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RNA-seq-based elucidation of lactylation in breast 
cancer
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A b s t r a c t

Introduction: Lactylation is the covalent modification of histones using lac-
tate as a small molecule precursor, playing a  role in epigenetic regulation. 
As a novel protein post-translational modification, it has demonstrated sig-
nificant relevance in the field of cancer diagnosis and therapy. However, the 
interaction between lactylation and tumor cells in breast cancer has not 
been extensively investigated.
Material and methods: We acquired breast cancer-related data from the 
GEO and TCGA databases. Lactylation-related genes were identified from 
the differentially expressed genes (DEGs). We utilized Cox and LASSO re-
gression to identify genes with significant prognostic value for constructing 
a  prognostic model and assessing its predictive performance. This model 
was integrated with clinical parameters to create a nomogram. Finally, we 
conducted immune infiltration analysis, analyzed differences in biological 
functions, and assessed drug sensitivity.
Results: We ultimately identified 3 lactylation-related genes significantly 
associated with prognosis. These genes were used to construct a prognostic 
model and calculate a risk score. Using the median score, patients were di-
vided into high-risk and low-risk groups. Notably, the low-risk group patients 
exhibited better prognosis and higher levels of immune infiltration. GO/
KEGG enrichment analysis revealed that PGK1, the gene with the highest HR 
among these genes, is widely involved in immune, metabolic, and prolifera-
tive signaling pathways. Its high expression also correlates with increased 
sensitivity to anti-tumor drugs.
Conclusions: The study demonstrated the potential of lactylation-based molec-
ular clustering and prognostic profiling for predicting survival, immune status, 
and treatment response in breast cancer patients. Additionally, we envision the 
use of PGK1 as a diagnostic marker and therapeutic target in breast cancer.

Key words: breast cancer, lactylation, PGK1, tumor metabolism, tumor 
immunity.

Introduction

In the gradual progression from normal cells to cancer, these cells ac-
quire certain acquired functions, including sustaining proliferative sig-
naling, resisting cell death, evading growth suppressors, enabling repli-
cative immortality, inducing angiogenesis, and activating invasion and 
metastasis, ultimately leading to tumor formation and deterioration [1]. 
In recent years, as our understanding of cancer has deepened, additional 
characteristics of tumors have emerged, such as deregulating cellular 
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energetics, avoiding immune destruction, genome 
instability and mutation, and tumor-promoting in-
flammation [2]. Among malignant tumors, breast 
cancer is the most common in women globally, ac-
counting for 31% of all newly diagnosed cancers. 
It is a  type of malignancy that develops through 
a  multivariate-mediated process involving multi-
ple steps and stages. Importantly, mutations in the 
BRCA1 and BRCA2 genes not only increase the he-
reditary nature of breast cancer but also contrib-
ute to the complexity of this disease. While early 
breast cancer screening and treatment advance-
ments have led to reduced mortality rates [3], the 
rising incidence of breast cancer emphasizes the 
urgency for targeted interventions. Our study in-
vestigated lactylation in breast cancer, aiming to 
inform tailored treatment strategies and improve 
patient outcomes.

The deregulation of cellular energetics in can-
cerous diseases is evident in the downregulation 
of cell proliferation control and the adaptation of 
energy metabolism. Under aerobic conditions, nor-
mal cells undergo aerobic oxidation of glucose. 
However, in hypoxic conditions, cells further reduce 
the pyruvate generated from glycolysis into lactate 
within the cytoplasm. The Warburg effect indicates 
that even when oxygen is abundant, cancer cells 
restructure their energy metabolism by constrain-
ing the glucose metabolism process to glycolysis, 
leading to the production of significant amounts 
of lactate [4]. Glycolysis-driven energy supply is as-
sociated with cancer genes such as RAS and MYC, 
as well as tumor suppressor genes such as TP53. 
Alterations in these genes within cancer cells grant 
them abilities such as enhanced cell proliferation, 
resistance to cell death, and evasion of apopto-
sis, ultimately promoting tumor development [5, 
6]. Lactate, a metabolic byproduct generated from 
glucose through glycolysis catalyzed by lactate de-
hydrogenase (LDH), plays crucial biological roles as 
an energy source, an immune regulatory molecule, 
and a participant in gluconeogenesis. LDH exists in 
two distinct subtypes, LDHA and LDHB, each with 
specific functions [7]. LDHA is responsible for con-
verting pyruvate into lactate, and its expression is 
regulated by proteins such as hypoxia inducible fac-
tor-1α (HIF1α), c-Myc, and p53 [8]. In contrast, LDHB 
converts lactate back into pyruvate to promote ox-
idative metabolism, and its loss or downregulation 
is closely associated with the development and 
poorer prognosis of cancers such as pancreatic and 
liver cancer [9, 10]. Additionally, lactate produced 
by cancer cells can be secreted into the extracel-
lular environment, serving as a signaling molecule 
to further promote cancer development [7]. It can 
stimulate endothelial cells to secrete VEGF pro-
tein and activate the NF-κB/IL-8 (CXCL8) pathway, 
thereby facilitating tumor-related angiogenesis [11, 

12]. Lactate also plays a  vital role in maintaining 
an acidic environment, regulating the tumor micro-
environment (TME) through processes such as cell 
invasion, metastasis, and immune escape, thereby 
sustaining tumor growth [13]. As a  result, lactate 
has become a potent molecule influencing the be-
havior of every cell within the TME.

In 2019, Zhang et al. introduced a groundbreak-
ing concept called ‘lactylation’ – a novel post-trans-
lational modification. It involves using lactate, 
a product of cellular metabolism, as a small-mol-
ecule precursor to induce lactylation of histone 
lysine, thereby regulating gene expression. This 
opened up a new frontier in the study of protein 
lactylation. They employed mass spectromet-
ric analysis to detect a molecular weight shift of 
72.021 Daltons on histone lysine residues in the 
breast cancer MCF-7 cell line. Through isotopic 
labeling methods and various in vitro and in vivo 
experiments, they convincingly demonstrated the 
widespread presence of lysine lactylation. Further-
more, they found that the abundance of lactylation 
in MCF-7 cells is positively correlated with lactate 
concentration, and it is regulated by glycolysis and 
hypoxia induction [14]. Increasingly, research has 
shown the close association of lactylation with in-
flammatory diseases, tumors, neurodegenerative 
diseases, and more [15–17]. While the research on 
protein lactylation is still in its early stages, it has 
opened up new horizons for targeting lactate me-
tabolism, transport, and immune-related anti-can-
cer strategies. Our study, based on a  literature 
search, revealed limited reports on the functional 
role of lactylation in breast cancer. Therefore, our 
research aimed to identify differentially expressed 
genes related to lactylation in breast cancer, con-
struct a  prognostic model for more accurate pa-
tient prognosis prediction, and explore effective 
cancer therapies. Our study not only advances our 
understanding of the interaction between lactyla-
tion and cancer but also has the potential to un-
cover promising cancer immunotherapy targets, 
contributing to the fight against breast cancer.

Methods

Data download and processing

We obtained breast cancer RNA expression 
data, CNV files, and corresponding clinicopatho-
logical information from the TCGA-BRCA project 
(GDC (cancer.gov)). Clinical parameters and nor-
malized gene expression data were obtained from 
the GSE162228 (GEO Accession viewer (nih.gov)) 
breast cancer dataset available in the GEO data-
base, which consists of samples from Taiwanese 
breast cancer patients [18]. To ensure data integ-
rity, samples lacking essential clinicopathological 
or survival information were excluded. Lactylation 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162228


RNA-seq-based elucidation of lactylation in breast cancer

Arch Med Sci� 3

is facilitated by specific enzymes or protein mod-
ifiers. Therefore, lactylation-related genes encom-
pass those encoding these enzymes and genes 
associated with the substrate proteins involved 
in lactylation. We included a  total of 332 lactyl-
ation-related genes for subsequent analysis [19]. 
The lactylation-associated gene protein-protein 
interaction (PPI) network was constructed using 
the STRING website (STRING: functional protein 
association networks (string-db.org)). We calcu-
lated the frequency of copy number variations in 
lactylation-related genes by analyzing changes 
in gene copy numbers in breast cancer samples 
from the TCGA database. Subsequently, the “RCir-
cos” package in R language was used to create 
a circular gene copy number map. Finally, Cox and 
co-expression analyses were used to generate the 
prognostic network of lactylation-related genes.

Screening of lactylation prognosis-related 
genes in breast cancer

First, we began by identifying lactylation-relat-
ed genes with prognostic value through differen-
tial expression analysis and univariate Cox regres-
sion analysis within the entire dataset of breast 
cancer samples. Subsequently, we narrowed down 
the list of prognosis-related genes using LASSO 
regression. Genes with confirmed prognostic sig-
nificance were then selected through multivariate 
Cox regression analysis, and we proceeded to 
construct prognostic models. To calculate the risk 
score for each breast cancer sample, we utilized 
the accumulation method by multiplying the co-
efficient with the gene’s expression level. Based 
on the median value, we categorized the samples 
into high-risk and low-risk groups and examined 
the prognostic differences between these groups. 
We employed the Kaplan-Meier method to gener-
ate survival curves for breast cancer patients, and 
these curves were visualized using the “survmin-
er” package. Furthermore, we conducted an in-
depth analysis of the clinical data and risk scores 
for all breast cancer patients, calculating survival 
times and statuses. This information was used to 
create a  nomogram. Finally, we employed the R 
package “timeROC” (V0.4) to generate a receiver 
operating characteristic (ROC) curve for assessing 
the sensitivity and specificity of the risk model.

Cluster analysis

We employed the “ConsensusClusterPlus” pack-
age to conduct unsupervised clustering of breast 
cancer samples, based on the expression levels 
of lactylation-related genes. The results indicated 
that the samples were most effectively categorized 
into two distinct classes. Subsequently, we created 
a heat map to visualize the correlation between the 

expression patterns of lactylation-related genes 
in different clusters and the clinical information 
of patients. We then quantified the expression of 
immune cells in these distinct clusters using the 
ssGSEA method and presented the results through 
box plots. In addition, we obtained the GO/KEGG 
pathway files from the GSEA website and utilized 
the “GSEABase” and “GSVA” packages for pathway 
enrichment analysis and heat map visualization.

GO/KEGG analysis

We conducted the Wilcoxon test to identify 
DEGs in both groups. The risk score was calculat-
ed using the R package “limma,” with the crite-
ria of FDR < 0.05 and |log2 FC| ≥ 1. For GO/KEGG 
enrichment analysis, we utilized the R packages 
“clusterProfiler” and “enrichplot”.

The relationship between lactylation-
related molecular patterns and the clinical 
features and prognosis of breast cancer

To assess the clinical relevance of the clusters 
generated by consensus clustering, we examined 
their associations with molecular patterns, clini-
cal characteristics, and survival outcomes. Clinical 
characteristics encompassed age, gender, tumor 
staging, and lymph node staging. Furthermore, 
Kaplan-Meier analyses were conducted using the 
“survival” and “survminer” packages to evaluate 
differences in overall survival (OS) among the var-
ious models [20].

Establishment of a predictive nomogram

The nomogram is created to offer meaning-
ful clinical predictions for breast cancer patients, 
encompassing their risk scores and other clini-
copathological characteristics, with a  particular 
focus on the 1-year, 3-year, and 5-year OS rates. 
We assessed the clinical validity of the established 
nomogram through calibration curve analysis and 
decision curve analysis (DCA).

Lactylation-related molecular patterns and 
TME in breast cancer

The ESTIMATE algorithm evaluated the Stro-
malScore and ImmuneScore of breast cancer 
patients, and the CIBERSORT algorithm was em-
ployed to calculate the levels of 23 immune cell 
subtypes for each patient [21, 22]. The infiltrating 
fraction of immune cells was determined using 
the single sample gene set enrichment analysis 
(ssGSEA) algorithm [23].

Drug sensitivity prediction

The half maximal inhibitory concentration (IC50) 
values for common anti-tumor drugs were com-

https://cn.string-db.org/
https://cn.string-db.org/
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puted using the “oncoPredict” R package to pre-
dict drug responses in breast cancer patients with 
varying levels of PGK1 expression.

Cell culture and transfection

The human breast cancer cell line HS578T, pro-
vided by the Medical Laboratory of Yan’an Univer-
sity, was utilized in this study. Cells were cultured 
in DMEM medium (BI, Israel) supplemented with 
10% fetal bovine serum (FBS) (BI, Israel) at 37°C in 
a constant temperature incubator with 5% carbon 
dioxide. The siRNA sequence used in this research 
was PGK1 5′-GAGTCAATCTGCCACAGAA-3′ (Gene-
Pharma, China) [24]. Previously synthesized siRNA 
targeting the PGK1 gene was transfected into cells 
using Lipo 2000 (Invitrogen, USA).

RNA isolation and quantitative real-time 
PCR analysis

This study utilized quantitative RT-PCR to 
assess the knockdown efficacy of siRNA. Total 
cellular RNA was extracted using TRIzol reagent 
(Thermo Fisher Scientific, USA), and RNA con-
centration was checked. Reverse transcription 
was performed using Hifair III 1st Strand cDNA 
Synthesis SuperMix for qPCR (gDNA digester 
plus) from Yeasen Biotechnology, China. qPCR 
was conducted using Hieff qPCR SYBR Green 
Master Mix (No Rox) from Yeasen Biotechnology, 
China, with GAPDH as the reference gene. The 
primer sequences used in this experiment were 
as follows: PGK1 (forward, 5′-TCACTCGGGCTA-
AGCAGATT-3′; reverse, 5′-CAGTGCTCACATGGCT-
GACT-3′). Amplification reactions were carried 
out using a qPCR instrument with the following 
conditions: 95°C for 5 min; 95°C for 10 s; 60°C for 
30 s. After 40 cycles of amplification, data anal-

ysis was conducted, ensuring correct amplifica-
tion and melting curves.

CCK8 assay

In this study, cell viability of HS578T cells was 
assessed using the Cell Counting Kit-8 (CCK-8) 
method (IC-1519, InCellGene, Tx. USA). Cells were 
seeded at a density of 1500 cells per well in a 96-
well cell culture plate and then transfected with 
siRNA. After transfection, cells were placed back 
in the incubator, and 10 μl of CCK-8 reagent was 
added at the same time every day for detection at 
0 h, 24 h, 48 h, and 72 h. Finally, their absorbance 
at a wavelength of 450 nm was measured using 
a microplate reader (Molecular Devices, USA).

Scratch wound healing assay

HS578T cells, cultured in a  6-well plate, were 
transfected with both PGK1 siRNA and NC siRNA 
at a 70% confluence rate. A sterile 100 μl pipette 
tip was used to create cell scratches, and images 
were captured at 0, 12, 24, and 36 h post-scratch 
to ensure a consistent scratch area. Image acqui-
sition was performed using a Nikon Ti-S fluores-
cent microscope.

Statistical analysis

All statistical analyses were conducted using R 
software (version 4.3.1). The t-test was employed 
to assess differences between the two groups, 
while the log-rank test was used to examine dis-
parities between the Kaplan-Meier curves. Uni-
variate and multivariate Cox regression analyses 
were performed to identify risk factors associated 
with breast cancer prognosis. A significance level 
of p < 0.05 was considered indicative of statistical 
significance.

Results 

Lactylation-related gene expression and 
mutation in breast cancer

We began by identifying lactylation-related 
genes within the DEGs of the TCGA-BRCA data-
set (Figure 1 A). Subsequently, we obtained a total 
of 83 DEGs for further analysis, and their relative 
expression levels are depicted in Figure 1 B. Using 
the STRING website, we conducted a PPI network 
analysis to elucidate interactions among these 
DEGs (Figure 1 C). Further, we assessed the fre-
quencies of CNV for ten prognosis-related genes 
through CNV files (Figure 1 D). The results sug-
gested that CNV potentially plays a regulatory role 
in the expression of lactylation prognosis-related 
genes. In Figure 1 E, the CNV-altered sites can be 
observed on the chromosomes of lactylation prog-
nosis-related genes.

Figure 1. Lactylation-related gene expression and 
mutation in breast cancer. A – Difference analysis 
of gene expression in breast cancer
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Figure 1. Cont. B – Differential expression of lactylation-related genes in breast cancer. C – PPI network of lactyl-
ation-related genes
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Lactylation subgroups and their 
characterization in breast cancer

We combined the TCGA-BRCA and GSE162228 
datasets to enhance the sample size and then 
identified ten prognosis-related genes among the 
83 DEGs using univariate Cox regression analysis 
and Kaplan-Meier analysis (CACYBP, G6PD, HSPE1, 
PGK1, PRDX1, PSMA7, PTMA, RACGAP1, RAN, and 
WAS). Subsequently, we illustrated the interac-
tions, regulatory relationships, and their signifi-
cance for survival in breast cancer patients using 
a network diagram (Figure 2 A). A forest plot visu-
ally displayed the HR values of the lactylation prog-
nosis-related genes, classifying them as high or 
low risk (Figure 2 B). To gain insights into the con-
nection between lactylation and breast carcino-
genesis and to determine how lactylation-related 
genes correlate with breast cancer expression 
patterns, we conducted a  consensus clustering 
analysis of breast cancer patients based on the 
expression levels of DEGs. The results indicated 
that the optimal clustering variable was 2 (Figure 
2 C), and the breast cancer patients in the cohort 
were well distributed into these two groups. Prin-
cipal component analysis (PCA) further affirmed 
the clear separation between the groups (Fig- 
ure 2 D). Additionally, when comparing the OS of 
patients in the two groups, we observed that clus-
ter B had a worse prognosis than cluster A  (Fig- 
ure 2 E). Furthermore, we investigated the rela-
tionship between gene expression and clinico-
pathologic variables in different clusters, revealing 
significant differences between the two groups 
(Figure 2 F). We then identified differential path-
ways between cluster A  and cluster B through 
GSVA analysis. These pathways included “CITRATE- 
CYCLE-TCA-CYCLE”, “MAPK-SIGNALING-PATHWAY”,  
“CELL-CYCLE”, “PURINE-METABOLISM”, “CYS-

TEINE-AND-METHIONINE-METABOLISM”, and 
“PYRIMIDINE-METABOLISM” (Figure 2 G). Lastly, 
we analyzed variations in immune cell infiltra-
tion levels between different clusters using the 
ssGSEA algorithm. The results showed that clus-
ter B exhibited higher infiltration of activated CD4  
T cells and type 2 T helper cells (Th2). Conversely, 
cluster A displayed more significant immune cell 
infiltration, including B cells, natural killer cells, 
eosinophils, macrophages, mast cells, monocytes, 
neutrophils, and other cell types (Figure 2 H). Con-
sequently, cluster A, characterized by higher im-
mune infiltration levels, displayed a  more favor-
able prognosis compared to cluster B.

Construction and evaluation of prognostic 
models

We initially identified genes associated with 
patient prognosis through univariate Cox regres-
sion analysis, followed by LASSO regression anal-
ysis. The LASSO analysis revealed that, based on 
the optimal λ-value, gene selection stabilized and 
minimized partial likelihood bias when including 
three genes (Figures 3 A, B). Consequently, we 
identified three lactylation-related genes signifi-
cantly associated with prognosis: Risk score = 
(0.6409 × PGK1) – (0.3610 × PTMA) – (0.2484 × 
WAS). Subsequently, we divided the patients into 
high-risk and low-risk groups using the median 
risk score. Kaplan-Meier survival curves indicated 
that patients in the high-risk group had signifi-
cantly worse prognosis than those in the low-risk 
group (Figure 3 C). Furthermore, we evaluated the 
predictive performance of this model using ROC 
curves. The results demonstrated high predictive 
accuracy, with an AUC of 0.721, 0.644, and 0.630 
at 1, 3, and 5 years, respectively (Figure 3 D). Ad-
ditionally, the heat map displayed the expression 
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of the selected prognostically relevant genes (Fig- 
ure 3 E). The findings suggested that WAS and 
PTMA might act as protective factors for breast 
cancer, while PGK1 could be a risk factor. We con-
structed a Sankey diagram to visualize the rela-
tionship between different clusters, risk scores, 
and patients’ survival status. These diagrams re-
vealed that the majority of cluster A correspond-
ed to the low-risk group with a relatively favorable 
prognosis, while most of cluster B corresponded 
to the high-risk group with a less favorable prog-
nosis (Figure 3 F). In line with the aforementioned 
results, Figure 3 G indicates that the risk score of 

cluster B was higher than that of cluster A. Given 
the strong correlation between the risk score and 
patient prognosis, we incorporated clinical pa-
rameters to construct a  nomogram. This nomo-
gram assessed the OS of breast cancer patients 
at 1, 3, and 5 years (Figure 3 H). The calibration 
curve of the nomogram demonstrated high ac-
curacy between actual observed and predicted 
values (Figure 3 I). Furthermore, the DCA curves 
showed that the nomogram’s prediction of pa-
tients’ OS at 1, 3, and 5 years outperformed indi-
vidual clinicopathologic variables (Figures 3 J–L). 
Therefore, our modeled genes exhibited strong 

Figure 2. Cont. H – Immune infiltration levels between different clusters
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Figure 3. Construction and evaluation of prognostic models. A, B – LASSO regression screening of prognostic genes
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Figure 3. Cont. C – Kaplan-Meier curves of different risk groups. D – ROC curves of different risk groups. E – Ex-
pression of modeling genes in different risk groups. F – Relationships between different clusters and risk scores, 
and survival status. G – Differences in risk scores between different clusters. H – Nomogram for predicting the 
probability of OS at 1, 3, and 5 years in breast cancer patients
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Figure 3. Cont. I – Calibration curve for nomogram. J–L – DCA curves for nomogram
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predictive efficacy, whether grouped by the risk 
score derived from Cox analysis or unsupervised 
clustering.

Immune infiltration analysis

As demonstrated in the preceding analysis, 
there is a  notable disparity in patient progno-
sis across different risk groups. To delve deeper 
into the disease’s etiology and provide relevant 
insights for breast cancer immunotherapy, we 
assessed the correlation between the risk score 
and immune cell abundance using the CIBERSORT 
algorithm. The results revealed variations in the 
distribution and relative content of immune cells 
among different risk groups (Figure 4 A). Further 
scrutiny revealed that the risk score exhibited 
a positive correlation with the infiltration of mac-
rophages M0, macrophages M2, and neutrophils, 
while displaying a significant negative correlation 

with the infiltration of naive B cells, activated 
CD8 T cells, and resting dendritic cells (Figures 
4 B–G). Subsequently, we conducted a  specific 
analysis of the disparities in immune infiltration 
levels between distinct risk groups using the ESTI-
MATE algorithm, which showed that the low-risk 
group exhibited higher immune infiltration levels 
(Figure 4 H). Next, we explored the relationship 
between genes significantly associated with lac-
tylation prognosis and immune cell enrichment. 
The findings revealed a  robust correlation be-
tween the two (Figure 4 I). Furthermore, we eval-
uated the association between the risk score and 
stromal cells as well as immune cells within the 
TME using the ESTIMATE algorithm. The results 
indicated that the risk score exhibited a negative 
correlation with StromalScore, ImmuneScore, and  
ESTIMATEScore, implying that the low-risk group 
had a higher infiltration of non-tumor cells within 
the TME (Figure 4 J).
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Figure 4. Immune infiltration analysis. A – Distribution and relative content of immune cells in different risk groups. 
B–E – Correlation between risk scores and immune cell types
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Figure 4. Cont. F–G – Correlation between risk scores and immune cell types. H – Level of immune infiltration in 
different risk groups
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Prognostic analysis, biological function, and 
drug sensitivity analysis of PGK1

PGK1 exhibited the highest HR value in both 
Cox and LASSO regression analyses. It was also 
identified as one of the genes significantly asso-
ciated with lactylation prognosis. Consequent-
ly, we conducted a  survival analysis for PGK1. 
Kaplan-Meier survival curves clearly indicated 
that variations in PGK1 expression significantly 
influenced the survival outcomes of breast can-
cer patients (p < 0.001), with patients exhibiting 
low PGK1 expression demonstrating a more fa-
vorable prognosis (Figure 5 A). In the GSE124647 
dataset, we also observed a  significant differ-
ence in OS and progression-free survival (PFS) 
rates between patients with high PGK1 expres-
sion and those with low expression (Figures 5 
B, C). Subsequently, we investigated the distinct 
signaling pathways between the high PGK1 
group and the low PGK1 group through GO/
KEGG enrichment analysis. Notably, we identi-
fied differentially enriched pathways such as 
“cell cycle”, “PPAR signaling pathway”, “IL-17 

signaling pathway”, “tyrosine metabolism”, 
“phenylalanine metabolism”, and “ECM-receptor 
interaction” (Figures 5 D, E). Previous research 
has shown that peroxisome proliferator activat-
ed receptor (PPAR), aside from regulating ener-
gy metabolism, plays a  pivotal role in immune 
cell differentiation and fate determination [25]; 
interleukin 17 (IL-17) serves as a  key player in 
immune system regulation and is a  significant 
pro-inflammatory factor [26]; and the extra-
cellular matrix can impact immune function by 
suppressing anti-tumor immune responses [27, 
28]. Hence, the signaling pathways we identified 
are extensively implicated in immunoregulation, 
energy metabolism, and cell proliferation. Last-
ly, we computed the IC

50 values of breast cancer 
concerning commonly used anti-tumor drugs us-
ing the “oncoPredict” tool and compared them 
between the two groups. The results indicated 
that patients with high PGK1 expression exhib-
ited increased sensitivity to epirubicin, palboci-
clib, ribociclib, sorafenib, cytarabine, and gemcit-
abine (Figures 5 F–K).
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Figure 5. Prognostic analysis, biological function, and drug sensitivity analysis of PGK1. A  – Survival curves of 
PGK1. B, C – Differences in OS and PFS among patients with varying levels of PGK1 expression in the GSE124647 
dataset. D – GO/KEGG analysis of biological functions and signaling pathways of differentially expressed genes 
between the high PGK1 group and low PGK1 group
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Figure 5. Cont. E – GO/KEGG analysis of biological functions and signaling pathways of differentially expressed 
genes between the high PGK1 group and low PGK1 group. F–I – Comparison of the IC

50 values of common antitu-
mor drugs between the high PGK1 group and low PGK1 group, including epirubicin, palbociclib, ribociclib, sorafenib, 
cytarabine, gemcitabine
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Figure 5. Cont. J–K – Comparison of the IC50 values of common antitumor drugs between the high PGK1 group and 
low PGK1 group, including epirubicin, palbociclib, ribociclib, sorafenib, cytarabine, gemcitabine
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Knocking down PGK1 resulted in decreased 
viability of HS578T cells in vitro

We employed the quantitative RT-PCR method 
to assess the knockdown efficiency of PGK1 siRNA 
in HS578T breast cancer cells. Twenty-four hours 
after transfection, we examined the expression 
levels of PGK1 mRNA (Figure 6 A) and found a sig-
nificant decrease induced by the siRNA sequences 
(p < 0.01). Subsequently, CCK8 analysis revealed 
a notable reduction in cell viability following PGK1 
gene knockdown (Figure 6 B). Finally, a  scratch 
assay was conducted to assess the impact of 
PGK1 knockdown on the migration capability of 
HS578T cells. The results indicated a significant-
ly slower scratch closure in the PGK1 knockdown 
group compared to the siRNA negative control 
(NC) group (Figure 6 C), suggesting that PGK1 
knockdown may be an effective strategy to inhibit 
breast cancer cell proliferation and migration.

Discussion

Protein post-translational modification re-
fers to the chemical alterations of proteins after 
translation, which can regulate protein activity, 
localization, folding, and interactions with other 
biomolecules. Proteins can undergo various forms 
of modification, such as acetylation, methylation, 
and ubiquitination. Also, with the advancement 
of high-sensitivity mass spectrometry, modifica-
tions stemming from cellular metabolites, such 
as lactylation, are gradually being discovered. In 
the human embryonic kidney HEK293T cell line, 
overexpression of histone acetyltransferase p300 
(p300) has been observed to enhance lysine lac-
tylation levels, while the absence of p300 results 
in a reduction in histone lysine lactylation levels in 
HEK293T and similar cell lines [14]. Similarly, in the 
lactate-induced mouse macrophage system RAW 
264.7, the levels of lactylation can be significantly 
reduced by knocking down p300 or CREB-binding 

protein (CBP) [29]. Additionally, class I and class III 
histone deacetylases (HDACs) play a role in de-lac-
tylation within cells [30].

The discovery of lactylation has not only 
opened up new frontiers in the study of protein 
post-translational modification but has also sug-
gested potential regulatory mechanisms for the 
role of lactate in physiological and pathological 
processes such as cancer, inflammation, and me-
tabolism. Lactylation levels exhibit dynamic chang-
es in mouse oocytes and pre-implantation embry-
os, and in vitro hypoxic culture reduces lactylation 
levels, impairing the developmental potential of 
pre-implantation embryos [31]. Metabolic remod-
eling induced by GLIS family zinc finger 1 (GLIS1) 
involves the generation of abundant lactate and an 
increase in lactylation levels on pluripotency gene 
promoters, enhancing reprogramming efficiency 
and even reprogramming of aging cells [32]. Mac-
rophage-specific expression of B-cell adapter for 
phosphoinositide 3-kinase (BCAP) affects the ex-
pression of repair genes by regulating lactylation 
levels, aiding the body in mitigating inflammatory 
responses [33]. Additionally, neuronal excitation in 
the brain elevates lactate content and lactylation 
levels in brain cells [34]. In Alzheimer’s disease 
(AD) patients’ brain samples, lactylation levels rise 
and become enriched at the promoters of glycol-
ysis genes, activating their transcription. This ulti-
mately forms a “glycolysis/histone lactylation/py-
ruvate kinase M2 (PKM2)” positive feedback loop, 
promoting the development of AD [17]. In ocular 
melanoma, elevated lactylation levels upregulate 
YTH N6-methyladenosine RNA-binding protein 2 
(YTHDF2) expression, leading to the degradation 
of period circadian regulator 1 (PER1) and TP53 
mRNA, ultimately driving tumor initiation, pro-
gression, and unfavorable outcomes [16]. Thus, 
exploring the role of lactylation in breast cancer 
becomes highly intriguing. This not only offers in-
sights into protein post-translational modification 
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in breast cancer research but also paves the way 
for new directions in the treatment of breast can-
cer patients.

In breast cancer, lactylation is closely associ-
ated with tumor growth, the immune microenvi-
ronment, and drug response [35]. In this study, we 
initially investigated breast cancer data from the 
GEO and TCGA databases to identify lactylation-re-
lated genes. Using an unsupervised clustering ap-
proach, we categorized breast cancer patients into 
clusters A and B. Among them, cluster A displayed 
a  more favorable prognosis and higher levels of 
immune infiltration. Further analysis through Cox 
regression and LASSO regression identified three 
lactylation-related genes (PTMA, WAS, PGK1) that 
hold significant prognostic value. Among these, 
prothymosin alpha (PTMA) shows progressively 
upregulated expression in esophageal squamous 
cell carcinoma, with significantly higher expression 
levels between tumors and adjacent normal tis-
sues as the disease progresses [36]. Circ-0004277 
participates in colorectal cancer cell proliferation 
by upregulating PTMA expression [37]. Addition-
ally, studies indicate that levels of PTMA in tumor 
samples from breast cancer patients are signifi-
cantly higher than in normal breast tissue, and 
these PTMA levels correlate positively with certain 
indicators of cancer progression [38]. However, in 
bladder cancer, PTMA exerts its tumor-suppressive 
role by upregulating PTEN and coordinating the 
nuclear factor erythroid 2-related factor 2 (NRF2) 
signaling pathway through tripartite motif-con-
taining protein 21 (TRIM21) [39]. The WAS gene 
belongs to the Wiskott-Aldrich syndrome protein 
family, and N-WASP exhibits significantly down-
regulated expression in breast cancer, correlating 
with poor prognosis [40]. Similarly, WASP acts as 
a tumor suppressor in T cell lymphoma [41], while 
in prostate cancer, it enhances cancer cell invasion 
and metastasis [42]. WASP and its family can also 
regulate actin polymerization in breast cancer, pro-
moting cell invasion and migration, thus exhibit-
ing oncogenic functions [43]. PGK1 is an essential 
enzyme in the glycolysis pathway and is involved 
in various biological processes. In hepatocellular 
carcinoma, PGK1 promotes cancer cell metastasis 
through pathways such as HIF-1α/PGK1 and MYC/
PGK1 [44, 45]. In colon cancer, PGK1 fosters can-
cer metastasis by upregulating the expression of 
early growth response 1 (EGR1) and cysteine-rich 
61 (CYR61) [46]. In papillary thyroid carcinoma, 
sirtuin 6 (SIRT6) enhances tumor invasiveness by 
increasing PGK1 expression to promote the War-
burg effect [47]. Subsequently, we constructed 
a prognostic model using these three genes and 
assessed its efficacy. Patients were stratified into 
high-risk and low-risk groups based on the median 
risk score, revealing significant differences in pa-

tient outcomes between the groups. Furthermore, 
we analyzed the differences in immune infiltration 
levels between different risk groups using the 
CIBERSORT and ESTIMATE algorithms. The results 
indicated a close correlation between the low-risk 
group and immune cell infiltration. Following this, 
we developed a nomogram by incorporating the 
risk score and clinical-pathological parameters. 
The calibration curve and DCA curve both demon-
strated the high accuracy of this nomogram in 
predicting survival rates. Given that PGK1 exhib-
ited the highest HR in the Cox regression analysis, 
we explored its role further. The results revealed 
that patients with high PGK1 expression had sig-
nificantly worse prognosis than those with low 
PGK1 expression. Prior research has indicated 
that high intracellular expression of PGK1 leads 
to increased tumor cell proliferation and can en-
hance the progression and metastasis of breast 
cancer through the promotion of HIF-1α-mediat-
ed EMT [48, 49]. Furthermore, PGK1’s involvement 
in various protein post-translational modifications 
such as acetylation, phosphorylation, ubiquitina-
tion, and succinylation plays a crucial role in reg-
ulating tumor metabolism and growth [50–53]. 
Consistent with these findings, our GO/KEGG 
enrichment analysis identified PGK1’s extensive 
involvement in immune, metabolic, and prolifer-
ative signaling pathways. Furthermore, PGK1 has 
been associated with chemotherapy resistance in 
cancer patients [54]. Finally, our drug sensitivity 
analysis revealed that patients with high PGK1 ex-
pression exhibited high sensitivity to anti-tumor 
drugs such as epirubicin and palbociclib. Other 
studies have also shown that inhibiting PGK1 can 
increase gastric cancer cell sensitivity to 5-FU and 
mitomycin [55], and breast cancer patients with 
high PGK1 expression had shorter overall survival 
when treated with paclitaxel [56].

Finally, we confirmed through in vitro cell ex-
periments that the knockout of the PGK1 gene in 
human breast cancer HS578T cells significantly 
inhibits both proliferation and migration of breast 
cancer cells. This underscores the pivotal role of 
the PGK1 gene in the development of breast can-
cer and its potential as a  promising therapeutic 
target for the future. Additionally, assessing PGK1 
expression before chemotherapy could predict 
patients’ sensitivity to chemotherapy drugs, and 
reducing PGK1 expression presents a  new strat-
egy to overcome drug resistance. However, there 
is an urgent need for specific inhibitors targeting 
PGK1 to target cancer cells and develop therapeu-
tic drugs, which holds significant importance. De-
spite some remaining questions about lactylation, 
the progress in related research has opened up 
an entirely new field in protein post-translation-
al modification. We hope to elucidate the specific 
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roles and regulatory mechanisms of lactylation in 
diseases in the near future.
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