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A b s t r a c t

Introduction: Previous studies have reported a  potential association be-
tween trimethylamine N-oxide (TMAO) and Parkinson’s disease (PD). The 
objective of this study was to examine the potential relationship between 
the levels of circulating TMAO and its precursors and the risk of PD using 
a two-sample Mendelian randomization (MR) approach.
Material and methods: We aggregated data from three genome-wide as-
sociation studies (International Parkinson’s Disease Genomics Consortium, 
Parkinson’s Research: The Organized Genetics Initiative and GenePD, and 
FinnGen) to extract single-nucleotide polymorphisms (SNPs) associated with 
circulating concentrations of TMAO, choline, carnitine, and betaine. These 
SNPs were employed as instrumental variables in a  random-effects model 
to evaluate the causal relationship between circulating concentrations of 
TMAO and its precursors and the risk of Parkinson’s disease, by estimat-
ing odds ratios with accompanying 95% confidence intervals. The primary 
analysis employed the inverse variance-weighted (IVW) method, which was 
complemented with MR-Egger regression analysis. 
Results: The analysis using the IVW method, which aggregated data from 
the three databases, did not show any causal relationship between circulat-
ing concentrations of TMAO and its precursors, and the risk of PD (p > 0.05). 
This finding was further confirmed by the results of the MR-Egger analysis. 
A  sensitivity analysis demonstrated that the results were not influenced 
by any biases, and a  heterogeneity test indicated no significant variation 
among the SNPs.
Conclusions: This study did not identify any conclusive evidence of a causal 
association between the circulating concentrations of TMAO or its precur-
sors and the risk of PD. Further investigation is warranted to determine 
whether such an association indeed exists.
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Introduction

Parkinson’s disease (PD) is a progressive neu-
rodegenerative disorder characterized by resting 
tremors, muscle rigidity, and bradykinesia (slow-
ness of movement) [1]. According to the World 
Health Organization (WHO) 2023 report, the dis-
ability-adjusted life years (DALYs) and the num-
ber of deaths attributed to PD have increased  
by 81% and 100%, respectively, since the ear-
ly 20th century [2]. As of 2021, PD affected more 
than 6 million individuals globally, and a cure or 
preventive treatment for the disease remains elu-
sive [3]. Furthermore, the majority of PD cases are 
sporadic, underscoring the need for increased re-
search efforts to identify non-genetic factors in its 
development [4]. 

The gut microbiota plays a  significant role in 
influencing the risk of developing PD [5–7]. Ad-
ditionally, trimethylamine N-oxide (TMAO), a mi-
crobial amine metabolite originating from dietary 
components, can be detectable in the cerebrospi-
nal fluid, suggesting its potential involvement in 
the development of neurodegenerative diseases 
[8–10]. However, studies investigating the po-
tential use of circulating concentrations of TMAO 
and its precursors as biomarkers or therapeutic 
targets for PD have yielded conflicting results due 
to confounding factors. Thus, it remains uncertain 
whether circulating concentrations of TMAO and 
its precursors are linked to the risk of PD. There-
fore, further research is needed to clarify this as-
sociation.

Mendelian randomization (MR) analysis utilizes 
genetic variations as instrumental variables (IVs) 
to investigate the causal relationship between an 
exposure and an outcome, leveraging the strong 
association between IVs and exposure factors 
[11]. This approach offers a more precise assess-
ment of the impact of an exposure factor on the 
risk of disease occurrence compared to other 
analyses by reducing bias arising from reverse 
causality [12]. Additionally, employing appropriate 
published genetic data as IVs facilitates efficient 
MR analyses, as they reutilize previously obtained 
data and yield novel insights [13].

In this study, we conducted a comprehensive 
assessment of the relationship between circulat-
ing concentrations of TMAO and its precursors 
and the risk of PD. We utilized a two-sample MR 
analysis, which involved aggregating data from 
three genome-wide association study (GWAS) 
databases: the International Parkinson’s Dis-
ease Genomics Consortium (IPDGC), Parkinson’s 
Research: The Organized Genetics Initiative 
(PROGENI) and GenePD, and FinnGen. For this 
analysis, we utilized relevant single-nucleotide 
polymorphisms (SNPs) as genetic instrumental 
variables (IVs).

Material and methods

Data source

All the data were obtained from previously 
published GWAS. The SNPs associated with circu-
lating concentrations of TMAO, betaine, carnitine, 
and choline, along with their respective summary 
data, were retrieved from the study conducted by 
Rhee et al. [14]. The PD data were sourced from 
the IEU OpenGWAS database, which is an exten-
sive epidemiological unit of the Medical Research 
Council (https://gwas.mrcieu.ac.uk). We carefully 
organized and summarized the available research 
data, ensuring the independence of the study 
populations. Three databases were selected for 
the present study to investigate the relationship 
between circulating concentrations of TMAO, be-
taine, carnitine, choline, and the risk of PD. Oth-
er databases were excluded due to factors such 
as redundant population samples, an excessive 
admixture between European and Asian popula-
tions, and considerations. The selected datasets 
comprised a  total of 36,652 cases and 666,542 
controls (Supplementary Table SI), with no be-
tween-sample overlap in terms of exposure and 
outcome. The original studies included in these 
datasets had obtained ethical approval from their 
respective institutions. As our study relied solely 
on publicly available data from these studies, no 
additional ethical approval was needed. Further-
more, the analysis was limited to populations of 
European ancestry to minimize potential con-
founding factors associated with race.

IVs

The independent variables (IVs) were deter-
mined for each metabolite using the subsequent 
screening process.

A  significance level of p < 5 × 10–5 was em-
ployed as the inclusion criterion to guarantee the 
attainment of statistically significant associations.

Linkage disequilibrium (LD) analysis was con-
ducted for every significant SNP associated with 
the circulating concentrations of each metabolite. 
The analysis followed the procedure outlined by 
the European 1000 Genome Project Reference 
Group [15] and implemented stringent default pa-
rameters (r2 = 0.001, kb = 10,000). In cases where 
LD was identified, only the SNP with the lowest 
(i.e., most significant) p-value was retained as an 
independent genetic variant.

MR analysis

Following the association analysis of each 
SNP, we calculated the Wald ratio. The Wald ra-
tios were then combined and evaluated using the 
inverse variance weighted (IVW) method. Spe-

https://gwas.mrcieu.ac.uk
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cifically, each SNP’s Wald ratio was weighted by 
the inverse of its IV variance in order to obtain 
an overall IV-based estimate of causality. This ap-
proach allowed us to disregard any invalid genetic 
IVs and perform a  weighted regression analysis 
[16]. Additionally, we utilized an MR-Egger regres-
sion to validate and assess the stability of our MR 
results. The intercept of an Egger regression serves 
as an indicator for the presence of pleiotropy, with 
a non-zero intercept suggesting the possibility of 
horizontal pleiotropy, which could introduce bias 
in the IVW results [17]. 

As shown in Figure 1, the IVs in this MR analy-
sis were required: 
1) �to be associated with the levels of the exposure 

factor; 
2) �to be independent of any confounding factors 

related to the exposure and PD; 
3) �to avoid influencing PD through pathways other 

than the exposure, it is important to adhere to 
specific measures [18].
All analyses were performed using the 

TwoSampleMR package in R version 4.1.3 [19]. 
The statistical significance level was defined as 
p < 0.05. Details of the package can be found at 
https://mrcieu.github.io/TwoSampleMR/refer-
ence/clump_data.html.

Sensitivity analysis

The reliability of the results was assessed using 
the leave-one-out method. In this approach, each 
SNP was systematically removed one by one to 
determine whether any of them acted as outlier 
IVs, exerting a strong influence on the estimated 
causal effect. If the removal of SNPs individually 
had minimal impact on the results, it indicated 
that our findings were robust and not heavily de-
pendent on any single IV.

Results

IVs

We identified a total of 51, 29, 29, and 42 SNPs 
associated with the levels of TMAO, choline, carni-
tine, and betaine, respectively, in the circulation. All 
of these SNPs achieved the significance threshold 
for genome-wide exposure analysis (p < 5 × 10–5, 
r2 < 0.001, and kb = 10,000), which is widely ac-
cepted in the field. To ensure the validity of our 
findings, we calculated the F-statistic for each SNP 
and found that all of them exceeded the value of 
10, indicating that they were not likely to introduce 
weak instrument bias (Supplementary Table SII). 

MR analysis

The MR analysis conducted on data obtained 
from the three databases revealed no significant 

causal relationship between circulating concen-
trations of TMAO and its precursors and the risk 
of PD (all p > 0.05) (Figure 2). This finding was 
corroborated by other analytical approaches, such 
as sample mode, weighted mode, weighted medi-
an, and MR-Egger regression, all of which yielded 
non-significant results (all p > 0.05) (Supplemen-
tary Table SIII).

Assessment of the relationship between 
circulating concentrations of TMAO and its 
precursors and the risk of PD in the IPDGC 
database

The primary analysis using the IVW method in 
MR did not find any evidence of a causal relation-
ship between circulating concentrations of TMAO 
and its precursors, namely choline, carnitine, and 
betaine, and the risk of PD. The results of the 
analysis showed that the odds ratios (ORs) and 
95% confidence intervals (CIs) for TMAO–PD, cho-
line–PD, carnitine–PD, and betaine–PD were 1.002 
(0.975–1.029, p = 0.882), 0.988 (0.957–1.020,  
p = 0.467), 1.021 (0.985–1.058, p = 0.254), and 
1.021 (0.988–1.054, p = 0.215), respectively. Ad-
ditional analytical methods also supported these 
findings, confirming that there was no significant 
causal association between circulating concentra-
tions of TMAO and its precursors and the risk of PD 
in the population under study, which was based on 
the data obtained from the International Parkinson 
Disease Genomics Consortium (IPDGC) database 
(all p -values > 0.05; Supplementary Table SIII).

Assessment of the relationship between 
circulating concentrations of TMAO and 
its precursors and the risk of PD in the 
PROGENI and GenePD database

The primary IVW analysis conducted using MR 
did not find any evidence to support a causal re-

Figure 1. Graphical representation of the MR as-
sumptions, i.e. (i) relevance, (ii) independence, (iii) 
exclusion restriction, in a  two-sample MR design. 
The continuous lines represent the relationships 
that hold in MR analysis. Dashed lines depict the 
association that should not be present to satisfy 
the second and third assumptions. SNP–exposure 
associations are derived in Sample 1, and SNP–out-
come associations in Sample 2

Confounders

Instrumental 

variable  

(SNPs)

TMAO and its 

precursors

Parkinson’s 

disease

(2)

(1)

(3)



Bei Zhang, Ruijie Zhang, Huiming Ren, Qiongfeng Guan, Weinv Fan, Liyuan Han

1988� Arch Med Sci 6, December / 2024

lationship between circulating concentrations of 
TMAO and its precursors and the risk of PD. The 
results of the analysis are as follows: TMAO–PD: 
OR = 1.005 (95% CI: 0.989–1.021), p = 0.554; 
choline–PD: OR = 1.005 (95% CI: 0.934–1.081), 
p = 0.900; carnitine–PD: OR = 1.000 (95% CI: 
0.962–1.040), p = 0.998; and betaine–PD: OR = 
1.003 (95% CI: 0.957–1.052), p = 0.894. Further-
more, additional analytical methods confirmed 
that there was no statistically significant causal 
association between TMAO and its precursors and 
the risk of PD in the population studied, based on 
data obtained from the PROGENI and GenePD da-
tabases (all p > 0.05; Supplementary Table SIII).

Assessment of the relationship between 
circulating concentrations of TMAO and 
its precursors and the risk of PD in the 
FinnGen database

The primary IVW analysis using MR did not 
find any evidence supporting a causal relationship 
between circulating concentrations of TMAO and 
its precursors and the risk of PD. Specifically, the 
ORs and 95% CIs for the relationships TMAO–PD, 
choline–PD, carnitine–PD, and betaine–PD were 
as follows: 0.985 (0.980–1.022, p = 0.413), 1.041 
(0.971–1.117, p = 0.254), 1.015 (0.963–1.071,  
p = 0.577), and 0.991 (0.947–1.037, p = 0.700), re-
spectively. These results do not support the pres-

ence of causal relationships between circulating 
concentrations of TMAO and its precursors and 
the risk of PD in the population. Furthermore, the 
findings of other MR analyses also support this 
conclusion (Supplementary Table SIII).

Sensitivity analysis

Cochran’s Q test was conducted to evaluate 
heterogeneity, indicating no significant heteroge-
neity among the studies (Table I). The MR-Egger 
regression analysis detected no evidence of hor-
izontal pleiotropy for any of the SNPs, with all 
p-values exceeding 0.05 (Table I). Moreover, the 
leave-one-out sensitivity analysis demonstrated 
that no individual SNP exerted a  substantial in-
fluence on the overall findings (Supplementary  
Table SIV). Taken together, these findings under-
score the robustness of the MR analysis results, 
indicating minimal impact from both heterogene-
ity and horizontal pleiotropy.

Discussion

This study employed a  two-sample MR anal-
ysis to examine the potential causal association 
between circulating levels of TMAO, choline, car-
nitine, betaine and the risk of PD in populations 
represented by one of three PD-related GWAS da-
tabases. The findings of this study do not support 
a causal relationship between circulating concen-

Figure 2. Causal effects of TMAO and its precursors on Parkinson’s disease

Outcome 	 Exposure 	 OR (95% CI) 	 P-value 

PD (IPDG) 	 Trimethylamine_N_oxide 	 1.002 (0.9.75–1.029) 	 0.882 

PD (PROGENI and GenePD) 	 Trimethylamine_N_oxide 	 1.005 (0.989–1.021) 	 0.554 

PD (FinnGen) 	 Trimethylamine_N_oxide 	 0.985 (0.948–1.022) 	 0.413 

PD (IPDG) 	 Choline 	 0.988 (0.957–1.02) 	 0.467 

PD (PROGENI and GenePD) 	 Choline 	 1.005 (0.934–1.081) 	 0.900 

PD (FinnGen) 	 Choline 	 1.041 (0.971–1.117) 	 0.254 

PD (IPDG) 	 Carnitine 	 1.021 (0.985–1.058) 	 0.255 

PD (PROGENI and GenePD) 	 Carnitine 	 1.000 (0.962–1.039) 	 0.998 

PD (FinnGen) 	 Carnitine 	 1.015 (0.963–1.071) 	 0.577 

PD (IPDG) 	 Betatine 	 1.021 (0.988–1.054) 	 0.215 

PD (PROGENI and GenePD) 	 Betatine 	 1.003 (0.957–1.052) 	 0.894 

PD (FinnGen) 	 Betatine 	 0.991 (0.947–1.037) 	 0.700 

	 0.92 	0.96 	 1 	 1.04 	1.08 

OR
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Table I. Heterogeneity and pleiotropic tests of Mendelian randomization analysis

Outcome Exposure Method Heterogeneity test Pleiotropic test

Q P-value Egger-intercept P-value

PD (IPDG) TMAO MR-Egger 42.651 0.691 –0.00683 0.263 

PD (IPDG) TMAO Inverse variance 
weighted

43.933 0.678 

PD (PROGENI and GenePD) TMAO MR-Egger 0.173 1.000 –0.00064 0.925 

PD (PROGENI and GenePD) TMAO Inverse variance 
weighted

0.182 1.000 

PD (FinnGen) TMAO MR-Egger 72.194 0.017 –0.00115 0.903 

PD (FinnGen) TMAO Inverse variance 
weighted

72.216 0.022 

PD (IPDG) Choline MR-Egger 19.799 0.872 0.00057 0.942 

PD (IPDG) Choline Inverse variance 
weighted

19.805 0.899 

PD (PROGENI and GenePD) Choline MR-Egger 0.002 0.964 0.00336 0.957 

PD (PROGENI and GenePD) Choline Inverse variance 
weighted

0.007 0.997 

PD (FinnGen) Choline MR-Egger 34.662 0.119 0.00357 0.835 

PD (FinnGen) Choline Inverse variance 
weighted

34.721 0.146 

PD (IPDG) Carnitine MR-Egger 23.531 0.547 0.01577 0.129 

PD (IPDG) Carnitine Inverse variance 
weighted

25.994 0.463 

PD (PROGENI and GenePD) Carnitine MR-Egger 0.001 1.000 0.00008 0.998 

PD (PROGENI and GenePD) Carnitine Inverse variance 
weighted

0.001 1.000 

PD (FinnGen) Carnitine MR-Egger 23.228 0.673 –0.00639 0.668 

PD (FinnGen) Carnitine Inverse variance 
weighted

23.416 0.712 

PD (IPDG) Betaine MR-Egger 28.264 0.848 –0.00687 0.370 

PD (IPDG) Betaine Inverse variance 
weighted

29.088 0.850 

PD (PROGENI and GenePD) Betaine MR-Egger 0.256 0.968 –0.00751 0.757 

PD (PROGENI and GenePD) Betaine Inverse variance 
weighted

0.371 0.985 

PD (FinnGen) Betaine MR-Egger 32.888 0.570 –0.00993 0.376 

PD (FinnGen) Betaine Inverse variance 
weighted

33.691 0.579 

IPDG – International Parkinson’s Disease Genomics Consortium, PD – Parkinson’s disease, TMAO – trimethylamine N-oxide.

trations of TMAO and its precursor molecules and 
the risk of PD. Nonetheless, it is important to ex-
ercise caution when interpreting these MR results, 
as such a relationship has not been independently 
evaluated in other investigations. Consequently, 
further research and validation efforts are neces-
sary to ascertain the presence or absence of such 
a relationship. 

The association of circulating concentrations 
of TMAO and its precursors with the risk of PD 
has been investigated in other studies. However, 
these studies were influenced by reverse causal-
ity and confounding factors. For instance, it was 

observed that circulating concentrations of TMAO 
were elevated in PD patients, independently of 
disease characteristics, treatment status, and life-
style factors [20]. This increase in concentration is 
primarily driven by significant variations in the gut 
microbiota, which strongly affect plasma concen-
trations of TMAO [21, 22]. Additionally, concentra-
tions of TMAO and its precursors, such as choline, 
betaine, and carnitine, can be influenced by varia-
tions in dietary habits among different population 
groups, including cases and controls. For example, 
low calorie intake in PD patients is often attribut-
ed to difficulties in swallowing, refusal to eat, and 
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digestive problems [23]. Due to these factors, es-
tablishing a definitive causal relationship between 
the gut microbiota and PD remains challenging.

Concentrations of TMAO in the cerebrospinal 
fluid of individuals with mild-to-severe cognitive 
impairment and Alzheimer’s disease have been 
found to suggest the involvement of TMAO in the 
decline of neurological function [24]. Additional 
research has indicated that TMAO can contribute 
to mitochondrial damage, the formation of su-
peroxides, and the promotion of pro-inflammato-
ry factors, thus leading to increased expression, 
accumulation, and epigenetic changes of aging 
markers. As a result, the risk of PD may potentially 
increase, suggesting a  role of TMAO in neurode-
generation and its contribution to the risk of PD 
[25, 26]. Conversely, other studies have suggested 
that TMAO plays a  protective role in PD. Higher 
concentrations of TMAO may alleviate neurode-
generation in PD and predict favorable clinical 
outcomes in the early stages of the disease [27]. 
Moreover, TMAO has been found to counteract en-
doplasmic reticulum stress by promoting proper 
protein folding, which can reduce the formation of 
toxic aggregates within cells and potentially have 
neuroprotective effects in PD [28–30].

Choline, an essential nutrient for all cells, plays 
a crucial role in the biosynthesis of cellular mem-
brane phospholipids [31]. While anticholiner-
gic drugs have proven effective in managing PD 
symptoms, the precise mechanisms underlying 
choline’s action in PD remain unclear [32, 33]. 
Several studies have highlighted the necessity of 
choline for the biosynthesis of choline-contain-
ing phospholipids and proposed its significant 
neuroprotective effects, as it is required for the 
synthesis of acetylcholine precursors [34, 35]. Fur-
thermore, choline-containing phospholipids have 
been utilized as therapeutic agents in combina-
tion with levodopa for PD treatment [36]. Howev-
er, some investigations have suggested choline as 
a potential risk factor for PD due to excessive cho-
line intake, which can result in elevated lipid con-
centrations in the blood. Both fat and free fatty 
acids have been implicated in promoting neuronal 
damage [37–39].

Carnitine plays a protective role in PD through 
various mechanisms. Firstly, it promotes the 
formation of primary cilia in cells, inhibiting mi-
tochondrial fragmentation and excessive pro-
duction of reactive oxygen species within the 
mitochondria, Additionally, it enhances mito-
chondrial function and reduces the production 
of pro-inflammatory cytokines. Bae et al. have 
extensively researched these effects of carnitine 
in PD [40]. Furthermore, carnitine’s involvement 
in b-oxidation in primary metabolism leads to in-
creased energy production and supports the urea 
cycle, which aids in the elimination of ammonia. 

This process helps slow down the progression 
of neurodegenerative diseases [41]. However, 
it is important to note that studies by Jiménez-
Jiménez et al. and Zhou et al. have reported no 
significant evidence for an association between 
carnitine and the risk of PD [39, 42].

Choline serves two primary functions in the 
human body. Firstly, it acts as a  major osmolyte 
in tissues, regulating cell volume. Secondly, in the 
kidneys, choline acts as a methyl donor, convert-
ing the toxic metabolic product homocysteine into 
methionine [43, 44]. Accumulation of nitric oxide 
and homocysteine is strongly associated with 
the development of neurodegenerative diseases, 
such as PD [45, 46]. Choline has been shown to 
reduce blood homocysteine levels and enhance 
the expression of memory-related proteins [47]. 
Furthermore, an animal experiment demonstrat-
ed that choline inhibited nitric oxide production 
by microglial cells [48]. However, it is worth not-
ing that choline has also been linked to elevated 
blood lipid concentrations [37, 49] and may wors-
en motor symptoms in PD patients, as evidenced 
by increased Unified Parkinson’s Disease Rating 
Scale Part III scores [39].

Previous studies investigating the relationship 
between TMAO and its precursors and the risk of 
PD have been limited due to the presence of con-
founding factors, which has made it challenging to 
establish a definitive causal relationship. In order 
to overcome this limitation, we employed an MR 
analysis in the present study. This method is less 
susceptible to the influence of confounding fac-
tors such as socioeconomic status [50]. By utilizing 
publicly available GWAS summary data, our study 
benefits from more accurate results obtained from 
a  broader range of databases and larger sample 
sizes when compared to previous investigations. 
To address potential bias arising from sample 
overlapping across databases, we employed the 
two-sample weighted IVW method. Moreover, we 
incorporated other analytical techniques to assess 
the consistency of causal associations, thereby re-
inforcing the robustness of our findings.

However, this study has several limitations. 
Firstly, the samples were exclusively drawn from 
European populations, which may limit the gener-
alizability of our findings to non-European popu-
lations. Secondly, while MR analysis helps to min-
imize the impact of confounding factors, it cannot 
completely remove the influence of genetic plei-
otropy. Therefore, we may not have fully assessed 
potential causal associations between certain 
exposure factors and the risk of PD. Thirdly, MR 
analysis only evaluates linear relationships, over-
looking potential non-linear associations between 
exposure factors and the risk of PD. These limita-
tions emphasize the importance of interpreting 
our results with caution and underline the need 
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for further investigations in diverse populations, 
including exploration of non-linear relationships 
between exposure factors and the risk of PD.

In conclusion, in this study we conducted 
a  comprehensive analysis of data from multiple 
GWAS databases to investigate the potential caus-
al relationship between circulating concentrations 
of TMAO and its precursors and the risk of PD. The 
results of our analysis did not yield conclusive ev-
idence in support of a  direct causal relationship 
between TMAO and PD. 
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