 

As predicted by the  TIDE online software, 
the TIDE score of Immune-E in the TCGA dataset 
was significantly lower than that in Stromal-E 

and Immune-D, suggesting higher responsiveness 
of Immune-E to immunotherapy, whereas the im-
munotherapy was 74% responsive in Immune-E, 
which was much higher than that of  Stromal-E 
and Immune-D. The  results of  the  analysis on 
the CGGA dataset were in accordance with those 
of  the TCGA dataset (Figures 7 A, B). After that, 
we predicted the responsiveness of different sub-
types of TCGA and CGGA datasets to convention-
al chemotherapeutic drugs (sunitinib, cisplatin, 
sorafenib and pyrimethamine, crizotinib, pacli-
taxel), and both showed lower sensitivities of Im-
mune-E (Figures 7 C, D).

WGCNA co-expression analysis

We clustered the GBM samples by the WGCNA 
package for identification of gene and clustering 
among different subtypes, and the  co-expres-
sion network conformed to a scale-free network  
(Figure 8 A). To ensure that the network was scale-
free, we chose β = 14 (Figures 8 B, C). By calculating 
the eigenvector values of the modules, we merged 
the closer modules by setting minModuleSize = 80, 
deepSplit = 2, height = 0.25, and acquired a total 
of 6 new modules (Figure 8 D). The gene statistics 
of each module are shown in Figure 8 E. Further 
correlation analysis of each module with molecu-
lar subtypes showed that the green module was 
significantly positively associated with Immune-E 
subtype, and that the brown module was signifi-
cantly positively associated with Immune-E sub-
type but negatively associated with Immune-D and 
Stromal-E subtypes. The yellow module was sig-
nificantly positively associated with the Stromal-E 
subtype but significantly negatively associated 
with the Immune-D subtype (Figure 8 F). 

Construction and validation of prognostic 
model IMscore

To construct a  survival model for accurately 
predicting the prognosis of GBM, we first carried 
out one-way Cox analysis on 15 pathway genes 
and obtained 6 prognosis-related pathways. 
The  Pearson correlation between each pathway 
gene and the  pathway was calculated to select 
genes showing a positive correlation (Corr > 0 and  
p < 0.05) in the  pathway for further analysis. 
For the  pathway-related genes, we randomly 
grouped the TCGA dataset data at a ratio of Train:  
Test = 3 : 2, and then performed one-way Cox anal-
ysis in the  Train group to screen the  prognosis- 
related genes, and collected a  total of 53 genes. 
Next, applying Lasso regression and 10-fold 
cross-validation, we selected 7 genes at lambda = 
0.1028 as the target genes based on Lasso regres-
sion penalty coefficients. Furthermore, we used 
stepwise multifactorial regression analysis based 
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on 7 genes from the  Lasso analysis results, and 
finally screened 5 genes and calculated Lasso co-
efficients for each gene. According to the formula 
IMscore = 0.116*SPP1 + 0.151*OSMR + 0.174*NGFR 
– 0.5*CTBP2 + 0.324*CUL1, IMscore was obtained.

Afterwards, the  survminer package was em-
ployed to determine the  optimal cutoff value, 
based on which GBM patients were divided into 
high and low groups. From the  survival analysis 
results, the prognosis of  the high-IMscore group 
was significantly lower than the low-IMscore one 
(p < 0.001), and the TCGA and CGGA datasets per-
formed consistently (Figures 9 A, B). Also, we com-
pared distribution differences of  IMscore among 
the subtypes in different datasets, and observed 
that IMscore in Stromal-E was the  lowest, while 
in the  Immune-D subgroup it was the  highest. 
There was consistency between TCGA and CGGA 

datasets (Figures 9 C–F). To verify the  stability 
of  the  model, we performed validation in TCGA 
pan-cancer, and it was found that the  IMscore 
model had significant differences between high 
and low IMscore in all cancer types except ESCA, 
with a significantly worse prognosis of those with 
a high IMscore than with a low IMscore (p < 0.05) 
(Supplementary Figure S2).

Performance of IMscore for predicting 
response to immunotherapy

Immunotherapy-treated datasets CGGA 135222, 
ICGGA 91061, and Mvigor210 were subjected 
to IMscore calculation and on the  website TIDE 
(http://tide.dfci.harvard.edu/edu/). The predictive 
effect of IMscore and TIDE on treatment response 
was compared. Survival curves of  IMscore and 
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Figure 5. Distribution characteristics of each clinical variable in different molecular subtypes. A – Survival curve 
analysis of different subtypes of GBM in TCGA dataset; B – Survival curve analysis of different subtypes of GBM in 
GSE dataset; C – Distribution of clinical characteristics of different subtypes of GBM in TCGA dataset
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Figure 5. Cont. Distribution characteristics of each clinical variable in different molecular subtypes. C – Distribu-
tion of clinical characteristics of different subtypes of GBM in TCGA dataset; D – Distribution of subtypes in TCGA 
dataset compared with existing subtypes
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TIDE scores and KM curves with median cutoff 
showed that in the  IMvigor210 dataset, patients 
with low IMscores survived significantly better 
than those with high IMscores. In predicting im-
munotherapy responsiveness, the predictive pow-
er of IMscore was significantly stronger compared 
to TIDE score, as demonstrated by the  fact that 
the  area under the  curve (AUC) of  IMscore was 
significantly larger than that of TIDE score (Figure 
10 C). In the CGGA 91061 dataset, patients with 
low IMscores survived significantly better than pa-
tients with high IMscores (p < 0.05) (Figures 10 D, 
E). For predicting immunotherapy responsiveness, 
IMscore was significantly more effective than TIDE 
score, as shown by a significantly larger AUC of IM-
score than TIDE score (Figure 10 F). In the CGGA 
135222 dataset, patients with low IMscores sur-

vived significantly better than those showing high  
IMscores (p < 0.05) (Figure 10 G, H). In terms of pre-
dicting immunotherapy responsiveness, IMscore 
was significantly better than TIDE score, as shown 
by a significantly larger AUC of IMscore than TIDE 
score (Figure 10 I). These results indicated that 
the  IMscore model had a  stronger performance 
than the TIDE score in terms of the prognostic and 
immunotherapy response predictions.

Discussion

GBM is a highly lethal brain tumor that responds 
poorly to immunotherapy and accounts for about 
48.6% of  primary malignant brain tumors, with 
a 5-year survival rate of 7.2% and a 1-year survival 
rate of around 42.8% [34]. GBM is difficult to treat 
and is associated with the diversity of the tumor 
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Figure 6. Methylation analysis in different sub-
types of GBM. A – Distribution of methylation val-
ues of EMT-promoting genes in subtypes; 
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Figure 6. Cont. C – Differences in the  distribution of β values of  cg probe sites of  TWIST1 gene in subtypes;  
D – Correlation of cg probe sites of TWIST1 beta values of probe loci correlated with TWIST1 gene expression.  
*P < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. ns – not significant
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microenvironment in which the  GBM cell grows. 
The TME of GBM contains a range of non-tumor 
cells, including vascular cells, infiltrating and resi-
dent immune cells, and other glial cells, with spe-
cial emphasis on various non-tumor components 
of the immune system, including stromal cells [35, 
36]. Literature data suggested that GBM subtypes 
with molecular distinction exhibit differences in 
the microenvironment [37]. Data from GBM mod-
els suggested that drive mutations can create 
a unique GBM microenvironment where TAM can 
induce lymphocyte infiltration of  tumors, posi-
tively or negatively influencing clinical treatment 
[38]. The results of clinical trials conducted so far 
have shown that the  immune microenvironment 
of GBM was closely related to the outcome of im-
munotherapy [39, 40]. Therefore, it is important 
to actively explore immune-based GBM typing to 
understand the mechanism of tumorigenesis and 
precisely identify the potential beneficiary.

In the present study, we divided GBM patients 
into three groups by cluster analysis using im-
mune-related pathways and gene expression. Im-
mune composition, methylation, immunotherapy, 
and gene mutations varied significantly among 
the  different subtypes, such findings being in 
accordance with those in a  study conducted by 

Lee et al. [41]. However, what factors contribute 
to the  differences between different subtypes 
of  GBM remained unclear. It has been shown 
that tumor-specific antigens or tumor-associated 
driver genetic mutations presented differently in 
different subtypes, resulting in a  variety of  mo-
lecular immune responses and leading to differ-
ential accumulation of  immune cells [42, 43]. In 
this study, it was observed from CNV analysis that 
GBM tumor driver genes showed gene amplifica-
tion deletions, and that LST, LOH, and NtAI scored 
differently among the  subtypes, implying that 
variation in driver genes was intrinsic to different 
GBM subtypes. Interestingly, no significant differ-
ence was detected in TMB among different GBM 
subtypes, which was considered to be related to 
the  therapeutic interventions, number selection, 
and sample size in clustering. These negative re-
sults also provided a new direction for clinical and 
basic research.

Methylation of GBM, especially MGMT methyl-
ation, has been extensively studied [44, 45]. Re-
searchers have conducted methylation studies in 
different GBM subgroups, including age, gender 
and even race and studied in detail the  correla-
tion between the prognosis of different treatment 
regimens and MGMT methylation [46]. Consistent 
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Figure 7. TIDE and drug sensitivity analysis. A – Differential analysis of TIDE results for different immune subtypes 
of GBM in TCGA; B – Differential analysis of TIDE results for different immune subtypes of GBM in CGGA
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Figure 7. Cont. C – Differential analysis of drug IC50 for different subtypes of GBM in TCGA
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Figure 7. Cont. D – Differential analysis of drug IC50 for different subtypes of GBM in CGGA. *P < 0.05; **p < 0.01; 
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Figure 8. WGCNA analysis. A – Cluster tree of individual samples; B – Analysis of the scale-free fit index for various 
soft-thresholding powers (β); C – Analysis of the mean connectivity for various soft-thresholding powers; D – Den-
drogram of all differentially expressed genes clustered based on a dissimilarity measure (1-TOM); E – The number 
of genes in each module; F – Correlation of the module feature vectors of each module with clinical data
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Figure 9. Construction of  prognostic IMScore and survival analysis. A  – KM survival curve of  train dataset;  
B – KM survival curve of test dataset; C – KM survival curves of CGGA dataset; D – KM survival curves of TCGA 
dataset; E – Distribution of IMScore in TCGA dataset subtypes; F – Distribution of IMScore in subtypes of CGGA 
dataset. *P < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. ns – not significant
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Figure 10. Cont. D – The ability of the IMScore score 
to predict survival and response to immunotherapy 
in patients in the CGGA 91061 dataset. E – The abil-
ity of  the  TIDE score to predict survival and re-
sponse to immunotherapy in patients in the CGGA 
91061 dataset. F – Comparison of the AUC values 
of the IMScore and TIDE scores
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with previous studies, we attempted to analyze 
the  causes of  different subtypes of  GBM from 
the  perspective of  methylation, and found that 
CDH2, TWIST1, and CDH1 differed significantly 
among the  different subtypes. Moreover, from 
Pearson’s correlation test, a  significant negative 
correlation could be observed between the degree 
of methylation and expression values of TWIST1 
and ZEB2. The results provided new evidence for 
the causal relationship between methylation and 
differences in GBM among the subtypes. In addi-
tion to this, methylation of GBM genes can sup-
press the expression of certain genes, leading to 
cell death after alkylating agent injury, which was 
also correlated significantly with poor treatment 
response [47]. 

PD-1/PD-L1 checkpoint inhibitors have shown 
efficacy in the treatment of solid tumors. Immuno-
therapy has not achieved a breakthrough in GBM 
because of the weak immunogenic response but 
could suppress the  immune microenvironment 
induced by immune cells and cytokines [48, 49]. 
A  study showed that the  expression of  PD-L1 is 
positively correlated with glioma grade, with high 
expression of PD-1 /PD-L1 suggesting poor prog-
nosis in GBM patients [50]. Emerging evidence 
indicated that higher stromal populations are as-
sociated with tumor progression through remod-
eling anti-tumor immunity and responsiveness to 
immunotherapy [51]. To better detect potential 
immune beneficiaries, we divided patients into 
three subtypes; a much higher proportion of posi-
tive responses occurred in Immune-E than in Stro-
mal-E and Immune-D, suggesting that this group 
of patients was more responsive to immunother-
apy. Overall, in GBM, it is necessary to establish 
a  subgroup index containing multiple molecular 
markers for evaluating the  therapeutic effects 
of PD-1/PD-L1 checkpoint blocker-based immuno-
therapy and conventional chemotherapy, which 
can prolong the survival time of GBM patients and 
achieve the goal of precision medicine.

The construction of risk models helps to iden-
tify GBM high-risk groups more accurately. In 
the  current study, we successfully developed 
a prediction model via calculating the expression 
and expression coefficients of  five genes and 
used the  model to divide the  patients into two 
groups of high and low risk. Among them, SPP1 
was overexpressed in multiple cancers and was 
involved in tumor immunity via promoting inva-
sion, migration, and cancer stem cell self-renewal 
to regulate tumor progression. In GBM cells, up-
regulated SPP1 expression was associated with 
reactivation of GBM transcriptional regulation, tu-
mor cell self-renewal and multipotency [52]. OSMR 
regulates brain tumor stem cell proliferation and 
GBM development, while OSMR deletion sensitiz-

es brain tumor stem cells to radiotherapy-induced 
cell death. Inhibition of OSMR has been found to 
improve GBM response to treatment and prolongs 
patients’ survival [53]. CTBP2 is highly expressed 
in GBM, affecting the biological properties of GBM 
cells and tumor growth; moreover, it is associ-
ated with GBM prognosis [54]. Studies on NGFR 
and CUL1 in GBM are limited and demand further 
exploration. The brain was previously considered 
an immune-privileged organ due to the  unique 
immune-related organization of the central nerve 
system: (i) lack of in situ dendritic cells and lym-
phatic flow; (ii) it has a  blood-brain barrier to 
maintain the  stability of  the  internal environ-
ment of  the  central nerve system [8, 55]. How-
ever, the  development, treatment and prognosis 
of GBM have been found to be closely related to 
the immune function and the level of immune-re-
lated molecules in the  patient’s organism [56, 
57]. How to effectively predict and precisely iden-
tify beneficiaries of  immunotherapy is currently 
a great challenge to be addressed in clinical prac-
tice. Previous studies have used TIDE as a tool to 
estimate the possibility of tumor immune escape 
in the gene expression profile of tumor samples, 
representing an important tool for predicting im-
mune response, but this predictor has limitations 
such as poor specificity [58]. Our IMscore scoring 
model outperformed the TIDE score in predicting 
immunotherapy response and patients’ prognosis, 
providing a new strategy for the prediction of im-
munotherapy in GBM. The IMscore can distinguish 
patients with a good or poor prognosis, and it out-
performed the TIDE score in predicting patients’ 
prognosis. Immune-E subtype (the subtype most 
sensitive to immunotherapy) showed the  lowest 
IMscore, suggesting that the  low-IMscore group 
was more sensitive to immunotherapy than 
the high-IMscore group. With this subtyping and 
scoring system, clinicians may apply more precise 
treatment for the patients.

In conclusion, GBM samples from the  TCGA 
and CGGA datasets were subtyped based on 
the scores of oncogenic pathways, stromal path-
ways, immune pathways, and DNA repair path-
ways. The  subtyping system shows potential to 
guide clinical immunotherapy. GBM patients with 
Immune-E subtype may benefit more from immu-
notherapy. Furthermore, a prognostic model was 
built using prognosis-related pathway genes to 
predict overall survival, which also showed strong 
robustness and favorable results in pan-cancer, 
demonstrating a great potential for predicting im-
munotherapy response in cancer.
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