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A b s t r a c t

Introduction: Antimicrobial peptides (AMPs) are endogenous peptides that 
have been identified to alleviate intestinal epithelial barrier inflammation 
and dysfunction caused by enteropathogenic Escherichia coli (EPEC) infec-
tion; nonetheless, the upstream molecular mechanism of the production of 
AMPs is poorly understood.
Material and methods: The binding of signal transducer and activator of 
transcription (STAT) 1 (STAT1) to mucin 4 (MUC4) was examined by co-im-
munoprecipitation assay. To detect the influence of STAT1 and MUC4 expres-
sion, a C57BL/6 mouse model of EPEC infection in vivo and an EPEC infected 
intestinal epithelial cell (IEC) in vitro model were established. Expression lev-
els of STAT1, MUC4, phosphorylated (p)-STAT1, proinflammatory cytokines, 
zonula occludens-1 (ZO-1) and AMP-related genes in mouse ileum and/or 
IEC were analyzed by immunohistochemical test, immunofluorescence as-
say, Western blot, and/or qRT-PCR. Meanwhile, IEC viability and apoptosis 
were measured using CCK-8 assay and flow cytometry. 
Results: p-STAT1, MUC4, ZO-1 and AMP-related genes were lowly expressed 
in the ileum of EPEC-infected mice. p-STAT1 and MUC4 bound to each other. 
The expression levels of STAT1 and MUC4 were decreased in EPEC-infected 
IEC. STAT1 overexpression counteracted the EPEC-induced reduction of via-
bility, apoptosis promotion, ZO-1 activity inhibition, release of proinflamma-
tory cytokines, and downregulation of MUC4 and AMP-related genes in IEC. 
MUC4 knockdown partly counteracted the effect of STAT1 overexpression, 
but did not affect the forced STAT1 overexpression in EPEC-infected IEC.
Conclusions: STAT1/MUC4 pathway activation promotes AMP production to 
mitigate intestinal epithelium barrier injury caused by EPEC infection.

Key words: antimicrobial peptide, enteropathogenic Escherichia coli 
infection, intestinal epithelium barrier injury, STAT1/MUC4 pathway, ZO-1.

Introduction

Escherichia coli is a  Gram-negative rod-shaped bacterium that has 
a commensal relation with humans without exerting any adverse effects 
[1]. However, commensal E. coli can be pathogenic, once it transforms 
into pathovars such as enteropathogenic E. coli (EPEC), which colonize 
the gastrointestinal (GI) tract, causing diarrheagenic and extraintestinal 
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diseases in humans [2]. Additionally, EPEC is usu-
ally present in the food and water, and therefore 
is also known as a food-borne pathogen [3]. EPEC 
infection also induces malnutrition, which further 
increases the severity of the diseases caused by 
EPEC [4, 5]. It has been reported that EPEC infec-
tion is associated with remarkable morbidity and 
mortality among people with diarrhea in develop-
ing countries [6].

The pathogenic mechanism of EPEC involves in-
teraction with enterocytes to form attaching and 
effacing (A/E) lesions that give rise to destruction 
of the microvilli, actin pedestal formation, and re-
organization of the cytoskeleton, followed by re-
duction of the epithelial barrier area [7, 8]. Tight 
junctions, which reside at the apical part of the 
lateral membrane of the intestinal epithelial bar-
rier, are assembled from cytoplasmic scaffolding 
proteins such as zonula occludens-1 (ZO-1), a scaf-
folding membrane protein [9]. Tight junctions 
serve to connect intestinal epithelial cells, main-
tain barrier polarity and regulate barrier function 
[10, 11]. Redistribution of tight junctions can be 
caused by EPEC-induced epithelial inflammation 
[12, 13], leading to altered barrier function. 

Antimicrobial peptides (AMPs) are highly di-
verse and dynamic anti-infective molecules ex-
pressed by specific intestinal epithelial cells, 
Paneth cells, and immune cells in the GI tract [14, 
15]. AMPs can also target virulence proteins [16]. 
A previous study showed that human α-defense 
in 5 (HD5), which is the most abundant Paneth 
cell-derived AMP, and its treatment of E. coli can 
cause blister morphology, which is associated with 
cell death [17]. Also, AMPs exhibit activity against 
a  broad spectrum of bacteria through either af-
fecting membrane stability or interfering with 
DNA replication, transcription, translation, pro-
tein biosynthesis, protein folding, or cell division 
[18–20]. Moreover, AMPs function as host immune 
response-modulating peptides to regulate gut mi-
crobial growth and composition [21]. Reduction of 
intestinal AMPs is associated with enteric dysbi-
osis and damage [22]. Research has shown that 
AMPs exert therapeutic effects against intestinal 
epithelial barrier inflammation and dysfunction 
caused by EPEC infection [23]. However, the up-
stream mechanism of the therapeutic effects has 
yet to be uncovered. 

Previous research revealed that MUC4 deletion 
resulted in significant down-regulation of these 
AMPs at the mRNA level [24]. Also, stimulation of 
signal transducer and activator of transcription 
(STAT) 1 (STAT1) expression can induce MUC4 
expression [25]. Furthermore, downregulation of 
STAT-1 has been recorded to be accompanied by 
a reduction in AMP formation, leading to intesti-
nal microenvironmental disorders [22]. STAT1 is 

a  member of intestinal STATs, which are a  class 
of transcription factors crucial for transmitting 
intracellular signaling involved in cellular growth, 
differentiation, apoptosis, inflammation and im-
mune responses [26, 27]. Evidence has indicated 
that STATs play essential roles in modulating the 
antimicrobial responses [28, 29]. Deficiency of 
STAT1 increases the susceptibility of mice to in-
fection caused by microbial bacterial pathogens 
and viruses [30]. In addition, STAT1 has been doc-
umented to positively regulate the expression of 
mucin 4 (MUC4) by acting as a transcription factor 
of MUC4 [31]. MUC4 belongs to the transmem-
brane mucin family, whose secretion deters mi-
croorganisms [32]. MUC4 is normally expressed in 
the epithelia of several organs including the colon 
[33], where it can protect the apical surfaces of 
epithelial cells [34]. Additionally, MUC4 acts as an 
intramembrane ligand that modulates epithelial 
cell proliferation or differentiation after binding 
to ErbB2 [35]. Notably, knockout of MUC4 causes 
less distribution of AMPs in mice bearing colorec-
tal cancer (CRC) [24]. Taking the evidence togeth-
er, it is hypothesized that STAT1 upregulates the 
MUC4 level to induce AMP formation and thereby 
alleviate intestinal epithelial barrier injury caused 
by EPEC.

To test the hypothesis, the expression of and 
interaction between STAT1 and MUC4 were ex-
amined using in vivo models of EPEC-induced 
intestinal infections, and related in vitro models 
were established to confirm the role of the STAT1/
MUC4 pathway in EPEC-caused intestinal epithe-
lial barrier injury. 

Material and methods

Animals 

Male C57BL/6 mice (n = 18, aged 22 days, 
weighing 10–12 g) were housed in animal cages 
at 22  ±1.0°C, 50  ±5% humidity, with a 14-hour (h) 
light and 10-h dark circadian cycle. A standard ro-
dent house chow diet was given to the mice from 
their arrival through the infection. 

Preparation and culture of EPEC inocula

The bacterial strain used in the present study 
was EPEC E2348/69 (serotype O127:H6), which 
belongs to phylogroup B2 with its full-length chro-
mosomal nucleotide accessible by the accession 
number: FM180568 [36]. Culture of EPEC was 
conducted in Dulbecco’s modified Eagle’s medi-
um (DMEM; 11965092, Thermo Fisher, Waltham, 
MA, USA) at 37°C in a shaking incubator, and was 
terminated when the EPEC cultures turned orange, 
indicating optimal growth, with optical density 
(OD)600~0.6. The EPEC cultures underwent centrif-
ugation at 3500 × g for 10 min (min) at 4°C to ob-
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tain bacterial pellets, which were then resuspend-
ed in DMEM to reach a density of 1010 CFU/ml [37].

Establishment of mouse models of EPEC 
infection

Mice were given drinking water containing an 
antibiotic cocktail (35 mg/l gentamicin (A1720, 
Sigma-Aldrich, St. Louis, MO, USA), 45 mg/l van-
comycin (SBR00001, Sigma-Aldrich, USA), 215 
mg/l metronidazole (M1547, Sigma-Aldrich, USA), 
and 0.085 mg/l colistin (HY-113678, MedChem-
Express, Monmouth Junction, NJ, USA) for 3 days 
to disrupt resident microbiota; the mice showed 
hunching posture and diarrhea. Then, the antibi-
otics were cleared by drinking normal water for 
1 day, after which infection with EPEC was car-
ried out [38]. In brief, mice were randomized into 
two groups. Those (n = 6) in the EPEC group were 
orally challenged with 100 µl of DMEM containing 
1010 CFU/ml EPEC via a 22-gauge feeding needle 
[37], while control mice (n = 6) were administered 
100 µl of DMEM instead.

Three days after the infection [37], all the mice 
were anesthetized with 1% pentobarbital sodium 
(P010, 50 mg/kg, Sigma-Aldrich, USA) and sacri-
ficed via decapitation. Mouse ileum was collected 
and used for molecular assays. 

Immunohistochemical test

Mouse ileum was fixed with 4% paraformalde-
hyde (P885233, MACKLIN, Shanghai, China) for 24 h,  
followed by treatment with an ethanol and xylene 
gradient (95682, Sigma-Aldrich, USA). Then, the 
ileum was paraffinized (1496904, Sigma-Aldrich, 
USA) and cut into 4-µm-thick slices using a  cry-
omicrotome (Leica CM 1850 UV, Leic Biosystems, 
Nussloch GmbH, Germany). After being deparaf-
finized, the slices were rehydrated and then wa-
ter-boiled at 95°C with repair solution (P0088, 
Beyotime, Shanghai, China) for 10 min to repair 
antigen. Later, endogenous peroxidases were 
eliminated by the 10-min treatment with 3% H2O2, 
after which the slices were blocked in 5% bovine 
serum albumin (BSA; B928042, MACKLIN, China) 
for 30 min at 37°C. After that, the slices were incu-
bated with a primary antibody against phosphor-
ylated (p)-STAT1 (ab109461, Abcam, Cambridge, 
UK) at 4°C overnight, and with HRP-conjugated 
goat anti-rabbit IgG secondary antibody (31460, 
Thermo Fisher, USA) for 1 h in the dark. Areas 
positive for p-STAT1 were visualized by the addi-
tion of DAB solution (D8001, Sigma-Aldrich, USA). 
Counterstaining was conducted with hematoxy-
lin (H9627, Sigma-Aldrich, USA). Staining results 
were observed via an optical microscope (CX31-
LV320, Olympus, Tokyo, Japan) under 100 × mag-
nification.

Co-immunoprecipitation (Co-IP) assay 

Fresh mouse ileum from infected and control 
mice was homogenized and treated with T-PER 
histone protein extraction reagent (78510, Ther-
mo Fisher, USA) to isolate protein lysate. Then 
the interaction between p-STAT1 and MUC4 was 
verified using Pierce Co-Immunoprecipitation kits 
(26149, Thermo Fisher, USA). In short, the isolat-
ed lysate was precleared by agarose resin, and 
then incubated overnight at 4°C with agarose 
resin coupled with normal Rabbit IgG (ab171870, 
Abcam, UK) or antibody for p-STAT1 (ab109461, 
Abcam, UK) or MUC4 (PA5-23077, Thermo Fisher, 
USA). Later, immunocomplexes were generated. 
After being eluted using elution buffer (21009, 
Thermo Fisher, USA), the immunocomplexes were 
subjected to Western blot, by which the enrich-
ment of p-STAT1 or MUC4 was examined.

Western blot 

Total protein was isolated from fresh mouse 
ileum using RIPA lysis buffer supplemented with 
protease and phosphatase inhibitors (PPC1010, 
Sigma-Aldrich, USA). After quantification using 
a  BCA kit (A53227, Thermo Fisher, USA), the iso-
lated proteins (30 µg) were denatured at 98°C for 
10 min, and separated on 6% and 8% SDS-PAGE 
gel (P0686/P0688, Beyotime, China). The separated 
proteins were transferred onto a polyvinylidene flu-
oride (PVDF) membrane (1620256, BIO-RAD, Her-
cules, CA, USA), and then blocked in 5% BSA for  
1 h at room temperature. After washing with TBS-T 
(ab64204, Abcam, UK) three times, the membrane 
was incubated with primary antibodies for p-STAT1 
(ab109461, 89 kDa, 1 : 1000, Abcam, UK), MUC4 
(PA5-23077, 71 kDa, 1 : 5000, Thermo Fisher, USA) 
and GAPDH (ab8245, 37 kDa, 1 : 500, Abcam, UK) 
overnight at 4°C under gentle agitation. Later, the 
membrane was washed with TBS-T, followed by in-
cubation with Goat anti-Rabbit/Mouse IgG second-
ary antibodies (ab97051/ab6728, Abcam, UK) for  
2 h at room temperature. Protein bands were devel-
oped with Clarity Western ECL Substrate (1705060, 
BIO-RAD, USA) in an imaging system (LAS-3000, 
Fujifilm, Tokyo, Japan), and the band intensity was 
quantified using ImageJ software (3.0 version, Na-
tional Institutes of Health, Bethesda, MA, USA).

Cell isolation, culture and transfection

Primary mouse intestinal epithelial cells (IECs) 
were isolated from healthy male C57BL/6 mice  
(n = 6) as previously described [39]. In brief, mouse 
small intestines were dissected and washed with 
a solution containing 0.154 M NaCl and 1mM DTT. 
Intestinal segments were incubated with phos-
phate buffered saline (PBS; P5493, Sigma-Aldrich, 
USA) at 37°C for 15 min. Then, the PBS used for 
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incubation was supplemented with 1.5 mM EDTA 
(EDS, Sigma-Aldrich, USA) and 0.5 mM DTT, and 
incubated with the segments for an additional  
30 min, followed by obtaining IECs.

The isolated IECs were grown in DMEM 
(11966025, Thermo Fisher, USA) supplemented with 
10% fetal bovine serum (FBS; 12484028, Thermo 
Fisher, USA) and penicillin-streptomycin (15140122, 
100 U/ml-100 µg/ml, Thermo Fisher, USA) on fi-
bronectin-coated plates at 37°C with 5% CO2. 

STAT1 overexpression plasmids were synthe-
sized using pcDNA 3.1 (V79020, Thermo Fisher, 
USA), with empty vectors serving as the nega-
tive control (NC). pLKO.1-puro vectors (SHC016, 
Sigma-Aldrich, USA) were used to produce short 
hairpin RNA against MUC4 (shMUC4) (sense, 
5′-UAUUAAUCUCUUAUCUUCCAC-3′; antisense, 
5′-GGAAGAUAAGAGAUUAAUAGG-3′), and the 
negative control (shNC) of shMUC4 was set using 
empty pLKO.1-puro vectors. IECs were transfected 
with NC plus shNC or STAT1 overexpression plas-
mids plus shNC/shMUC4, with the aid of Lipofect-
amine 3000 transfection reagent (L3000015, Ther-
mo Fisher, USA). Briefly, IECs were inoculated on 
96-well plates at a density of 1 × 104 cells/well until 
the confluency of cells reached 80%. After dilution 
together with Opti-MEM and P3000 reagent, the 
plasmids and Lipofectamine 3000 transfection re-
agent were incubated together for 15 min at 37°C 
to generate gene-lipid complexes, which were later 
incubated with the cells for 48 h for transfection.

Cell infection

IECs seeded in 96-well plates were grown to 
produce an 80% confluent monolayer, and then 
challenged with 1 × 106 CFU/well EPEC for 1 h or 
2.5 h (only for flow cytometry) at 37°C [40].

Cell Counting Kit (CCK)-8 assay

Transfected IECs were seeded into 96-well 
plates and challenged with EPEC. Then, after the 
cells were adherent to the plate, 10 µl of CCK-8 
reagent (CA1210, Solarbio, Beijing, China) was 
added to each well, and incubated with cells for 
2 h at 37°C. The OD of each well was read at  
450 nm by a microplate reader (EMax Plus, Mo-
lecular Devices, Sunnyvale, CA, USA), and relative 
cell viability was calculated according to the for-
mula: Cell viability (%) =(ODtreatment group-ODblank group)/
(ODcontrol group-ODblank group) × 100.

Flow cytometry

Transfected IECs were subjected to apoptosis 
assay performed with Annexin V-FITC/PI Stain-
ing kits (ab14085, Abcam, UK). In brief, the cells 
were challenged with EPEC, and then digested for  
10 min with 0.25% EDTA-free trypsin (T6325, 

MACKLIN, China). Centrifugation at 2000 × g was 
conducted for 10 min to obtain 1 × 105 cells. After 
being flushed with PBS, the cells were resuspend-
ed in Annexin V binding buffer, and then supple-
mented with Annexin V-FITC (5 µl) and propidium 
iodide (PI) (5 µl). Cell incubation was performed 
for 5 min protected from light at room tempera-
ture. The cells were later transferred onto a flow 
cytometer (Cytoflex, Beckman Coulter, Brea, CA, 
USA) for apoptosis detection, and data analysis 
was implemented using FlowJo software (Tree 
Star, Ashland, OR, USA).

Immunofluorescence assay

The deparaffinized mouse ileum slices from 
the immunohistochemical test were dehydrat-
ed and received antigen repair. Transfected IECs 
were infected, fixated in 4% paraformaldehyde for  
15 min, and permeabilized using 0.3% Triton 
X-100 (X100, Sigma-Aldrich, USA) for 20 min. Both 
the slices and the cells were blocked in 5% BSA for  
30 min at room temperature, and incubated at 
4°C overnight with antibodies for MUC4 (PA5-
23077, Rabbit, Thermo Fisher, USA) and ZO-1 (for 
tissues, 14-9776-82, Rat, Thermo Fisher, USA)/(for 
cells, 40-2200, Rabbit, Thermo Fisher, USA). Later, 
they were probed with secondary antibodies, Goat 
anti-Rabbit IgG (H+L) conjugated with Alexa Fluor 
488 (A-11008, Thermo Fisher, USA) and Goat an-
ti-Rat IgG (H+L) conjugated with Alexa Fluor 594 
(A-11007, Thermo Fisher, USA), and then counter-
stained with DAPI (D9542, Sigma-Aldrich, USA). 
Images were developed using a confocal scanning 
microscope (ECLIPSE TI-SR, Nikon, Japan).

Quantitative reverse transcription 
polymerase chain reaction (qRT-PCR)

Total RNA was extracted from fresh mouse ile-
um as well as IECs using Trizol reagent (15596026, 
Thermo Fisher, USA), and then the total RNA con-
centration was determined using a  spectropho-
tometer (NanoDrop 2000, Thermo Fisher, USA). 
cDNA was generated using reverse transcription 
kits (K1622, Yaanda Biotechnology, Beijing, Chi-
na). Next, cDNA was amplified on a  PCR detec-
tion system (LightCycler 96, Roche, Indianapolis, 
IN, USA) with Eastep qPCR Master Mix (LS2062, 
Promega, Madison, WI, USA), with the primers 
listed in Table I, under the following thermocycle: 
40 circles of 95°C for 10 min, 95°C for 15 s and 
60°C for 1 min. Gene expression levels relative to 
the expression of the housekeeping gene GAPDH 
were calculated using the 2–ΔΔCt method [41].

Statistical analysis

A total of 18 male C57BL/6 mice were included 
in these experiments. Statistical analysis was con-
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ducted on a sample size of 6 for EPEC-infected mice, 
6 for control mice. The remaining 6 male C57BL/6 
mice were used to isolate IECs, which were used for 
subsequent experiments, and three parallel experi-
ments were set up for each group. GraphPad Prism 
(version 8.0, GraphPad Software Inc., San Diego, CA, 
USA) was used for statistical analysis. All data were 
presented as mean ± standard deviation (SD) from 
experiments repeated at least three times. Com-
parison between two groups was implemented via 
the independent-t test, while that among multiple 
groups was carried out using one-way analysis of 
variance (ANOVA). A difference was considered sta-
tistically significant when p < 0.05.

Results

p-STAT1, MUC4, ZO-1 and AMP-related 
genes showed low expression in the ileum 
of EPEC-infected mice

STAT1 downregulation has been reported to be 
concomitant with a  reduction in AMP formation, 
resulting in intestinal microenvironmental dis-
orders [22]. Moreover, AMPs are less distributed 
in mice bearing CRC as a result of MUC4 knock-
out [24]. We first investigated the expression of 
p-STAT1 and MUC4 in a mouse EPEC model. Im-
munohistochemical test results showed that in 
the ileum of EPEC-infected mice, p-STAT1 expres-
sion declined considerably (Figure 1 A). MUC4 
was found to be lowly expressed in the ileum of 
EPEC-infected mice through immunofluorescence 
assay (Figure 1 B). We also found that this was ac-
companied by decreased expression of ZO-1 (Fig-
ure 1 C). Furthermore, Western blot analysis reaf-
firmed that the expression levels of p-STAT1 and 
MUC4 both diminished in the ileum of EPEC-in-
fected mice (Figure 2 A, p < 0.001). Then, to deter-
mine how AMP level is affected in EPEC-induced 
intestinal infection, AMP-related gene expression 
levels were analyzed by qRT-PCR. The results re-
vealed that the expression levels of Defa1, Defa4, 

Defa5, Camp and Lyz1 all diminished in the ile-
um of mice after EPEC infection (Figures 2 B–F, p < 
0.001). In conclusion, we verified that the expres-
sion levels of p-STAT1, MUC4, ZO-1 and AMP-relat-
ed gene were lower in the EPEC-infected mice, and 
STAT1 can positively regulate MUC4 expression 
[31]. Therefore, we next explored whether STAT1 
and MUC4 could interact.

Co-IP assay was then performed to investigate 
the interaction between p-STAT1 and MUC4. The 
results proved that antibodies for p-STAT1 en-
riched MUC4 proteins and antibodies for MUC4 
enriched p-STAT1 proteins in the ileum of both 
control and EPEC-infected mice (Figure 2 G). This 
indicated that p-STAT1 and MUC4 can interact 
with each other. Then, through in vitro experi-
ments, we explored the STAT1/MUC4 pathway in 
relation to IEC viability, apoptosis and related in-
flammatory factors.

STAT1/MUC4 pathway was downregulated 
in EPEC-induced IECs and its forced 
upregulation resisted EPEC-induced IEC 
viability decreases

IECs were infected with EPEC to establish in-vi-
tro intestinal infections, where the role of the 
STAT1/MUC4 pathway in EPEC-induced intesti-
nal infections was examined. Transfection with 
STAT1 overexpression plasmids led to increased 
expression of STAT1 (Figure 3 A, p < 0.001), and 
MUC4 expression was knocked down by transfec-
tion with shMUC4 (Figure 3 B, p < 0.001) in IECs. 
STAT1 expression declined with EPEC infection in 
IEC (Figure 3 C, p < 0.001), which was reversed by 
STAT1 overexpression plasmid transfection (Figure 
3 C, p < 0.001). MUC4 knockdown had no signif-
icant impact on the transfection-mediated STAT1 
overexpression in EPEC-infected IECs (Figure 3 C). 
EPEC infection resulted in MUC4 downregulation 
in IECs (Figure 3 D, p < 0.001). STAT1 overexpres-
sion abrogated EPEC infection-induced MUC4 
downregulation (Figure 3 D, p < 0.001), while such 

Table I. Primers used in quantitative reverse transcription polymerase chain reaction for related genes 

Genes Species Forward Reverse

STAT1 Mouse 5′-TCACAGTGGTTCGAGCTTCAG-3′ 5′-GCAAACGAGACATCATAGGCA-3′

MUC4 Mouse 5′-CCTCCTCTTGCTACCTGATGC-3′ 5′-GGAACTTGGAGTATCCCTTGTTG-3′

IL-1β Mouse 5′-GCAACTGTTCCTGAACTCAACT-3′ 5′-ATCTTTTGGGGTCCGTCAACT-3′

TNF-α Mouse 5′-CCCTCACACTCAGATCATCTTCT-3′ 5′-GCTACGACGTGGGCTACAG-3′

IL-6 Mouse 5′-TAGTCCTTCCTACCCCAATTTCC-3′ 5′-TTGGTCCTTAGCCACTCCTTC-3′

Defa1 Mouse 5′-AGAAGAGGACCAGGCCGTAT-3′ 5′-GAAGTGCCTTCTGGGTCTCC-3′

Defa4 Mouse 5′-GAGTTCGTGGGACTTGTGGA-3′ 5′-CATCTGCATGTTCAGCGGC-3′

Defa5 Mouse 5′-TGGATGCTTGCAGTCTCCTG-3′ 5′-GCCAAGGGAGCCACATTACT-3′

Lyz1 Mouse 5′-GAGACCGAAGCACCGACTATG-3′ 5′-CGGTTTTGACATTGTGTTCGC-3′

GAPDH Mouse 5′-AGGTCGGTGTGAACGGATTTG-3′ 5′-TGTAGACCATGTAGTTGAGGTCA-3′
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Figure 1. Phosphorylated-signal transducer and activator of transcription 1 (p-STAT1), mucin 4 (MUC4) and 
zonula occludens-1 (ZO-1) were lowly expressed in the ileum of enteropathogenic E. coli (EPEC)-infected mice.  
A–C – C57BL/6 mice were orally challenged with 100 µl of DMEM containing 1010 CFU/ml EPEC. A  – Expres-
sion of p-STAT1 in the ileum was detected by immunohistochemical test (magnification: 100×; scale bar: 50 µm).  
B, C – Expression levels of MUC4 and ZO-1 in the ileum were determined by immunofluorescence assay (magnifi-
cation: 400×; scale bar: 50 µm) (n = 6)

 Con EPEC

 Con EPEC

 Con EPEC

A

B

C

10
0×

40
0×

40
0×

an effect of STAT1 overexpression was attenuat-
ed by MUC4 knockdown (Figure 3 D, p < 0.001). 
Moreover, decreased viability of IECs after EPEC in-
fection was detected (Figure 3 E, p < 0.001). STAT1 
overexpression resisted the EPEC-induced IEC cell 

viability decrease (Figure 3 E, p < 0.001); neverthe-
less, MUC4 knockdown mitigated the enhancing 
effect of STAT1 overexpression on the viability of 
EPEC-infected IECs (Figure 3 E, p < 0.05).
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Figure 2. Antimicrobial peptide (AMP)-related gene expression levels decreased along with downregulation of 
the phosphorylated-signal transducer and activator of transcription 1 (p-STAT1)/mucin 4 (MUC4) complex in the 
ileum of enteropathogenic E. coli (EPEC)-infected mice. A–G – C57BL/6 mice were orally challenged with 100 µl of 
Dulbecco’s modified Eagle medium (DMEM) containing 1010 CFU/ml EPEC. A – Expression levels of p-STAT1 and 
MUC4 in the ileum were analyzed using Western blot, with GAPDH serving as the reference gene. B–F – Expression 
levels of Defa1, Defa4, Defa5, Camp and Lyz1 in the ileum were analyzed using quantitative reverse transcription 
polymerase chain reaction (qRT-PCR), with GAPDH serving as the reference gene. G – In the ileum, the binding of 
STAT1 to MUC4 was examined by co-immunoprecipitation assay. ###P < 0.001; #compared the values of the con-
nected two groups (n = 6)
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Figure 3. Signal transducer and activator of transcription 1 
(STAT1)/mucin 4 (MUC4) pathway was downregulated in en-
teropathogenic E. coli (EPEC)-induced mouse intestinal epi-
thelial cells (IEC) and its forced upregulation resisted EPEC-in-
duced IEC viability decrease. A, B – The expression levels of 
STAT1 and MUC4 in IECs transfected with STAT1 overexpres-
sion plasmids/negative control (NC) or short hairpin RNA 
against MUC4 (shMUC4)/short hairpin RNA against negative 
control (shNC) were analyzed using quantitative reverse tran-
scription polymerase chain reaction (qRT-PCR), with GAPDH 
serving as the reference gene. C–E – IECs were transfected 
with NC plus shNC or STAT1 overexpression plasmids plus 
shNC/shMUC4, followed by EPEC (1 × 106 CFU/well) infection. 
C, D – Expression levels of STAT1 and MUC4 in the IECs were 
analyzed using qRT-PCR, with GAPDH serving as the refer-
ence gene. E – The viability of the IECs was measured by Cell 
Counting Kit-8 assay. #p < 0.05; ###p < 0.001; #compared the 
values of the connected two groups (n = 3)
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Forced upregulation of STAT1/MUC4 
pathway offset EPEC-induced apoptosis 
promotion and release of proinflammatory 
cytokines in IEC

Subsequently, EPEC infection was observed to 
induce apoptosis of IECs (Figures 4 A, B, p < 0.001), 
which was offset by STAT1 overexpression (Figures 
4 A, B, p < 0.001). MUC4 knockdown attenuated 

the inhibiting effect of STAT1 overexpression on 
apoptosis of EPEC-infected IECs (Figures 4 A, B,  
p < 0.001). In addition, the levels of proinflammato-
ry cytokines (IL-1, TNF-α and IL-6) rose in IEC follow-
ing EPEC infection (Figures 4 C–E, p < 0.001). STAT1 
overexpression caused downregulation of IL-1, 
TNF-α and IL-6 in EPEC-infected IECs (Figures 4 C–E, 
p < 0.001), but the downregulation was mitigated 
by MUC4 knockdown (Figures 4 C–E, p < 0.05).
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Figure 4. Forced upregulation of signal transducer and activator of transcription 1 (STAT1)/mucin 4 (MUC4) path-
way offset enteropathogenic E. coli (EPEC)-induced apoptosis promotion and release of proinflammatory cytokines 
in IEC. A–E – mouse intestinal epithelial cells (IECs) were transfected with negative control (NC) plus short hairpin 
RNA against negative control (shNC) or STAT1 overexpression plasmids plus shNC/short hairpin RNA against MUC4 
(shMUC4), followed by EPEC (1 × 106 CFU/well) infection. A, B – Apoptosis of the IECs was detected by flow cytom-
etry. C–E – Expression levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in 
the IECs were analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR), with GAPDH 
serving as the reference gene. #p < 0.05; ##p < 0.001; ###p < 0.001; # compared the values of the connected two 
groups (n = 3)

PI – propidium iodide, FITC – fluorescein isothiocyanate.

PI

FITC

 Con EPEC EPEC + NC + shNC EPEC + STAT1 + shNC EPEC + STAT1 + shMUC4

Forced upregulation of STAT1/MUC4 
pathway resisted EPEC-induced ZO-1 
downregulation in IEC

Through immunofluorescence assay, the ex-
pression of ZO-1 was detected to be reduced by 

EPEC infection in IEC, and this ZO-1 expression re-
duction could be abrogated by STAT1 overexpres-
sion (Figure 5). MUC4 knockdown weakened the 
effect of STAT1 overexpression on ZO-1 expres-
sion in EPEC-infected IECs through suppressing 
ZO-1-positive fluorescence (Figure 5).
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Figure 5. Forced upregulation of signal transducer and activator of transcription 1 (STAT1)/mucin 4 (MUC4) path-
way resisted enteropathogenic E. coli (EPEC)-induced zonula occludens-1 (ZO-1) downregulation in mouse intesti-
nal epithelial cells (IEC). IECs were transfected with negative control (NC) plus short hairpin RNA against negative 
control (shNC) or STAT1 overexpression plasmids plus shNC/short hairpin RNA against MUC4 (shMUC4), followed 
by EPEC (1 × 106 CFU/well) infection, and the expression of ZO-1 in the IECs was determined by immunofluores-
cence assay (magnification: × 400; scale bar: 50 µm) (n = 3)

DAPI – 4′,6-diamidino-2-phenylindole.
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Forced upregulation of STAT1/MUC4 
pathway reversed EPEC-induced AMP-
related gene downregulation in IEC

Finally, whether and how the STAT1/MUC4 
pathway influences AMP formation in in-vitro in-
testinal infection were investigated. Upon EPEC 
infection, the expression levels of AMP-related 
genes (Defa1, Defa4, Defa5, Camp and Lyz1) all 
decreased in IECs (Figures 6 A–E, p < 0.001). STAT1 
overexpression observably upregulated the ex-
pression levels of these AMP-related genes, and 

reversed the EPEC-induced negative effect on 
AMP formation in IECs (Figures 6 A–E, p < 0.001). 
However, MUC4 knockdown offset the STAT1 
overexpression-induced upregulation of these 
AMP-related genes in EPEC-infected IECs (Figures 
6 A–E, p < 0.01).

Discussion 

EPEC infection remains a  public health con-
cern in developing countries, leading to diarrheal 
diseases with a risk of death [42]. AMPs can act 
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Figure 6. Forced upregulation of signal transducer and ac-
tivator of transcription 1 (STAT1)/mucin 4 (MUC4) pathway 
reversed enteropathogenic E. coli (EPEC)-induced antimicro-
bial peptide (AMP)-related gene downregulation in mouse 
intestinal epithelial cells (IEC). A–E – IECs were transfected 
with negative control (NC) plus short hairpin RNA against 
negative control (shNC) or STAT1 overexpression plasmids 
plus shNC/short hairpin RNA against MUC4 (shMUC4), fol-
lowed by EPEC (1 × 106 CFU/well) infection, and the expres-
sion levels of Defa1, Defa4, Defa5, Camp and Lyz1 in the il-
eum were analyzed using quantitative reverse transcription 
polymerase chain reaction (qRT-PCR), with GAPDH serving 
as the reference gene. ##p < 0.001; ###p < 0.001; #compared 
the values of the connected two groups (n = 3)
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as endogenous antibiotics to direct bactericidal 
activity, thereby reducing epithelial barrier inju-
ry caused by EPEC infection [43]. In the present 
study, the STAT1/MUC4 pathway was identified as 
the upstream mechanism of AMP-induced protec-
tion against EPEC infection in intestinal epithelial 
barriers.

Inhibited STAT1 signaling is associated with the 
exacerbation of enteropathogenic bacterial infec-
tion-caused intestinal hyperplasia and diarrhea in 
mice [44]. In mouse models of chronic alcohol-in-
duced intestinal injury, lack of p-STAT1 and of total 
STAT1 in the ileum co-occurs with downregulation 
of small intestinal AMPs, resulting in disrupted 
gut microbiota homeostasis [22]. The above find-
ings suggested that STAT1 downregulation or 
inactivation may be associated with microbiota 
homeostasis disruption following bacterial infec-
tion. Consistently, our study showed that STAT1 
phosphorylation diminished in the ileum of mice 
following EPEC infection. In contrast, Ceponis et al. 
found that EPEC infection in epithelial cells could 
not eliminate STAT1 tyrosine phosphorylation in-
duced by IFN-g [45]. However, EPEC exhibits con-
siderable genomic diversity, being represented in 
at least 10 different phylogenomic lineages [46], 
so EPEC with different phenotypes may have dif-
ferent effects. In our study, the STAT1 mRNA level 
declined in IEC after EPEC infection, which, togeth-
er with Ceponis’s results, implies that EPEC infec-
tion reduces STAT1 mRNA expression but is unable 
to affect STAT1 phosphorylation. Therefore, the 
decrease of STAT1 phosphorylation in the ileum 
of mice following EPEC infection may be attribut-
ed to the decreased level of STAT1 designated to 
undergo phosphorylation. This also justifies the 
discrepancy between our and Ceponis’s results. 
Furthermore, IFN-g, which can elicit STAT1 acti-
vation, is an important cytokine against infection 
by viral and microbial pathogens in host defense 
[47], and is induced in mice and humans following 
EPEC injection [48, 49]. The EPEC burden is higher 
in immunocompromised patients than in healthy 
adults [50]. These observations suggested that in 
healthy adults, host defense is activated to upreg-
ulate IFN-g, which activates STAT1 and thus pre-
vents EPEC infection. 

The attachment of EPEC on the epithelium dis-
rupts the normal cellular process [51]. EPEC en-
codes a subset of effectors that induce apoptosis 
of epithelial cells to cause cell death and barrier 
dysfunction [52, 53]. Moreover, inflammation of 
the intestinal mucosa occurs after EPEC infection, 
where EPEC is involved in stimulation of the proin-
flammatory cytokine TNF-α production to pro-
mote myosin light chain (MLC) phosphorylation, 
thereby contributing to barrier dysfunction [8, 54]. 
Also, following EPEC infection, rabbit enterocytes 
and rat colonic mucosa scrapings have been dis-

covered to exhibit upregulated proinflammatory 
cytokines, IL-1β and IL-6 [55, 56], whose release 
is mediated by TNF-α [57]. In our study, we over-
expressed STAT1 in order to achieve prominent 
STAT1 activation in IECs, and found that EPEC-in-
duced apoptosis and upregulation of TNF-α, IL-1β 
and IL-6 were weakened by STAT1 overexpression.

Epithelial barrier dysfunction manifests al-
teration of tight junctions [43], which act as the 
barrier required to maintain polarity that aids the 
directional diffusion of solutes [58]. ZO-1 is a cyto-
plasmic scaffolding protein that constitutes tight 
junctions along with other membrane proteins [59], 
and plays a  dispensable role for barrier function 
[60]. In our study, low ZO-1 expression caused by 
EPEC infection was reversed by STAT1 overexpres-
sion in IECs. The above results collectively indicated 
that STAT1 overexpression mitigated EPEC-induced 
intestinal epithelial barrier dysfunction.

In addition, Paneth cells are specialized cells in 
the intestinal epithelium [14], which assist the in-
testinal mucosa to maintain the functional intesti-
nal epithelial barrier by secreting AMPs to modulate 
innate immunity [61], or directly kill their target bac-
teria [62]. Our study showed that in the ileum of 
mice and IECs following EPEC infection, p-STAT1 and 
STAT1 downregulation was concomitant with reduc-
tion of AMP formation, as reflected by decreased 
levels of AMP-related genes (Defa1, Defa4, Defa5, 
Camp and Lyz1), which is in line with their status 
in alcohol-induced intestinal injury [22]. Moreover, 
we observed that STAT1 overexpression facilitated 
AMP formation. AMPs are considered as therapeutic 
agents for treating infections caused by untreatable 
microorganisms. According to this and our results 
above, STAT1 activation is presumed to prevent 
EPEC infection by facilitating AMP formation.

The expression of MUC4, a  member of the 
transmembrane mucin family, increases along 
with decreased epithelial paracellular permeability 
[63]. STAT1 can transcriptionally upregulate MUC4 
level [31], which was reaffirmed in our study. Also, 
MUC4 protects epithelial surfaces against infec-
tions and injury [64]. MUC4 is lowly expressed 
in intestinal epithelial cells from patients with 
inflammatory bowel disease [65]. Notably, knock-
out of MUC4 leads to less AMP formation in CRC 
mice [24]. Our study revealed that MUC4 level de-
creased with STAT1 phosphorylation inhibition in 
the ileum of mice and IECs after EPEC infection, 
and MUC4 knockdown offset the effects of STAT1 
overexpression on apoptosis, inflammation, and 
AMP formation in EPEC-infected IEC.

Previous research also demonstrated that JAK/
STAT-1 plays a critical role in the regulation of uro-
pathogenic E. coli invasion [66, 67]. Additionally, the 
oral antimicrobial peptide Mastoparan X alleviates 
intestinal inflammation caused by enterohemor-
rhagic E. coli and regulates the gut microbiota [68]. 
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Moreover, E. coli is an important cause of sponta-
neous bacterial peritonitis (SBP), which is one of 
the major complications of liver cirrhosis, whose 
clinical symptoms include diarrhea. Enhancing in-
testinal barrier function is a novel strategy for the 
treatment of cirrhosis, as impaired intestinal barrier 
function can lead to translocation of intestinal bac-
teria [69]. Therefore, further studies are required 
to determine whether the mechanism of STAT1/
MUC4 activation promotes antimicrobial peptide 
production to reduce intestinal epithelium barrier 
injury in other types of diarrhea-induced microor-
ganisms. Furthermore, noncommunicable diarrhea 
can be caused by toxins, chronic diseases, or anti-
biotics [70]. Whether this mechanism also exists in 
non-infectious diarrhea needs further study.

There are some limitations in this study. EPEC 
may change the intestinal flora, and we did not 
study the effects of STAT1/MUC4 on the micro-
biota, which should be studied in the future. In 
addition, whether STAT1/MUC4 affects intestinal 
epithelium barrier injury and will cause transloca-
tion of microorganisms needs further research.

In conclusion, the present study demonstrated 
that the STAT1/MUC4 pathway is downregulated 
in intestinal epithelium after EPEC infection, and 
its activation facilitates AMP formation, partaking 
in the prevention of EPEC-induced intestinal epi-
thelium infection.
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