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A b s t r a c t

The use of chemotherapeutic agents during childhood, adolescence, and 
early adulthood has a  detrimental effect on ovarian functions, leading to 
a decrease in ovarian reserves, thus adversely affecting fertility. Alkylating 
agents are one of the most frequently used groups of chemotherapeutics in 
this age group. An important and effective chemotherapeutic drug, procar-
bazine is used to treat brain tumors and Hodgkin lymphoma in children, ad-
olescents, and young adults. This agent is also an indispensable component 
of combination-type chemotherapy. Procarbazine has a detrimental impact 
on ovarian reserve by directly targeting the oocyte or indirectly through so-
matic cell destruction. Evidence gathered thus far indicates that procarba-
zine’s mode of action in the ovaries may involve apoptosis, inflammation, 
and oxidative stress. This review seeks to clarify the processes by which 
procarbazine might induce apoptosis, inflammation, and oxidative stress, 
hence affecting ovarian reserve and functioning.

Key words: apoptosis, inflammation, oxidative stress, ovarian reserve, 
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Introduction

Cancer is one of the most significant global public health issues [1]. Ac-
cording to the Turkish Statistical Institute (TUIK), cancer was the second 
leading cause of mortality in Turkey in 2022, following viral and parasitic 
disorders. Moreover, 7.2% of malignancies in Turkey are recorded in women 
under the age of 54, according to data from TUIK [2]. Oncologic screening, 
diagnosis, and advancements in treatment have reduced mortality rates 
and improved the prognosis of cancer patients. Young survivors of these 
cancers, however, experience fertility issues as a result of chemotherapy [3].

Indicative of a  woman’s reproductive capacity, ovarian reserve rep-
resents the quantity and quality of follicles in the ovary at different stages 
of development. As an alkylating chemotherapeutic agent, procarbazine 
is recognized for its detrimental effects on ovarian reserve. Examining 
the drug’s mechanisms of action is crucial for minimizing ovarian dam-
age and optimizing treatment protocols [4]. 
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For this purpose, we first examined articles 
published in Google Scholar and PubMed until No-
vember 20, 2023. The titles of studies that includ-
ed the terms “procarbazine”, “ovarian reserve”, or 
“chemotherapeutic” were assessed. The potential 
mechanisms of procarbazine-induced ovarian 
damage – inflammation, apoptosis, and oxidative 
stress – are exhaustively described in this review.

Procarbazine

Procarbazine, which is also referred to as p-tolu-
amide, benzamide, PCB, PCZ, N-methyl-hydrazine, 
Natulan, and Matulane, is an orally active meth-
ylhydrazine derivative with a molecular weight of 
257.76 and a molecular formula of C

12H19N3O-HCl. 
It is clinically utilized in combination regimens 
to treat brain tumors, malignant melanoma, and 
Hodgkin’s lymphoma [5].

Chemotherapeutic agents frequently impact 
the ovary via diverse mechanisms, and recogniz-
ing which facets of ovarian function are impacted 
by these agents is essential. Oocytes and granu-
losa cells are vulnerable to injury caused by che-
motherapy. Apoptosis, inflammation, and oxida-
tive stress are the three principal mechanisms by 
which procarbazine is hypothesized to affect the 
ovaries, according to previous research [6].

Apoptosis

Apoptosis has a crucial role in eliminating germ 
cells during the process of oogenesis and follow-
ing ovulation. The process of oocyte apoptosis in-
volves various substances, including cAMP, cGMP, 
and calcium. Mitochondrial and cell surface re-
ceptor pathways are also utilized in this process. 
Apoptotic processes occurring in oocytes lead to 
the reduction of ovarian reserves, which has a di-
rect impact on the reproductive results of mam-
mals [7].

Disruption of cellular communication between 
granulosa cells and oocytes prevents the passage 
of cAMP, cGMP, calcium, and nitric oxide into fol-
licular oocytes. The decrease in these molecules 
leads to reactive oxygen species (ROS) production, 
i.e., an increase in oxidative damage. Increased 
oxidative stress destabilizes maturation-promot-
ing factors in diplotene stage oocytes, arrests the 
meiosis cell cycle, and induces apoptosis [8].

Calcium is an important signaling molecule. It 
has been suggested that the increase in intracellu-
lar calcium levels may lead to apoptosis in oocytes 
by inducing ROS formation through mitochondrial 
membrane polarization [9].

Oocytes may also undergo apoptosis in re-
sponse to a reduction in antiapoptotic factors, an 
increase of proapoptotic factors (BH3 proteins), or 
the release of cytochrome c. Among the aforemen-

tioned factors, Bax protein and caspase-3 activa-
tion play a  significant role. Cytochrome c shows 
its effect by activating caspases in apoptotic path-
ways. The most critical consequence of activating 
caspase-3 is the induction of DNA fragmentation 
[10]. TUNEL or ELISA techniques can thus readily 
detect apoptosis occurring even in a single oocyte. 
Procarbazine leads to damage of follicular oocytes 
through the aforementioned processes [11]. The 
depletion of germ cells in the ovarian reserve may 
be caused by apoptosis-mediated processes [12].

Inflammation

Inflammation is an essential response of the 
immune system to tissue damage and infection. 
It is usually characterized by slight increases in 
pro-inflammatory cytokines such as interleukin 
(IL) 6 (IL-6), tumor necrosis factor (TNF-α), IL-1β, 
and IL-18 and activation of the NLRP3 inflam-
masome in immune cells such as macrophages. 
It has been reported that TNF-α and IL-1β levels 
are high in mouse ovaries of reproductive age and 
that IL-1β and TNF-α, IL-8 and IL-6 levels are also 
increased. Decreased levels of anti-inflammatory 
IL-10 are an inflammatory response. Procarbazine 
may also show its effect on the ovaries via these 
markers [13].

Concentrations of different inflammatory 
markers in follicular fluid affect oocyte matura-
tion, follicular wall rupture, and fertilization. In ro-
dents treated with alkylating agents such as pro-
carbazine, the NLRP3 (NOD-like receptor-3) and 
NF-kB pathways are activated, and inflammatory 
reactions occur. This is directly associated with de-
creased ovarian reserves [14].

Inflammatory cytokines regulate the secretion 
of steroid hormones required for follicle growth, 
ovulation, and corpus luteum development. Re-
cent studies have reported reduced ovarian re-
serves in inflammatory conditions such as Crohn’s 
disease and polymyositis. In addition, ovarian re-
serves and oocyte quality are adversely affected 
by inflammation due to metabolic diseases such 
as obesity [15].

Oxidative stress

Oxidative stress arises from a  disparity be-
tween the oxidant and antioxidant mechanisms 
within the cell, wherein the levels of reactive oxy-
gen species increase while the activity of the an-
tioxidant system decreases. An essential impact 
of chemotherapeutics, including procarbazine, is 
the suppression of antioxidant system function, 
specifically glutathione peroxidase, catalase, and 
superoxide dismutase. This inhibition is marked 
by increased oxidative stress and the buildup of 
ROS within the cell. These drugs also substan-
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tially elevate the amounts of malondialdehyde, 
which is the most critical end product of lipid 
peroxidation [16].

Critical cellular components can be damaged 
by oxidative stress, resulting in chromosomal 
damage, mutant cell formation, and aberrant cell 
growth. This is associated with ROS production 
and, as a  result of chemotherapeutic effects, re-
duces antioxidant capacity [17]. Depletion of an-
tioxidant defense mechanisms exacerbates the 
detrimental effects of oxidative stress. The re-
productive function, including oocyte maturation, 
steroidogenesis, fertilization, and embryonic de-
velopment, is profoundly affected by this process. 
While the exact mechanism remains unknown, it 
is hypothesized that procarbazine and its deriva-
tives increase ROS production and decrease anti-
oxidant activity in a  dose-dependent manner as 
a result of oxidative stress [18].

ROS are generated in the mitochondrion, an or-
ganelle whose redox state fluctuates in response 
to biochemical and physiological stimuli. When 
pharmaceuticals such as procarbazine are used, 
a  redox imbalance results [19]. Prolonged expo-
sure to reactive oxygen species may affect follic-
ular atresia, oocyte senescence, ovarian reserves, 
and granulosa cell apoptosis [20].

Conclusions

Several potential protective agents and meth-
ods have emerged in recent years to counteract 
the detrimental effects of chemotherapeutic 
treatments on the ovary. Available options in-
clude cryopreservation of embryos, oocytes, and 
ovarian tissue [21]. In addition, the literature has 
also described the use of agents such as sphin-
gosine-1-phosphate, tamoxifen, crocetin, mech-
anistic targets of rapamycin complex inhibitors, 
and tyrosine kinase inhibitors to counteract the 
harm produced by alkylating drugs such as pro-
carbazine. These agents have been reported to im-
prove ovarian follicular and vascular development 
by preventing damage-induced apoptotic follicle 
death [22]. The inclusion of some of these agents 
in clinical trials is promising. Nevertheless, it is im-
perative to demonstrate that these drugs not only 
save the ovary from harm but also do not impede 
the efficacy of chemotherapy treatment.

Reduced ovarian reserves and, as a  result, an 
elevated risk of infertility are recognized side 
effects of chemotherapy for women. The mech-
anisms by which alkylating drugs, such as pro-
carbazine, affect ovarian reserves and injury are 
being elucidated through ongoing research. Nev-
ertheless, a  significant constraint and shortcom-
ing is the lack of experimental evidence regarding 
these mechanisms in the literature. Future recom-
mendations for novel treatment regimens to pre-

serve fertility in at-risk women could be aided by 
resolving this issue. Given that the impact of pro-
carbazine on ovarian reserve is intrinsically linked 
to the patient’s age, treatment regimen type, and 
dosage, comprehending these mechanisms will 
provide valuable guidance for the development of 
novel therapeutic interventions.
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