
Creative Commons licenses: This is an Open Access article distributed under the terms of the Creative Commons  
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY -NC -SA 4.0). License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Clinical research

*Corresponding author:
Xiaoqing Zhan
Department of Traditional
Chinese Medicine
Yuyao People’s Hospital
315400 Yuyao, 
Zhejiang, China
E-mail: ZXQ1590671@163.com

1Department of Endocrinology, Yuyao People’s Hospital, Yuyao, Zhejiang, China
2 Department of Traditional Chinese Medicine, Yuyao People’s Hospital, Yuyao, 
Zhejiang, China

3Department of Geriatrics, Yuyao People’s Hospital, Yuyao, Zhejiang, China

Submitted: 20 February 2024; Accepted: 9 April 2024
Online publication: 2 May 2024

Arch Med Sci
DOI: https://doi.org/ 10.5114/aoms/187002
Copyright © 2024 Termedia & Banach

The association between mixed exposure to per-  
and polyfluoroalkyl substances and the risk of diabetes

Mei Yu1, Xuxia Chu2, Yefei Fang3, Xiaoqing Zhan2*

A b s t r a c t

Introduction: This study aimed to investigate the relationship between ex-
posure to per- and polyfluoroalkyl substances (PFASs) and the risk of dia-
betes by analyzing a  large dataset  from the National Health and Nutrition 
Examination Survey (NHANES).
Material and methods: This study analyzed participants with complete data 
from the US NHANES database  spanning from  2003  to  2018.  Generalized 
linear regression models were used to examine the relationship between 
serum chemical concentrations and diabetes. Weighted quantiles and re-
gression were employed to assess the association between mixed chemical 
exposure and diabetes. The  ‘mixture effect’ between chemicals and diabe-
tes was estimated using a quantile g-computation model.
Results: The study involved a  total of 11,780 participants, with 1,451 in-
dividuals having diabetes and 10,329 not having diabetes. Logistic regres-
sion analysis was utilized to investigate the relationship between five PFAS 
chemicals and the risk of diabetes, while  controlling for all covariates. 
The  results indicated that none of the PFAS chemicals  exhibited a  statis-
tically significant association with an increased risk of diabetes. However, 
when exploring the positive and negative constraint models of the weighted 
quantile sum (WQS), the coefficient of the chemical mixing index displayed 
a strong correlation with diabetes in model III, even after adjusting for co-
variates.  Additionally, an evaluation of the ‘mixture effect’  using quantile 
g-computation revealed that among the five chemicals, the combined expo-
sure effect of perfluorononanoate (PFNA) on diabetes was positive, where-
as exposure to the other four chemicals had a negative impact.
Conclusions: The  study  findings  suggest a  possible association  between 
PFASs and increased risk of diabetes, particularly highlighting PFNA’s posi-
tive correlation with the combined exposure effect on diabetes.

Key words: polyfluoroalkyl substances, mixed exposure, diabetes, weighted 
quantiles sum.

Introduction

Diabetes, a chronic disease, affects around 537 million adults global-
ly and is expected to exceed 600 million by 2030, with type 2 diabetes 
accounting for about 90% of cases [1]. Diabetes mellitus (DM) compris-
es a group of chronic metabolic disorders characterized by high blood 
glucose levels, leading to various complications over time. Untreated 
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DM can cause damage to blood vessels, nerves, 
tissues, and organs [2]. Epidemiological studies 
have highlighted the significant roles of genetics 
and lifestyle in the development of type 2 DM 
[3–5]. Factors such as physical inactivity, poor diet, 
smoking, and high body mass index contribute 
to the rising prevalence of diabetes. Additionally, 
emerging research suggests that environmental 
pollutants, such as perfluoroalkyl and polyfluoro-
alkyl substances, along with other endocrine-dis-
rupting compounds, may impact the progression 
of diabetes [6].

PFASs are extensively utilized in a wide range 
of commercial applications, including surfactants, 
lubricants, and flame-retardant foams [7], due to 
their exceptional stability and hydrophobic and 
oleophobic properties. Some PFASs are also em-
ployed as polymers in various industrial and con-
sumer products, such as waterproof coatings on 
textiles and non-stick coatings on kitchenware. 
However, PFASs are recognized as persistent 
organic pollutants (POPs) because of their pro-
longed environmental presence and resistance 
to degradation [8–11]. They have been found in 
water sources, soil, plants, animals, and humans. 
Human exposure to PFASs can occur through dif-
ferent pathways, with the main one being contact 
with contaminated drinking water or food [11, 
12]. Several studies have indicated a  potential 
link between PFAS chemicals, such as perfluo-
rooctanoic acid (PFOA), perfluorooctane sulfonat-
fe (PFOS), and others, and various adverse health 
effects, including preeclampsia, altered amino-
transferase levels, elevated blood lipids, reduced 
antibody responses to vaccines, and low birth 
weight. However, the causality of these associ-
ations remains to be established [13]. Gui et  al. 
conducted a  systematic review and meta-anal-
ysis of epidemiological evidence, revealing that 

PFAS exposure is associated with increased risk of  
type 2 diabetes mellitus. They specifically noted 
a parabolic dose-response relationship with PFOA 
exposure [14]. While the association between 
polychlorinated biphenyls (PCBs) and type 2 dia-
betes risk has been extensively studied over the 
years, the levels of PCBs in the environment and 
human body are gradually decreasing. As a result, 
there have been limited investigations into the 
relationship between PFASs and diabetes. There-
fore, analyzing the relationship between mixed 
exposure to PFASs and diabetes is of significant 
importance.

Our study utilized data from the NHANES 
spanning from 2003 to 2018. To examine the as-
sociation between five PFAS concentrations and 
diabetes, we employed a  weighted multivariate 
logistic regression model. Prior to analysis, both ln 
transformation and quartile transformation were 
applied. Additionally, we utilized the WQS regres-
sion model to assess the relationship between 
mixed PFAS exposure and diabetes, allowing us 
to identify the specific PFAS that were more in-
fluential in the context of diabetes. To estimate 
the ‘mixture effect’ relationship between PFAS 
exposure and diabetes, we employed the quantile 
g-computation model. Our investigation aimed to 
contribute new epidemiological evidence to the 
field by exploring the relationship between mixed 
PFAS exposure and the risk of diabetes.

Material and methods

Study population

The NHANES is a  cross-sectional study con-
ducted in the United States since the 1960s to 
assess the health and nutritional status of indi-
viduals, including children and adults. Approval 
was obtained from the Ethical Review Board of 
the National Center for Health Statistics, and 
informed consent was secured from all partici-
pants. Data from publicly available sources, span-
ning from 2003 to 2018, were collected for this 
study. A total of 80,312 participants were initially 
included, with 63,771 excluded due to missing 
PFAS level information. Of the remaining 16,541 
participants with PFAS measurements, 4,761 
were further excluded for missing covariates. For-
tunately, no outcome variables were missing. Ul-
timately, 11,780 participants were included in the 
final analysis, all of whom had complete informa-
tion on both PFAS measurements and covariates. 
Further details on participant identification can 
be found in Figure 1.

Definition of diabetes

Diabetes diagnoses were made by medical 
professionals, and information on diabetes status Figure 1. Inclusion and exclusion path diagram

2003–2018  
NHANES participants  

(n = 80312) 

NHANES participants  
with PFAS testing  

(n = 16541) 

NHANES participants  
with PFAS testing and covariate  

(n = 11780) 

Missing information  
on PFAS  

(n = 63771) 

Missing information  
on covariate  
(n = 4761)
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was collected through a  questionnaire. Partici-
pants aged 20 years or older were asked if they 
had ever been diagnosed with diabetes by a doc-
tor or healthcare professional. Positive responses 
to this question were used to identify individuals 
with diabetes in the survey.

Pollutant measurement

PFASs have become extensively utilized and 
have been found in various environmental sourc-
es, including water and organisms [15–17]. Hu-
mans can come into contact with PFASs through 
inhalation, skin exposure, and consuming con-
taminated food. Once in the body, PFASs initially 
circulate in the bloodstream and undergo meta-
bolic changes, leading to the production of metab-
olites that can accumulate in specific organs and 
trigger toxic responses, such as endocrine disrup-
tion [18, 19]. In this research, blood samples from 
participants were analyzed for five specific PFASs: 
perfluorodecanoate (PFDeA), perfluorohexane 
sulfonate (PFHxS), 2-(N-methyl-perfluorooctane) 
sulfonamido acetate (Me-PFOSA-AcOH), perfluo-
rononanoate (PFNA), and perfluoroundecanoate 
(PFUA). These PFASs were identified as persist-
ing in the environment from 2002 to 2018 using 
high-performance liquid chromatography coupled 
with tandem mass spectrometry (MS/MS). When 
the limit of detection (LOD) for a chemical was be-
low 50%, the LOD logarithm/2 method was used 
to calculate the corresponding data, as 86% of 
the chemicals met this criterion. To ensure qual-
ity, procedural blanks and spiked samples were 
included in each batch of samples to monitor po-
tential contamination and analytical performance. 
Detection limits were set for each PFAS analyte, 
and measurements below these limits were pro-
cessed using the NHANES LOD/2 method, a stan-
dard practice for handling non-detectable values 
in environmental exposure assessment.

Covariates

A  comprehensive review of the relevant liter-
ature was conducted to identify potential covari-
ates associated with exposure to perfluoroalkyl 
and PFAS and the risk of diabetes. The selected 
covariates were categorized as either continuous 
or categorical variables. Continuous variables in-
cluded age, family poverty index ratio (PIR), annual 
household income, and BMI. Categorical variables 
encompassed gender (male, female), race (Mexi-
can American, other Hispanic, non-Hispanic white, 
non-Hispanic black, other race – including multi-
racial), education (less than ninth grade, grades 
9–11 (including grade 12 without a diploma), high 
school/GED or equivalent, college or AA degree, 
associate’s degree or above, denial, don’t know), 

and marital status (married, widowed, divorced, 
separated, never married, living with a partner).

Statistical analysis

Descriptive statistics were used to summarize 
the demographic characteristics of the partici-
pants and concentrations of biomarkers. Urine 
creatinine was not needed as a correction factor 
since it is a laboratory measure of blood and does 
not require urine dilution. Categorical variable 
data were presented as the number of cases (per-
centage) and underwent χ2 testing. Non-normal 
continuous variable data were presented as the 
median (interquartile range) [M (Q1, Q3)], and an-
alyzed using the Wilcoxon rank sum test. Normal 
continuous variable data were presented as mean 
± standard deviation, and analyzed using the in-
dependent sample t-test. A  natural log transfor-
mation (ln transformation) was applied to PFAS 
to establish a  normal distribution. Spearman’s 
correlation was used to assess the relationships 
between chemicals.

A  weighted multivariate logistic regression 
model was utilized to investigate the correlation 
between natural logarithm (ln) transformed and 
quartile transformed chemical concentrations and 
the incidence of diabetes. In order to assess the 
relationship between combined chemical expo-
sure and diabetes, as well as to pinpoint the key 
chemicals influencing the occurrence of diabe-
tes, a WQS regression model was employed. The 
WQS model is a statistical method that assesses 
the impact of each component of environmental 
exposure on the overall effect using a  weighted 
index. This model has been widely used in evalu-
ating the effects of exposure to mixtures [20]. The 
WQS model calculates quantiles for chemicals and 
assigns individual weights based on their relative 
importance within the mixture, facilitating the 
identification of potentially harmful substances.

The study utilized the quantile g-computation 
model to investigate the association between 
chemicals and diabetes by evaluating the ‘mixture 
effect. Quantile g-computation is a unique method 
for analyzing combined environmental exposures, 
as it estimates the parameters of marginal struc-
tural models and offers causal effect estimates. 
This model predicts the anticipated change in po-
tential outcomes if a simultaneous intervention is 
implemented for all exposures, potentially while 
considering confounding factors. Accurate esti-
mates of the true effect can be achieved through 
quantile g calculations when the assumptions of 
exchangeability, causal consistency, positivity, no 
interference, and correct model specification are 
met. Statistical analysis was performed using 
R3.4.3, with a two-sided p-value below 0.05 con-
sidered statistically significant [21].
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Note: Due to the high proportion of samples 
with LOD ≤ 50%, they were not excluded from the 
study population. Instead, these samples were ad-
justed by dividing them by 2, and then missing 
values of independent variables were excluded. 
The NHANES protocol was approved by the NCHS 
research ethics review board, and all participants 
provided informed consent.

Results

Baseline characteristics of the study 
population

A total of 11,780 participants were included in 
this study for statistical analysis. The general char-
acteristics of the study population can be found in 
Table I. Among these participants, 1,452 were diag-
nosed with diabetes, representing a prevalence of 
12.32%. The remaining 10,329 participants were 
diagnosed as non-diabetic, accounting for 87.68% 
of the sample. Statistical analysis indicated signifi-
cant differences in age, race, education level, mari-
tal status, family income, BMI, and diabetes status 
between patients with and without diabetes (p < 
0.05). However, there was no significant difference 
in gender between the two groups (p > 0.05).

Distribution of chemical exposure and its 
association

The nuclear density distribution was analyzed 
for all five chemicals, and the results are illustrated 
in Supplementary Figure S1. Supplementary Figure 
S1 shows that PFUA displays three distinct peaks, 
while PFNA, monohydroxy polyfluoroalkyl sub-
stances (MPAH), PFHxS, and  perfluoroalkyl ether 
acids (PFAeA) each show a single prominent peak.

A Spearman correlation analysis was conduct-
ed to investigate the relationship between the 
measured values of the five chemicals, as shown 
in Figure 2. The results indicated that the correla-
tion coefficient between PFUA and PFDeA was 
the highest at 0.76, suggesting a strong positive 
correlation. Furthermore, the correlation coef-
ficient between PFUA and MPAH was 0.69, and 
that between PFDeA and MPAH was 0.66, both 
showing significant positive correlations. On the 
other hand, the correlation coefficients for the 
remaining chemicals were below 0.2, indicating 
either a  very weak correlation or no correlation 
at all. This suggests the possibility of high collin-
earity among the variables, necessitating the use 
of multivariate logistic regression to evaluate and 
confirm the collinearity.

Weighted generalized linear regression

Univariate logistic analysis was conducted 
using three models, each adjusted for specific 

covariates. The results are presented in Supple-
mentary Tables SI–SIII. Model 1 included adjusted 
covariates of gender and age. Model 2 expanded 
on this by including additional covariates such as 
race, PIR, education level, and BMI. Lastly, Model 3  
incorporated sex, age, race, PIR, education level, 
BMI, marital status, and annual household income 
as adjusted covariates.

None of the five chemicals showed a  signifi-
cant odds ratio (OR) for diabetes in all three mod-
els (p > 0.05). Specifically, in the adjusted Model 3,  
the highest quartile (Q4) of PFDeA, PFHxS, and 
PFNA had values above 1, but none were statisti-
cally significant (p > 0.05). However, it is important 
to note that the lack of significance could be due 
to the small sample size and imbalance in the dis-
tribution of disease and non-disease populations 
in the study. Therefore, the lack of significance in 
this study should be interpreted with caution, as 
it may be influenced by these factors.

In the multivariate weighted logistic regression 
models, all five chemicals showed a variance in-
flation factor (VIF) of less than 10, suggesting no 
multicollinearity among them (Table II). The OR of 
PFNA on the outcome was calculated to be 1.14 
(0.91, 1.43) in the multivariate weighted logistic 
regression model. Nevertheless, this relationship 
was not deemed statistically significant (p = 0.25).

Weighted quantiles and regression (WQS)

In the positive constraint model of the WQS, 
the coefficient for the chemical mixture index 
showed a  weak association with diabetes (OR 
= 1.02), which was not statistically significant. 
However, strong correlations between the chem-
ical mixture index coefficient and diabetes were 
observed in Model 1, Model 2, and Model 3 af-
ter adjusting for relevant covariates (Model 1: 
OR = 1.77, Model 2: OR = 1.83, Model 3: OR = 
1.83). The results are presented in Supplemen-
tary Table SIV. Similarly, in the unadjusted model 
of the negative constraint in the WQS, the OR 
was 1.98, but it was not statistically significant 
(p > 0.05). However, after adjusting for covari-
ates, a  robust association between the chem-
ical mixture index and diabetes was evident 
in Model 1, Model 2, and Model 3 (Model 1:  
OR = 1.87, Model 2: OR = 1.90, Model 3:  
OR = 1.90). These findings are summarized in 
Supplementary Table SV. 

The first model (Model 1) considered two co-
variates: gender and age. The second model 
(Model 2) included a  wider range of covariates, 
such as gender, age, race, PIR, education level, and 
BMI. Finally, the third model (Model 3) integrated 
additional covariates, including sex, age, race, PIR, 
education, BMI, marital status, and annual house-
hold income.
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Table I. Population characteristics of diabetes in adults from the US National Health and Nutrition Examination 
Survey 2002–2018

Parameter Level Non-diabetes
N = 10329 
(87.68%)

Diabetes
N = 1451 
(12.32%)

P-value

Gender (%) Male 4956 (48.0) 734 (50.6) 0.067

Female 5373 (52.0) 717 (49.4)

Age (median [IQR]) 46.00 [32.00, 62.00] 63.00 [54.00, 71.00] < 0.001

Race (%) Mexican American 1581 (15.3) 272 (18.7) < 0.001

Other Hispanic 852 (8.2) 140 (9.6)

Non-Hispanic White 4756 (46.0) 527 (36.3)

Non-Hispanic Black 2083 (20.2) 370 (25.5)

Other race 1057 (10.2) 142 (9.8)

Family PIR (median [IQR]) 2.18 [1.15, 4.13] 1.79 [1.03, 3.34] < 0.001

Education (%) Less than 9th grade 965 (9.3) 282 (19.4) < 0.001

9–11th grade (includes 12th 
grade with no diploma)

1398 (13.5) 266 (18.3)

High school grad/GED or 
equivalent

2372 (23.0) 314 (21.6)

College or AA degree 3128 (30.3) 372 (25.6)

College graduate or above 2457 (23.8) 214 (14.7)

Refuse to answer 3 (0.0) 0 (0.0)

Don’t know 6 (0.1) 3 (0.2)

BMI (median [IQR]) 27.60 [24.00, 
31.96]

31.05 [27.10, 
36.30]

< 0.001

Marital (%) Married 5375 (52.0) 808 (55.7) < 0.001

Widowed 741 (7.2) 222 (15.3)

Divorced 1049 (10.2) 201 (13.9)

Separated 329 (3.2) 55 (3.8)

Never married 1963 (19.0) 115 (7.9)

Living with partner 869 (8.4) 49 (3.4)

Refuse to answer 3 (0.0) 1 (0.1)

Annual household income (median [IQR]) 7.00 [5.00, 11.00] 6.00 [4.00, 9.00] < 0.001

NHANES Cycles (%) 2003–2004 1191 (11.5) 145 (10.0) < 0.001

2005–2006 1263 (12.2) 130 (9.0)

2007–2008 1369 (13.3) 190 (13.1)

2009–2010 1492 (14.4) 177 (12.2)

2011–2012 1218 (11.8) 171 (11.8)

2013–2014 1369 (13.3) 223 (15.4)

2015–2016 1258 (12.2) 203 (14.0)

2017–2018 1169 (11.3) 212 (14.6)

Diabetes (%) 0 10329 (100.0) 0 (0.0) < 0.001

1 0 (0.0) 1451 (100.0)

In the positive constraint model of WQS, the 
substances MPAH, PFHxS, and PFUA are con-
sidered to be relatively significant, with weights 
exceeding 1/18 each. Similarly, within the neg-
ative constraint model of WQS, both PFDeA and 
PFNA are deemed to be relatively important, with 
weights surpassing 1/18 for each chemical. For 
more detailed information, see Figure 3.

Quantile g-computation “mixture effect” 
evaluation

For further information on the use of binary 
results in Q g-comp using the Q g-comp.no boot 
function, please refer to Supplementary Table SVI. 
The Q g-comp.boot function produces a marginal 
OR. It is important to understand that introducing 
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Figure 2. Spearman correlation coefficient between pairwise chemical measurements

nonexposed covariates, such as confounders, into 
the model will result in estimations of these pa-
rameters that are not equivalent. This is because 
the OR is non-collapsible. Marginal parameters 
offer estimates of population-average exposure 
effects, which are typically more interpretable and 
meaningful than conditional odds.

Further adjustments to the covariates were 
made using Model I, Model II, and Model III. The 
results of these adjustments are illustrated in Fig-
ure 4, showcasing four different models (1: no ad-
justment; 2: Model one; 3: Model two; 4: Model 
three) and their impact on the overall effect for 

each exposure. It is important to highlight that the 
constraints imposed on the weights in the WQS 
model may lead to biased estimations of the ef-
fects. In contrast, the Q g-comp model allows for 
weights to shift in different directions, indicating 
the potential for some exposures to be benefi-
cial while others may be harmful. This flexibility 
also addresses sampling variation that can occur 
with small or medium-sized samples. Within the 
Q g-comp model, the weights represent the pro-
portion of effects aligning in the same direction, 
although in certain instances, they may corre-
spond to a smaller or larger proportion compared 

 PFDeA PFHxS MPAH PFNA PFUA  PFDeA PFHxS MPAH PFNA PFUA

Correlation matrix Correlation matrix

PFDeA PFDeA1 100

100

100

100

100

1

1

1

1

PFHxS PFHxS

MPAH MPAH

PFNA
PFNA

PFUA
PFUA

0.11 0.66

0.14

0.13

0.13

0.15

0.76 11 66

14

13

13

15

76

12

69

1

1.00

0.91

0.82

0.73

0.64

0.56

0.47

0.38

0.29

0.20

0.11

0.12

0.69

0.11

Table II. Association of multifactorial PFAS with diabetes

Chemical OR 95% CI P-value VIF

PFDeA 0.94 (0.59, 1.47) 0.775 3.52

PFHxS 0.78 (0.68, 0.89) 0.000 1.30

MPAH 0.97 (0.75, 1.25) 0.800 1.26

PFNA 1.14 (0.91, 1.43) 0.255 2.21

PFUA 0.93 (0.58, 1.47) 0.744 2.91

 0 0.2 0.4 0.6  0 0.2 0.4 0.6 0.8

Figure 3. Weight of regression indicators on diabetes in the WQS model. A – Forward constraints; B – Negative 
constraints
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PFNA
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WQS regression – positive WQS regression – negativeA B
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Figure 4. Q G-computation weights for the four models. A – Model I; B – Model II; C – Model III; D – Model 4
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to the overall ‘mixed’ effect. Notably, Figure 4  
illustrates that the combined exposure effect of 
PFNA on diabetes is positive in all four models, 
while exposure to the other four chemicals shows 
negative effects.

Nonlinearities in the data were addressed us-
ing Qg-comp and Qg-comp. BOOT methods were 
applied to develop a  model that included an in-
teraction term and quadratic terms for each pre-
dictor of chemical exposure. By simultaneously ac-
counting for the nonlinear effects of all exposures, 
a distinct nonlinear trend in the overall exposure 
effect was observed, as shown in Supplementary 
Figures S2 and S3. Importantly, the smoothed re-
gression line aligns with the confidence interval of 
the marginal linear model, indicating consistency. 
Additionally, it is clear that the OR for the preva-
lence of PFAS and diabetes increases steadily with 
each quantile change.

Discussion

This study utilized a  large sample of data to 
investigate the potential link between mixed ex-
posure of serum perfluoroalkyl and PFAS and di-
abetes. The statistical analysis of 11,780 partici-
pants, revealing a diabetes prevalence of 12.32%, 
uncovered patterns in the baseline characteristics 
of the study population. The analysis brought to 
light a  strong positive correlation between PFUA 

and PFDeA, indicating a  potential high collinear-
ity between these PFAS chemicals. This finding 
underscores the need for further investigative re-
search that could have significant implications for 
environmental health policies and understanding 
of endocrine disorders. Additionally, the weighted 
quantile sum regression analysis, after adjusting 
for covariates, demonstrated a robust association 
between the chemical mixture index and diabetes 
in all models. This suggests a complex, potential-
ly non-linear relationship between PFAS exposure 
and diabetes, offering new insights that could 
guide future epidemiological studies and risk as-
sessment models. The findings indicate that PFAS 
exposure may be associated with an elevated risk 
of developing diabetes, particularly showing a pos-
itive correlation between mixed exposure of PFNA.

The association between PFAS exposure and 
diabetes is still a topic of debate in the research 
community, with no consensus reached yet [22]. 
However, several studies have shown a  positive 
correlation between serum PFAS levels and ele-
vated blood glucose indicators in individuals with 
type 2 diabetes [23, 24]. For example, Cardenas 
et  al. analyzed participants in the Diabetes Pre-
vention Program (DPP) from 1996 to 1999 and 
found that high PFOS and PFOA levels were linked 
to increased insulin resistance (HOMA-IR) at base-
line. They also found associations between high 
PFOS and PFOA levels and elevated HOMA-β, 
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fasting proinsulin, and glycated hemoglobin A1c 
(HbA1c) levels at baseline. Yet, the follow-up sur-
vey revealed a  weak correlation between PFAS 
exposure and these blood glucose indicators [24]. 
In a separate study in Tianjin, China, involving in-
dividuals aged 19–87 years, it was discovered that 
a 1% increase in serum PFOA and PFNA concen-
trations was significantly associated with higher 
fasting plasma glucose levels, while a 1% increase 
in PFAS, perfluorohexanoic acid (PFHxA), and  
PFHxS was linked to higher HbA1c levels [25].

Some studies have suggested a potential pos-
itive link between serum PFAS levels and an in-
crease in diabetes measures, while others have 
found no significant or inverse associations. 
To investigate this correlation more closely, Liu 
et al. conducted an analysis using NHANES data 
from 2013 to 2014. Their findings indicated that 
branched-chain PFOS and linear PFOA were sig-
nificantly linked to a reduction in fasting plasma 
glucose. However, no notable association was 
observed between PFAS and 2-hour plasma glu-
cose (GTT), insulin levels, or HOMA-IR [26]. In 
a  similar study, Nelson et  al. analyzed NHANES 
data from 2003 to 2004 to investigate the rela-
tionship between PFAS (including PFOA, PFNA, 
PFOS, and PFHxS) and insulin resistance. Their 
analysis, however, did not identify any significant 
association [27].

Numerous studies have explored the link be-
tween PFAS and diabetes occurrence, with results 
varying based on the specific PFAS compounds 
investigated. Lundin et  al. analyzed the diabe-
tes prevalence in individuals with high PFOA ex-
posures between 1947 and 1997. Their findings 
indicated a heightened risk of diabetes and dia-
betes-related mortality in those with moderate 
exposures, while no notable correlation was ob-
served at low or high exposures [28]. Conversely, 
some other studies have documented either no 
significant association or an inverse association 
between PFAS exposure and type 2 diabetes risk 
[29–31].

Recent investigations into the pathophysiol-
ogy of chemically induced diabetes, particular-
ly related to PFAS exposure, have revealed po-
tential mechanisms. Studies indicate that PFAS 
could disrupt endocrine function, specifically 
insulin signaling pathways, leading to insulin 
resistance, a precursor to type 2 diabetes [32]. 
PFASs tend to accumulate in the liver, a crucial 
organ in glucose regulation, where they may dis-
rupt glucose metabolism and insulin sensitivity 
[33]. Additionally, PFAS exposure has been asso-
ciated with changes in lipid metabolism, which 
is closely linked to insulin resistance. The precise 
molecular pathways through which PFASs cause 
these effects are still being studied but could 

involve the modulation of nuclear receptors and 
interference with hormone secretion and func-
tion [34]. This disruption of metabolic and endo-
crine pathways may contribute to the develop-
ment of diabetes, emphasizing the importance 
of further research into the specific biological 
mechanisms underlying PFAS-induced metabolic 
dysregulation.

The study benefits from using NHANES data 
in the United States, which offers a  sizable and 
representative sample, and from serologically de-
tecting five PFAS chemicals for subsequent statis-
tical analysis, ensuring result reliability. However, 
there are limitations. Firstly, the cross-sectional 
nature of the NHANES data used in this study hin-
ders establishing temporal or causal associations 
between mixed PFAS exposure and diabetes risk. 
Secondly, diabetes pathogenesis is intricate, with 
potential confounding factors such as genetics, 
diet, and lifestyle not considered in the analysis. 
Additionally, PFAS chemicals undergo adsorp-
tion-partition reactions with environmental media 
upon entry into the environment, leading to the 
generation of various metabolites upon entering 
the human body. Some of these metabolites inter-
act with biological macromolecules, causing toxic 
effects such as growth, reproductive, and endo-
crine toxicity. Despite this, the study did not in-
vestigate the potential impact of PFAS metabolites 
on diabetes prevalence. Hence, future research 
should explore the link between chemical metab-
olites and diabetes risk, as well as the physiologi-
cal mechanisms connecting mixed PFAS exposure 
and diabetes risk.

In conclusion, the results showed no evidence 
of multicollinearity among the five PFAS chemi-
cals studied. It is important to highlight that PFAS 
compounds have been proposed to potentially 
increase the risk of diabetes. Furthermore, a pos-
itive correlation was found between PFNA and the 
combined exposure effect on diabetes.
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