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Abstract

Introduction: Lactylation is the covalent modification of histones using lac-
tate as a small molecule precursor, playing a role in epigenetic regulation.
As a novel protein post-translational modification, it has demonstrated sig-
nificant relevance in the field of cancer diagnosis and therapy. However, the
interaction between lactylation and tumor cells in breast cancer has not
been extensively investigated.

Material and methods: We acquired breast cancer-related data from the
GEO and TCGA databases. Lactylation-related genes were identified from
the differentially expressed genes (DEGs). We utilized Cox and LASSO re-
gression to identify genes with significant prognostic value for constructing
a prognostic model and assessing its predictive performance. This model
was integrated with clinical parameters to create a nomogram. Finally, we
conducted immune infiltration analysis, analyzed differences in biological
functions, and assessed drug sensitivity.

Results: We ultimately identified 3 lactylation-related genes significantly
associated with prognosis. These genes were used to construct a prognostic
model and calculate a risk score. Using the median score, patients were di-
vided into high-risk and low-risk groups. Notably, the low-risk group patients
exhibited better prognosis and higher levels of immune infiltration. GO/
KEGG enrichment analysis revealed that PGK1, the gene with the highest HR
among these genes, is widely involved in immune, metabolic, and prolifera-
tive signaling pathways. Its high expression also correlates with increased
sensitivity to anti-tumor drugs.

Conclusions: The study demonstrated the potential of lactylation-based molec-
ular clustering and prognostic profiling for predicting survival, immune status,
and treatment response in breast cancer patients. Additionally, we envision the
use of PGK1 as a diagnostic marker and therapeutic target in breast cancer.

Key words: breast cancer, lactylation, PGK1, tumor metabolism, tumor
immunity.

Introduction

In the gradual progression from normal cells to cancer, these cells ac-
quire certain acquired functions, including sustaining proliferative sig-
naling, resisting cell death, evading growth suppressors, enabling repli-
cative immortality, inducing angiogenesis, and activating invasion and
metastasis, ultimately leading to tumor formation and deterioration [1].
In recent years, as our understanding of cancer has deepened, additional
characteristics of tumors have emerged, such as deregulating cellular
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energetics, avoiding immune destruction, genome
instability and mutation, and tumor-promoting in-
flammation [2]. Among malignant tumors, breast
cancer is the most common in women globally, ac-
counting for 31% of all newly diagnosed cancers.
It is a type of malignancy that develops through
a multivariate-mediated process involving multi-
ple steps and stages. Importantly, mutations in the
BRCA1 and BRCA2 genes not only increase the he-
reditary nature of breast cancer but also contrib-
ute to the complexity of this disease. While early
breast cancer screening and treatment advance-
ments have led to reduced mortality rates [3], the
rising incidence of breast cancer emphasizes the
urgency for targeted interventions. Our study in-
vestigated lactylation in breast cancer, aiming to
inform tailored treatment strategies and improve
patient outcomes.

The deregulation of cellular energetics in can-
cerous diseases is evident in the downregulation
of cell proliferation control and the adaptation of
energy metabolism. Under aerobic conditions, nor-
mal cells undergo aerobic oxidation of glucose.
However, in hypoxic conditions, cells further reduce
the pyruvate generated from glycolysis into lactate
within the cytoplasm. The Warburg effect indicates
that even when oxygen is abundant, cancer cells
restructure their energy metabolism by constrain-
ing the glucose metabolism process to glycolysis,
leading to the production of significant amounts
of lactate [4]. Glycolysis-driven energy supply is as-
sociated with cancer genes such as RAS and MYC,
as well as tumor suppressor genes such as TP53.
Alterations in these genes within cancer cells grant
them abilities such as enhanced cell proliferation,
resistance to cell death, and evasion of apopto-
sis, ultimately promoting tumor development [5,
6]. Lactate, a metabolic byproduct generated from
glucose through glycolysis catalyzed by lactate de-
hydrogenase (LDH), plays crucial biological roles as
an energy source, an immune regulatory molecule,
and a participant in gluconeogenesis. LDH exists in
two distinct subtypes, LDHA and LDHB, each with
specific functions [7]. LDHA is responsible for con-
verting pyruvate into lactate, and its expression is
regulated by proteins such as hypoxia inducible fac-
tor-1a (HIF1a), c-Myc, and p53[8]. In contrast, LDHB
converts lactate back into pyruvate to promote ox-
idative metabolism, and its loss or downregulation
is closely associated with the development and
poorer prognosis of cancers such as pancreatic and
liver cancer [9, 10]. Additionally, lactate produced
by cancer cells can be secreted into the extracel-
lular environment, serving as a signaling molecule
to further promote cancer development [7]. It can
stimulate endothelial cells to secrete VEGF pro-
tein and activate the NF-kB/IL-8 (CXCL8) pathway,
thereby facilitating tumor-related angiogenesis [11,

12]. Lactate also plays a vital role in maintaining
an acidic environment, regulating the tumor micro-
environment (TME) through processes such as cell
invasion, metastasis, and immune escape, thereby
sustaining tumor growth [13]. As a result, lactate
has become a potent molecule influencing the be-
havior of every cell within the TME.

In 2019, Zhang et al. introduced a groundbreak-
ing concept called ‘lactylation’ —a novel post-trans-
lational modification. It involves using lactate,
a product of cellular metabolism, as a small-mol-
ecule precursor to induce lactylation of histone
lysine, thereby regulating gene expression. This
opened up a new frontier in the study of protein
lactylation. They employed mass spectromet-
ric analysis to detect a molecular weight shift of
72.021 Daltons on histone lysine residues in the
breast cancer MCF-7 cell line. Through isotopic
labeling methods and various in vitro and in vivo
experiments, they convincingly demonstrated the
widespread presence of lysine lactylation. Further-
more, they found that the abundance of lactylation
in MCF-7 cells is positively correlated with lactate
concentration, and it is regulated by glycolysis and
hypoxia induction [14]. Increasingly, research has
shown the close association of lactylation with in-
flammatory diseases, tumors, neurodegenerative
diseases, and more [15-17]. While the research on
protein lactylation is still in its early stages, it has
opened up new horizons for targeting lactate me-
tabolism, transport, and immune-related anti-can-
cer strategies. Our study, based on a literature
search, revealed limited reports on the functional
role of lactylation in breast cancer. Therefore, our
research aimed to identify differentially expressed
genes related to lactylation in breast cancer, con-
struct a prognostic model for more accurate pa-
tient prognosis prediction, and explore effective
cancer therapies. Our study not only advances our
understanding of the interaction between lactyla-
tion and cancer but also has the potential to un-
cover promising cancer immunotherapy targets,
contributing to the fight against breast cancer.

Methods
Data download and processing

We obtained breast cancer RNA expression
data, CNV files, and corresponding clinicopatho-
logical information from the TCGA-BRCA project
(GDC (cancer.gov)). Clinical parameters and nor-
malized gene expression data were obtained from
the GSE162228 (GEO Accession viewer (nih.gov))
breast cancer dataset available in the GEO data-
base, which consists of samples from Taiwanese
breast cancer patients [18]. To ensure data integ-
rity, samples lacking essential clinicopathological
or survival information were excluded. Lactylation
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is facilitated by specific enzymes or protein mod-
ifiers. Therefore, lactylation-related genes encom-
pass those encoding these enzymes and genes
associated with the substrate proteins involved
in lactylation. We included a total of 332 lactyl-
ation-related genes for subsequent analysis [19].
The lactylation-associated gene protein-protein
interaction (PPI) network was constructed using
the STRING website (STRING: functional protein
association networks (string-db.org)). We calcu-
lated the frequency of copy number variations in
lactylation-related genes by analyzing changes
in gene copy numbers in breast cancer samples
from the TCGA database. Subsequently, the “RCir-
cos” package in R language was used to create
a circular gene copy number map. Finally, Cox and
co-expression analyses were used to generate the
prognostic network of lactylation-related genes.

Screening of lactylation prognosis-related
genes in breast cancer

First, we began by identifying lactylation-relat-
ed genes with prognostic value through differen-
tial expression analysis and univariate Cox regres-
sion analysis within the entire dataset of breast
cancer samples. Subsequently, we narrowed down
the list of prognosis-related genes using LASSO
regression. Genes with confirmed prognostic sig-
nificance were then selected through multivariate
Cox regression analysis, and we proceeded to
construct prognostic models. To calculate the risk
score for each breast cancer sample, we utilized
the accumulation method by multiplying the co-
efficient with the gene’s expression level. Based
on the median value, we categorized the samples
into high-risk and low-risk groups and examined
the prognostic differences between these groups.
We employed the Kaplan-Meier method to gener-
ate survival curves for breast cancer patients, and
these curves were visualized using the “survmin-
er” package. Furthermore, we conducted an in-
depth analysis of the clinical data and risk scores
for all breast cancer patients, calculating survival
times and statuses. This information was used to
create a nomogram. Finally, we employed the R
package “timeROC” (V0.4) to generate a receiver
operating characteristic (ROC) curve for assessing
the sensitivity and specificity of the risk model.

Cluster analysis

We employed the “ConsensusClusterPlus” pack-
age to conduct unsupervised clustering of breast
cancer samples, based on the expression levels
of lactylation-related genes. The results indicated
that the samples were most effectively categorized
into two distinct classes. Subsequently, we created
a heat map to visualize the correlation between the
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expression patterns of lactylation-related genes
in different clusters and the clinical information
of patients. We then quantified the expression of
immune cells in these distinct clusters using the
ssGSEA method and presented the results through
box plots. In addition, we obtained the GO/KEGG
pathway files from the GSEA website and utilized
the “GSEABase” and “GSVA” packages for pathway
enrichment analysis and heat map visualization.

GO/KEGG analysis

We conducted the Wilcoxon test to identify
DEGs in both groups. The risk score was calculat-
ed using the R package “limma,” with the crite-
ria of FDR < 0.05 and |log2 FC| > 1. For GO/KEGG
enrichment analysis, we utilized the R packages
“clusterProfiler” and “enrichplot”.

The relationship between lactylation-
related molecular patterns and the clinical
features and prognosis of breast cancer

To assess the clinical relevance of the clusters
generated by consensus clustering, we examined
their associations with molecular patterns, clini-
cal characteristics, and survival outcomes. Clinical
characteristics encompassed age, gender, tumor
staging, and lymph node staging. Furthermore,
Kaplan-Meier analyses were conducted using the
“survival” and “survminer” packages to evaluate
differences in overall survival (OS) among the var-
jous models [20].

Establishment of a predictive nomogram

The nomogram is created to offer meaning-
ful clinical predictions for breast cancer patients,
encompassing their risk scores and other clini-
copathological characteristics, with a particular
focus on the 1-year, 3-year, and 5-year OS rates.
We assessed the clinical validity of the established
nomogram through calibration curve analysis and
decision curve analysis (DCA).

Lactylation-related molecular patterns and
TME in breast cancer

The ESTIMATE algorithm evaluated the Stro-
malScore and ImmuneScore of breast cancer
patients, and the CIBERSORT algorithm was em-
ployed to calculate the levels of 23 immune cell
subtypes for each patient [21, 22]. The infiltrating
fraction of immune cells was determined using
the single sample gene set enrichment analysis
(ssGSEA) algorithm [23].

Drug sensitivity prediction

The half maximal inhibitory concentration (IC, )
values for common anti-tumor drugs were com-
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puted using the “oncoPredict” R package to pre-
dict drug responses in breast cancer patients with
varying levels of PGK1 expression.

Cell culture and transfection

The human breast cancer cell line HS578T, pro-
vided by the Medical Laboratory of Yan’an Univer-
sity, was utilized in this study. Cells were cultured
in DMEM medium (BI, Israel) supplemented with
10% fetal bovine serum (FBS) (BI, Israel) at 37°Cin
a constant temperature incubator with 5% carbon
dioxide. The siRNA sequence used in this research
was PGK1 5'-GAGTCAATCTGCCACAGAA-3’ (Gene-
Pharma, China) [24]. Previously synthesized siRNA
targeting the PGK1 gene was transfected into cells
using Lipo 2000 (Invitrogen, USA).

RNA isolation and quantitative real-time
PCR analysis

This study utilized quantitative RT-PCR to
assess the knockdown efficacy of siRNA. Total
cellular RNA was extracted using TRIzol reagent
(Thermo Fisher Scientific, USA), and RNA con-
centration was checked. Reverse transcription
was performed using Hifair Ill 1st Strand cDNA
Synthesis SuperMix for qPCR (gDNA digester
plus) from Yeasen Biotechnology, China. qPCR
was conducted using Hieff gPCR SYBR Green
Master Mix (No Rox) from Yeasen Biotechnology,
China, with GAPDH as the reference gene. The
primer sequences used in this experiment were
as follows: PGK1 (forward, 5'-TCACTCGGGCTA-
AGCAGATT-3'; reverse, 5-CAGTGCTCACATGGCT-
GACT-3'). Amplification reactions were carried
out using a gPCR instrument with the following
conditions: 95°C for 5 min; 95°C for 10 s; 60°C for
30 s. After 40 cycles of amplification, data anal-
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Figure 1. Lactylation-related gene expression and
mutation in breast cancer. A — Difference analysis
of gene expression in breast cancer

ysis was conducted, ensuring correct amplifica-
tion and melting curves.

CCK8 assay

In this study, cell viability of HS578T cells was
assessed using the Cell Counting Kit-8 (CCK-8)
method (IC-1519, InCellGene, Tx. USA). Cells were
seeded at a density of 1500 cells per well in a 96-
well cell culture plate and then transfected with
SiRNA. After transfection, cells were placed back
in the incubator, and 10 pl of CCK-8 reagent was
added at the same time every day for detection at
0 h, 24 h, 48 h, and 72 h. Finally, their absorbance
at a wavelength of 450 nm was measured using
a microplate reader (Molecular Devices, USA).

Scratch wound healing assay

HS578T cells, cultured in a 6-well plate, were
transfected with both PGK1 siRNA and NC siRNA
at a 70% confluence rate. A sterile 100 pl pipette
tip was used to create cell scratches, and images
were captured at 0, 12, 24, and 36 h post-scratch
to ensure a consistent scratch area. Image acqui-
sition was performed using a Nikon Ti-S fluores-
cent microscope.

Statistical analysis

All statistical analyses were conducted using R
software (version 4.3.1). The t-test was employed
to assess differences between the two groups,
while the log-rank test was used to examine dis-
parities between the Kaplan-Meier curves. Uni-
variate and multivariate Cox regression analyses
were performed to identify risk factors associated
with breast cancer prognosis. A significance level
of p < 0.05 was considered indicative of statistical
significance.

Results

Lactylation-related gene expression and
mutation in breast cancer

We began by identifying lactylation-related
genes within the DEGs of the TCGA-BRCA data-
set (Figure 1 A). Subsequently, we obtained a total
of 83 DEGs for further analysis, and their relative
expression levels are depicted in Figure 1 B. Using
the STRING website, we conducted a PPI network
analysis to elucidate interactions among these
DEGs (Figure 1 C). Further, we assessed the fre-
quencies of CNV for ten prognosis-related genes
through CNV files (Figure 1 D). The results sug-
gested that CNV potentially plays a regulatory role
in the expression of lactylation prognosis-related
genes. In Figure 1 E, the CNV-altered sites can be
observed on the chromosomes of lactylation prog-
nosis-related genes.
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Figure 1. Cont. D — Frequency of copy number variation of lactylation-related genes. E — Chromosomal distribution

circle diagram of lactylation-related genes

Lactylation subgroups and their
characterization in breast cancer

We combined the TCGA-BRCA and GSE162228
datasets to enhance the sample size and then
identified ten prognosis-related genes among the
83 DEGs using univariate Cox regression analysis
and Kaplan-Meier analysis (CACYBR G6PD, HSPE1,
PGK1, PRDX1, PSMA7, PTMA, RACGAP1, RAN, and
WAS). Subsequently, we illustrated the interac-
tions, regulatory relationships, and their signifi-
cance for survival in breast cancer patients using
a network diagram (Figure 2 A). A forest plot visu-
ally displayed the HR values of the lactylation prog-
nosis-related genes, classifying them as high or
low risk (Figure 2 B). To gain insights into the con-
nection between lactylation and breast carcino-
genesis and to determine how lactylation-related
genes correlate with breast cancer expression
patterns, we conducted a consensus clustering
analysis of breast cancer patients based on the
expression levels of DEGs. The results indicated
that the optimal clustering variable was 2 (Figure
2 C), and the breast cancer patients in the cohort
were well distributed into these two groups. Prin-
cipal component analysis (PCA) further affirmed
the clear separation between the groups (Fig-
ure 2 D). Additionally, when comparing the OS of
patients in the two groups, we observed that clus-
ter B had a worse prognosis than cluster A (Fig-
ure 2 E). Furthermore, we investigated the rela-
tionship between gene expression and clinico-
pathologic variables in different clusters, revealing
significant differences between the two groups
(Figure 2 F). We then identified differential path-
ways between cluster A and cluster B through
GSVA analysis. These pathways included “CITRATE-
CYCLE-TCA-CYCLE”, “MAPK-SIGNALING-PATHWAY”,
“CELL-CYCLE”, “PURINE-METABOLISM”,  “CYS-

TEINE-AND-METHIONINE-METABOLISM”, and
“PYRIMIDINE-METABOLISM” (Figure 2 G). Lastly,
we analyzed variations in immune cell infiltra-
tion levels between different clusters using the
SsGSEA algorithm. The results showed that clus-
ter B exhibited higher infiltration of activated CD4
T cells and type 2 T helper cells (Th2). Conversely,
cluster A displayed more significant immune cell
infiltration, including B cells, natural killer cells,
eosinophils, macrophages, mast cells, monocytes,
neutrophils, and other cell types (Figure 2 H). Con-
sequently, cluster A, characterized by higher im-
mune infiltration levels, displayed a more favor-
able prognosis compared to cluster B.

Construction and evaluation of prognostic
models

We initially identified genes associated with
patient prognosis through univariate Cox regres-
sion analysis, followed by LASSO regression anal-
ysis. The LASSO analysis revealed that, based on
the optimal -value, gene selection stabilized and
minimized partial likelihood bias when including
three genes (Figures 3 A, B). Consequently, we
identified three lactylation-related genes signifi-
cantly associated with prognosis: Risk score =
(0.6409 x PGK1) — (0.3610 x PTMA) — (0.2484 x
WAS). Subsequently, we divided the patients into
high-risk and low-risk groups using the median
risk score. Kaplan-Meier survival curves indicated
that patients in the high-risk group had signifi-
cantly worse prognosis than those in the low-risk
group (Figure 3 C). Furthermore, we evaluated the
predictive performance of this model using ROC
curves. The results demonstrated high predictive
accuracy, with an AUC of 0.721, 0.644, and 0.630
at 1, 3, and 5 years, respectively (Figure 3 D). Ad-
ditionally, the heat map displayed the expression
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predictive efficacy, whether grouped by the risk
score derived from Cox analysis or unsupervised
clustering.

Immune infiltration analysis

As demonstrated in the preceding analysis,
there is a notable disparity in patient progno-
sis across different risk groups. To delve deeper
into the disease’s etiology and provide relevant
insights for breast cancer immunotherapy, we
assessed the correlation between the risk score
and immune cell abundance using the CIBERSORT
algorithm. The results revealed variations in the
distribution and relative content of immune cells
among different risk groups (Figure 4 A). Further
scrutiny revealed that the risk score exhibited
a positive correlation with the infiltration of mac-
rophages MO, macrophages M2, and neutrophils,
while displaying a significant negative correlation

with the infiltration of naive B cells, activated
CD8 T cells, and resting dendritic cells (Figures
4 B-G). Subsequently, we conducted a specific
analysis of the disparities in immune infiltration
levels between distinct risk groups using the ESTI-
MATE algorithm, which showed that the low-risk
group exhibited higher immune infiltration levels
(Figure 4 H). Next, we explored the relationship
between genes significantly associated with lac-
tylation prognosis and immune cell enrichment.
The findings revealed a robust correlation be-
tween the two (Figure 4 1). Furthermore, we eval-
uated the association between the risk score and
stromal cells as well as immune cells within the
TME using the ESTIMATE algorithm. The results
indicated that the risk score exhibited a negative
correlation with StromalScore, ImmuneScore, and
ESTIMATEScore, implying that the low-risk group
had a higher infiltration of non-tumor cells within
the TME (Figure 4 J).
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Prognostic analysis, biological function, and
drug sensitivity analysis of PGK1

PGK1 exhibited the highest HR value in both
Cox and LASSO regression analyses. It was also
identified as one of the genes significantly asso-
ciated with lactylation prognosis. Consequent-
ly, we conducted a survival analysis for PGK1.
Kaplan-Meier survival curves clearly indicated
that variations in PGK1 expression significantly
influenced the survival outcomes of breast can-
cer patients (p < 0.001), with patients exhibiting
low PGK1 expression demonstrating a more fa-
vorable prognosis (Figure 5 A). In the GSE124647
dataset, we also observed a significant differ-
ence in OS and progression-free survival (PFS)
rates between patients with high PGK1 expres-
sion and those with low expression (Figures 5
B, C). Subsequently, we investigated the distinct
signaling pathways between the high PGK1
group and the low PGK1 group through GO/
KEGG enrichment analysis. Notably, we identi-
fied differentially enriched pathways such as
“cell cycle”, “PPAR signaling pathway”, “IL-17

RiskScore

Figure 4. Cont. | — Correlation between modeling
genes and immune cell abundance. J — Correlation
between risk scores and StromalScore and Immun-
eScore

signaling pathway”, “tyrosine metabolism”,
“phenylalanine metabolism”, and “ECM-receptor
interaction” (Figures 5 D, E). Previous research
has shown that peroxisome proliferator activat-
ed receptor (PPAR), aside from regulating ener-
gy metabolism, plays a pivotal role in immune
cell differentiation and fate determination [25];
interleukin 17 (IL-17) serves as a key player in
immune system regulation and is a significant
pro-inflammatory factor [26]; and the extra-
cellular matrix can impact immune function by
suppressing anti-tumor immune responses [27,
28]. Hence, the signaling pathways we identified
are extensively implicated in immunoregulation,
energy metabolism, and cell proliferation. Last-
ly, we computed the IC, values of breast cancer
concerning commonly used anti-tumor drugs us-
ing the “oncoPredict” tool and compared them
between the two groups. The results indicated
that patients with high PGK1 expression exhib-
ited increased sensitivity to epirubicin, palboci-
clib, ribociclib, sorafenib, cytarabine, and gemcit-
abine (Figures 5 F-K).
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Knocking down PGK1 resulted in decreased
viability of HS578T cells in vitro

We employed the quantitative RT-PCR method
to assess the knockdown efficiency of PGK1 siRNA
in HS578T breast cancer cells. Twenty-four hours
after transfection, we examined the expression
levels of PGK1 mRNA (Figure 6 A) and found a sig-
nificant decrease induced by the siRNA sequences
(p < 0.01). Subsequently, CCK8 analysis revealed
a notable reduction in cell viability following PGK1
gene knockdown (Figure 6 B). Finally, a scratch
assay was conducted to assess the impact of
PGK1 knockdown on the migration capability of
HS578T cells. The results indicated a significant-
ly slower scratch closure in the PGK1 knockdown
group compared to the siRNA negative control
(NC) group (Figure 6 C), suggesting that PGK1
knockdown may be an effective strategy to inhibit
breast cancer cell proliferation and migration.

Discussion

Protein post-translational modification re-
fers to the chemical alterations of proteins after
translation, which can regulate protein activity,
localization, folding, and interactions with other
biomolecules. Proteins can undergo various forms
of modification, such as acetylation, methylation,
and ubiquitination. Also, with the advancement
of high-sensitivity mass spectrometry, modifica-
tions stemming from cellular metabolites, such
as lactylation, are gradually being discovered. In
the human embryonic kidney HEK293T cell line,
overexpression of histone acetyltransferase p300
(p300) has been observed to enhance lysine lac-
tylation levels, while the absence of p300 results
in a reduction in histone lysine lactylation levels in
HEK293T and similar cell lines [14]. Similarly, in the
lactate-induced mouse macrophage system RAW
264.7, the levels of lactylation can be significantly
reduced by knocking down p300 or CREB-binding

protein (CBP) [29]. Additionally, class | and class IlI
histone deacetylases (HDACs) play a role in de-lac-
tylation within cells[30].

The discovery of lactylation has not only
opened up new frontiers in the study of protein
post-translational modification but has also sug-
gested potential regulatory mechanisms for the
role of lactate in physiological and pathological
processes such as cancer, inflammation, and me-
tabolism. Lactylation levels exhibit dynamic chang-
es in mouse oocytes and pre-implantation embry-
os, and in vitro hypoxic culture reduces lactylation
levels, impairing the developmental potential of
pre-implantation embryos [31]. Metabolic remod-
eling induced by GLIS family zinc finger 1 (GLIS1)
involves the generation of abundant lactate and an
increase in lactylation levels on pluripotency gene
promoters, enhancing reprogramming efficiency
and even reprogramming of aging cells [32]. Mac-
rophage-specific expression of B-cell adapter for
phosphoinositide 3-kinase (BCAP) affects the ex-
pression of repair genes by regulating lactylation
levels, aiding the body in mitigating inflammatory
responses [33]. Additionally, neuronal excitation in
the brain elevates lactate content and lactylation
levels in brain cells [34]. In Alzheimer’s disease
(AD) patients’ brain samples, lactylation levels rise
and become enriched at the promoters of glycol-
ysis genes, activating their transcription. This ulti-
mately forms a “glycolysis/histone lactylation/py-
ruvate kinase M2 (PKM2)” positive feedback loop,
promoting the development of AD [17]. In ocular
melanoma, elevated lactylation levels upregulate
YTH N6-methyladenosine RNA-binding protein 2
(YTHDF2) expression, leading to the degradation
of period circadian regulator 1 (PER1) and TP53
mRNA, ultimately driving tumor initiation, pro-
gression, and unfavorable outcomes [16]. Thus,
exploring the role of lactylation in breast cancer
becomes highly intriguing. This not only offers in-
sights into protein post-translational modification
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in breast cancer research but also paves the way
for new directions in the treatment of breast can-
cer patients.

In breast cancer, lactylation is closely associ-
ated with tumor growth, the immune microenvi-
ronment, and drug response [35]. In this study, we
initially investigated breast cancer data from the
GEO and TCGA databases to identify lactylation-re-
lated genes. Using an unsupervised clustering ap-
proach, we categorized breast cancer patients into
clusters A and B. Among them, cluster A displayed
a more favorable prognosis and higher levels of
immune infiltration. Further analysis through Cox
regression and LASSO regression identified three
lactylation-related genes (PTMA, WAS, PGK1) that
hold significant prognostic value. Among these,
prothymosin alpha (PTMA) shows progressively
upregulated expression in esophageal squamous
cell carcinoma, with significantly higher expression
levels between tumors and adjacent normal tis-
sues as the disease progresses [36]. Circ-0004277
participates in colorectal cancer cell proliferation
by upregulating PTMA expression [37]. Addition-
ally, studies indicate that levels of PTMA in tumor
samples from breast cancer patients are signifi-
cantly higher than in normal breast tissue, and
these PTMA levels correlate positively with certain
indicators of cancer progression [38]. However, in
bladder cancer, PTMA exerts its tumor-suppressive
role by upregulating PTEN and coordinating the
nuclear factor erythroid 2-related factor 2 (NRF2)
signaling pathway through tripartite motif-con-
taining protein 21 (TRIM21) [39]. The WAS gene
belongs to the Wiskott-Aldrich syndrome protein
family, and N-WASP exhibits significantly down-
regulated expression in breast cancer, correlating
with poor prognosis [40]. Similarly, WASP acts as
a tumor suppressor in T cell lymphoma [41], while
in prostate cancer, it enhances cancer cell invasion
and metastasis [42]. WASP and its family can also
regulate actin polymerization in breast cancer, pro-
moting cell invasion and migration, thus exhibit-
ing oncogenic functions [43]. PGK1 is an essential
enzyme in the glycolysis pathway and is involved
in various biological processes. In hepatocellular
carcinoma, PGK1 promotes cancer cell metastasis
through pathways such as HIF-1a./PGK1 and MYC/
PGK1 [44, 45]. In colon cancer, PGK1 fosters can-
cer metastasis by upregulating the expression of
early growth response 1 (EGR1) and cysteine-rich
61 (CYR61) [46]. In papillary thyroid carcinoma,
sirtuin 6 (SIRT6) enhances tumor invasiveness by
increasing PGK1 expression to promote the War-
burg effect [47]. Subsequently, we constructed
a prognostic model using these three genes and
assessed its efficacy. Patients were stratified into
high-risk and low-risk groups based on the median
risk score, revealing significant differences in pa-

RNA-seg-based elucidation of lactylation in breast cancer

tient outcomes between the groups. Furthermore,
we analyzed the differences in immune infiltration
levels between different risk groups using the
CIBERSORT and ESTIMATE algorithms. The results
indicated a close correlation between the low-risk
group and immune cell infiltration. Following this,
we developed a nomogram by incorporating the
risk score and clinical-pathological parameters.
The calibration curve and DCA curve both demon-
strated the high accuracy of this nomogram in
predicting survival rates. Given that PGK1 exhib-
ited the highest HR in the Cox regression analysis,
we explored its role further. The results revealed
that patients with high PGK1 expression had sig-
nificantly worse prognosis than those with low
PGK1 expression. Prior research has indicated
that high intracellular expression of PGK1 leads
to increased tumor cell proliferation and can en-
hance the progression and metastasis of breast
cancer through the promotion of HIF-1a-mediat-
ed EMT [48, 49]. Furthermore, PGK1’s involvement
in various protein post-translational modifications
such as acetylation, phosphorylation, ubiquitina-
tion, and succinylation plays a crucial role in reg-
ulating tumor metabolism and growth [50-53].
Consistent with these findings, our GO/KEGG
enrichment analysis identified PGK1’s extensive
involvement in immune, metabolic, and prolifer-
ative signaling pathways. Furthermore, PGK1 has
been associated with chemotherapy resistance in
cancer patients [54]. Finally, our drug sensitivity
analysis revealed that patients with high PGK1 ex-
pression exhibited high sensitivity to anti-tumor
drugs such as epirubicin and palbociclib. Other
studies have also shown that inhibiting PGK1 can
increase gastric cancer cell sensitivity to 5-FU and
mitomycin [55], and breast cancer patients with
high PGK1 expression had shorter overall survival
when treated with paclitaxel [56].

Finally, we confirmed through in vitro cell ex-
periments that the knockout of the PGK1 gene in
human breast cancer HS578T cells significantly
inhibits both proliferation and migration of breast
cancer cells. This underscores the pivotal role of
the PGK1 gene in the development of breast can-
cer and its potential as a promising therapeutic
target for the future. Additionally, assessing PGK1
expression before chemotherapy could predict
patients’ sensitivity to chemotherapy drugs, and
reducing PGK1 expression presents a new strat-
egy to overcome drug resistance. However, there
is an urgent need for specific inhibitors targeting
PGK1 to target cancer cells and develop therapeu-
tic drugs, which holds significant importance. De-
spite some remaining questions about lactylation,
the progress in related research has opened up
an entirely new field in protein post-translation-
al modification. We hope to elucidate the specific
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roles and regulatory mechanisms of lactylation in
diseases in the near future.
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