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 Abstract
Introduction
Breast cancer has become the most prevalent malignant tumor among women globally, posing a
serious threat to women's life and health. Neoadjuvant therapy (NAT) has emerged as one of the
standard treatment approaches for breast cancer patients. However, due to varying responses to NAT
among different patients, significant differences in treatment effectiveness occur, impacting the timely
alteration of treatment strategies for patients.

Material and methods
Based on clinical and pathological characteristics along with the RCB scoring, we utilized a support
vector machine (SVM) algorithm to construct a Breast Cancer Pathological Characteristics(PBCS)
prediction model. We thoroughly validated the PBCS and compared it to a Pathomics Signatures (PS)
prediction model.

Results
we developed a pathological prediction label, named PS. Subsequently, through univariate and
multivariate analysis, we discovered a significant correlation between HER2 and the patients' RCB
scores. Integrating HER2 into PS, we constructed a breast cancer pathological prediction model,
named PBCS.PBCS exhibits good performance in predicting the effectiveness of postoperative
therapy（RCB 0~Ⅰ） in both the training sets(AUC0.86[95%CI0.7988-0.9173])and validation
sets（AUC0.83[95%CI0.7219-0.9382 ]). In the validation set, PBCS significantly outperforms the
PS（AUC0.65[95%CI0.5121-0.7886 ]）.Calibration curves and clinical decision curves also strongly
support PBCS's ability to effectively predict the efficacy of therapy（RCB 0~Ⅰ）.
Conclusions

Conclusions
PBCS can assist clinical and pathological physicians in accurately predicting patients' post-treatment
RCB grading before initiating NAT. This offers a new approach to forecast breast cancer patients'
responsiveness to NAT, aiding in devising personalized treatment strategies for patients.
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Abstract 

Introduction  

Breast cancer has become the most prevalent malignant tumor among women globally, 

posing a serious threat to women's life and health. Neoadjuvant therapy (NAT) has emerged 

as one of the standard treatment approaches for breast cancer patients. However, due to 

varying responses to NAT among different patients, significant differences in treatment 

effectiveness occur, impacting the timely alteration of treatment strategies for patients. 

Materials and methods 

This study included a total of 201 breast cancer patients who completed NAT, divided 

into a training group of 140 cases and a validation group of 61 cases. Based on clinical and 

pathological characteristics along with the Residual Cancer Burden (RCB) score, we utilized 

a support vector machine (SVM) algorithm to construct a Breast Cancer Pathological 

Characteristics(PBCS) prediction model. We thoroughly validated the PBCS and compared it 

to a Pathomics Signatures (PS) prediction model. 

Results  

In our study, we used Cellprofiler to extract nine pathological features highly correlated 

with patients' RCB scoring from HE-stained slides of breast cancer NAT. Employing the 

Support Vector Machine (SVM) algorithm, we developed a pathological prediction label, 

named PS. Subsequently, through univariate and multivariate analysis, we discovered a 

significant correlation between HER2 and the patients' RCB scores. Integrating HER2 into PS, 

we constructed a breast cancer pathological prediction model, named PBCS.PBCS exhibits 

good performance in predicting the effectiveness of postoperative therapy（RCB 0~Ⅰ） in both 

the training sets(AUC0.86[95%CI0.7988-0.9173])and validation sets

（AUC0.83[95%CI0.7219-0.9382 ]). In the validation set, PBCS significantly outperforms 

the PS（AUC0.65[95%CI0.5121-0.7886 ]）.Calibration curves and clinical decision curves 

also strongly support PBCS's ability to effectively predict the efficacy of therapy（RCB 0~Ⅰ）. 

Conclusions   

PBCS can assist clinical and pathological physicians in accurately predicting patients' 

post-treatment RCB grading before initiating NAT. This offers a new approach to forecast 

breast cancer patients' responsiveness to NAT, aiding in devising personalized treatment 

strategies for patients. 

Keywords 

Breast cancer, Pathomics, Residual Cancer Burden , Neoadjuvant therapy. 

Introduction 

 Breast cancer, as a malignant tumor, poses a severe threat to women's life and health. 

During the period from 2014 to 2018, the incidence of breast cancer continued to rise, and has 

now become the most prevalent malignant tumor among women[1, 2]. Neoadjuvant therapy 
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(NAT) can assist patients in reducing staging, shrinking tumors, thereby potentially 

facilitating subsequent surgical treatment[3, 4]. This significantly improves patients' 

event-free survival(EFS) and overall survival（OS）[5]. thus becoming one of the standard 

treatment approaches for the aforementioned breast cancer patients[6]. 

The Residual Cancer Burden (RCB) assessment system was first introduced in 2007，As 

a continuous numerical value, it comprehensively analyzes the two-dimensional size of the 

largest residual tumor, the proportion of tumor cells, and the status of lymph node 

metastasis[7]. This system enables a more comprehensive and effective evaluation of the 

effectiveness of NAT and patient prognosis in breast cancer[8]. Studies have shown that the 

pathologic complete response (pCR) after NAT can serve as a marker for patients' disease-free 

survival (DFS) and overall survival (OS)[9, 10].The team of researchers led by Christina Yau 

from the University of California, San Francisco, published a multicenter retrospective study 

in 'The Lancet: Cancer,' revealing that for each unit increase in RCB score, there is an 82% 

increase in the risk of recurrence, metastasis, or death in breast cancer patients (HR: 1.82),and 

researchers believe that RCB scoring and grading can independently predict the long-term 

survival of breast cancer patients in various clinical research centers and within different 

breast cancer subgroups[10]. 

However, in clinical practice, not all patients can achieve pathological relief after 

receiving NAT and some patients do not respond effectively to NAT, while the condition may 

even worsen in some cases[11]. Therefore, numerous biological indicators have been 

proposed for predicting the effectiveness of NAT[12, 13]. As we Know, histological type, 

histological grade, molecular subtypes, estrogen receptor (ER), progesterone receptor (PR), 

human epidermal growth factor receptor-2 (HER2), and Ki67 in breast cancer tissues are all 

related to patients' response to NAT[14]. However, due to the heterogeneity of tumors, the 

responsiveness to treatment is not always consistent among different patients[15].Further 

exploration is necessary to identify more precise prognostic markers, providing a theoretical 

basis for the clinical prognosis assessment of breast cancer and thus enabling correct and 

effective personalized treatment. 

Over the past decade, with the advancement of computer technology, machine learning 

has made substantial progress in the field of medicine, especially in computer-aided screening, 

precise diagnostics, and treatment decisions. Machine learning offers a new approach to assist 

clinicians in classifying medical information and images. Pathologists can extract information 

about the tumor from pathological slides of tumor tissue. Through visual inspection and 

evaluation based on diagnostic criteria and their accumulated diagnostic experience, they 

assess the pathological grading of the tumor. However, due to variations in pathologists' 

experiences, this diagnostic model still lacks specificity and efficiency.  

Recently, researchers from Southwest Medical University developed a multi-scale fusion 

model based on the Support Vector Machine (SVM) algorithm, combining CT and WSI 

images of breast cancer patients. This model is designed for predicting the pCR after 

neoadjuvant chemotherapy (NAC)[16].However, the assessment of pCR in breast cancer 

patients who received NAC in this study is based on clinical doctors' experience. The 

evaluation criteria are not standardized in pathological practice, making it challenging to 

accurately distinguish various degrees of tumor residue.We assume to evaluate the efficacy of 

breast cancer after NAT using pathological characteristics combined with RCB scoring. We 

categorize RCB 0-Ⅰ as the significantly effective therapy group (NAT-sensitive), and RCB 

Ⅱ~Ⅲ as the group showing less significant response to therapy (NAT-resistant)[17].            
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Therefore, based on whole-slide images (WSI) of breast cancer H&E stained slides and 

pathological analysis methods, we establish a model to classify the chemotherapy outcomes 

after breast cancer NAT. This aims to identify patients who can achieve a good chemotherapy 

response, providing guidance for clinicians in devising personalized treatment strategies. 

 

Patients and Methods 

H&E slicer 

Research Design 

A total of 289 patients records who underwent NAT and surgical treatment at Renmin 

Hospital of Wuhan University between January 2021 and June 2023 were collected. Based on 

the inclusion criteria, 201 patients were ultimately included. Among them, 20 cases were 

excluded due to insufficient cancer tissue in the biopsy samples to extract enough histological 

features, 16 cases were excluded due to concomitant presence of other malignancies or 

diagnosed distant metastases at the time of diagnosis, 11 cases were excluded due to 

incomplete clinical or pathological information, 4 cases were excluded due to the destruction 

of tumor masses in the surgical samples, making the RCB assessment inaccurate, and 37 cases 

were excluded due to unclear image quality in the scanned WSI images, making it impossible 

to accurately extract Primary Score (PS).Finally, a total of 201 eligible patients were obtained 

(Figure2). Clinical baseline information of the patients was collected preoperatively, 

including age, histological grading, histological type, ER, PR, androgen receptor (AR), HER2, 

Ki67, and cytological lymph node involvement. This retrospective study has obtained 

approval from the Ethics Review Committee of Renmin Hospital of Wuhan University（Ethics 

No.WDRY2024-K04）and has been exempted from the requirement for informed consent. 

Pathological Response Assessment 

Currently, there are three commonly used methods for prognostic assessment of NAT in 

breast cancer, namely the Miller-Payne system, the American Joint Committee on Cancer 

(AJCC) ypTNM staging, and the RCB system[18, 19]. Among these, the RCB assessment 

system can consider the dimensions of the primary tumor, the number of tumor bed cells, and 

the axillary lymph node burden. Therefore, the RCB score demonstrates very good accuracy, 

objectivity, and feasibility in predicting the prognosis of NAT for breast cancer[10, 20]. This 

study also utilized the RCB score to evaluate the therapeutic effects of neoadjuvant treatment 

for breast cancer, with the RCB index calculated using an online-based calculator (calculation 

website: http://www.mdanderson.org/breast cancer_RCB). According to the calculation 

results of the RCB index, RCB classification is divided into four levels: RCB 0 (complete 

pathological response,pCR), RCB I (0<RCB≤1.36, minimal residual lesions), RCB II 

(1.36<RCB≤3.28, moderate residual lesions), and RCB III (RCB>3.28, extensive residual 

lesions)[21]. (Figure3) 

Patients were treated according to the "Guidelines and Norms for the Diagnosis and 

Treatment of Breast Cancer" developed by the Breast Cancer Committee of the Chinese 

Anti-Cancer Association in 2019[22]. All patients underwent 3 to 9 cycles of NAT, with 

chemotherapy regimens based on taxanes, carboplatin, and anthracycline drugs. 

HER2-positive patients also received treatment with trastuzumab. After completion of NAT, 

surgical resection was performed. Postoperatively, sampling and assessment were conducted 

following the methods recommended in the "Expert Consensus on Pathological Diagnosis of 

Neoadjuvant Therapy for Breast Cancer"[23]. Based on the postoperative RCB grading of 
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patients, RCB grades 0 to I were classified as the significantly effective therapy group, while 

RCB grades II to III were classified as the insignificantly effective therapy group. 

Pathomics 

Development and Validation of Breast Cancer Pathomics Prediction Model 

The predictive values of the Pathomics model were combined with independent clinical 

predictive factors using the SVM to construct Pathomics Breast Cancer Signatures (PBCS), 

for the prediction of RCB scores in patients undergoing NAT for breast cancer.We conducted 

a comprehensive evaluation of the model using the following methods. Receiver Operating 

Characteristic (ROC) curve analysis, sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV) were employed to assess the discriminative 

performance[24].We assessed the model's calibration using calibration curves. Decision 

Curve Analysis (DCA) was performed on all models to quantify the net benefit for patients at 

different probability thresholds, thereby evaluating the clinical value of our predictive model 

in this study . 

Sample Preparation and Selection of Regions of Interest 

All included breast cancer tissue H&E stained slides were prepared from formalin-fixed 

paraffin-embedded samples. Subsequently, the pathology department director of Renmin 

Hospital of Wuhan University selected the slides that best represented the tumor cell 

heterogeneity. KFBIO (KF-PRO-020) was used to scan the selected slides at 20X 

magnification to acquire Whole Slide Images (WSI) of the patients, and digitize the images 

into SVS format files. Managed using (K-Viewer, version: 1.7.0.21), under the quality control 

of the director of the Pathology Department at Renmin Hospital of Wuhan University, two 

pathologists selected 10 non-overlapping screenshots per case containing the most tumor cells, 

each with a field of view of 1800×900 pixels. We saved the selected screenshots as formatted 

files(JPEG). Using Photoshop (Version: 24.0.0), we segmented all screenshots into 

non-overlapping small frame images (500×500 pixels) for subsequent analysis. 

Extraction of Pathomics Features 

We used CellProfiler (version 4.0.7)[25](an open-source image analysis software 

developed by the Broad Institute in Cambridge, Massachusetts) to extract quantitative 

pathological features from the selected pathology screenshots. We used the 'UnmixColors' 

module to separate images of H&E staining into grayscale images for Hematoxylin and Eosin 

staining. Additionally, we utilized the 'ColorToGray' module to convert the H&E images into 

grayscale images for further analysis. We conducted two measurements on the images. In the 

first comprehensive measurement, we accumulated a total of 285 primary features. We 

evaluated the image quality features of the grayscale images of H&E, Hematoxylin, and Eosin 

using the 'MeasureImageQuality' and 'MeasureImageIntensity' modules.Subsequently, by 

utilizing the 'MeasureLocalization' module, we computed, on a per-pixel basis throughout the 

entire image, the co-localization and correlation of intensities between each Hematoxylin and 

Eosin staining image. Assessing the granularity features of each image was done using the 

'MeasureGranularity' module. These features summarize three types of images. In the second 

measurement, we extracted detailed features in the Hematoxylin staining. First, we identified 

the primary and secondary objects and then measured them separately, obtaining 831 

pathomics features. The extracted pathomics features were aggregated through the mean 

values of the features from 10 screenshots of each WSI. We cumulatively extracted 1116 
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pathomics features, which were randomly divided into training and validation sets in a 7:3 

ratio for subsequent model construction. For a detailed summary of the extracted pathomics 

features, please refer to the supplementary materials (FigureS1-S3). 

Construction of Pathomics Models 

Constructing pathomics features can unveil tumor information from the tumor 

microenvironment. However, these features are high-dimensional data, which adversely affect 

the prediction of RCB grading. Therefore, we should obtain the features most closely 

associated with RCB 0-I levels in the training set. Initially, normalizing all variables and 

conducting a U-Test on each feature to eliminate redundant features.To thoroughly extract 

discriminative features in this process, the threshold for the p-value was set at 0.05. 

Subsequently, considering the correlation between features, we conducted a correlation 

analysis. If the correlation coefficient between two features exceeded 0.8, one of the features 

was excluded. Next, the Least Absolute Shrinkage and Selection Operator (LASSO) 

algorithm was used to select the extracted features, and tenfold cross-validation was 

employed to choose the value of Lambda to determine the optimal features. Based on the 

optimal features from the aforementioned pathomics characteristics, we constructed a 

Pathomics Prediction Model using the Support Vector Machine (SVM) algorithm . 

Subsequently, Pathomics Predictive Values were utilized to build a signature, named 

Pathomics Signatures (PS). 

Development and Validation of Breast Cancer Pathomics Prediction Model 

The predictive values of the Pathomics model were combined with independent clinical 

predictive factors using the SVM to construct Pathomics Breast Cancer Signatures (PBCS), 

for the prediction of RCB scores in patients undergoing NAT for breast cancer.We conducted 

a comprehensive evaluation of the model using the following methods. Receiver Operating 

Characteristic (ROC) curve analysis, sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV) were employed to assess the discriminative 

performance[26, 27].We assessed the model's calibration using calibration curves. Decision 

Curve Analysis (DCA) was performed on all models to quantify the net benefit for patients at 

different probability thresholds, thereby evaluating the clinical value of our predictive model 

in this study . 

Statistical Analysis 

All statistical analyses were performed using R Studio (Version 4.1.1; R Studio, 

http://www.R-project.org) and Jupyter Notebook (Version 6.4.11).The differences in 

categorical variables were calculated using the chi-square test. The differences in continuous 

variables were analyzed using the Mann-Whitney U test. All tests were two-tailed, and a 

two-tailed p-value < 0.05 was considered statistically significant. 

Results 

The correlation between clinicopathological features and RCB grading. 

This study included a total of 201 female breast cancer patients who underwent NAT, 

with an average age of 49.4 (ranging from 22 to 76) years. Postoperative specimens were 

assessed using the RCB grading system, with 77 patients (38.3%) classified as RCB 0, 29 

patients (14.4%) as RCB I, 58 patients (28.8%) as RCB II, and 37 patients (18.4%) as RCB 

III. According to the clinical efficacy of therapy, RCB 0-I (106 cases) was defined as effective 

therapy, and RCB II-III (95 cases) was defined as ineffective .The chi-square test showed that 
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histological grade, histological type, ER, PR, HER2, and Ki67 proliferation index were all 

associated with the efficacy of NAT(Table S1). Further univariate logistic regression analysis 

indicated a correlation between histological grade, histological type, ER, PR, HER2, and Ki67 

proliferation index with the efficacy of NAT. Patients with higher histological grades, 

non-special type invasive breast cancer, negative expression of ER and PR, positive 

expression of HER2, and a high Ki67 proliferation index (≥30%) were more likely to 

achieve RCB 0-I, and this association was statistically significant (p < 0.05).Multivariate 

logistic regression analysis revealed that HER2 is an independent predictive factor 

influencing the efficacy of NAT (p < 0.05) (Table 1). The data of 201 cases were randomly 

divided into training and validation sets at a ratio of 7:3, resulting in 140 cases in the training 

set and 61 cases in the validation set. Chi-square tests were performed on both sets, 

demonstrating differences in ER, PR, and Ki67 expression between the groups. Additionally, 

there was no significant statistical difference observed between the two groups of patients 

(Table S2). 

Selection of Pathomics Features and Construction of the PS Model 

Utilizing U-Test and Spearman correlation analysis, redundant features were eliminated, 

resulting in 12 pathomics features from 201 patients(Figure4). Subsequently, Lasso was used 

for further feature selection. We performed tenfold cross-validation to find the optimal lambda 

value. We chose the features with a lambda value equivalent to one standard error. Ultimately, 

9 pathomics features were obtained. Please refer to the supplementary file for details.We 

extracted 9 highly correlated pathomics features with patient RCB scores from H&E stained 

slices of breast cancer NAT patients using CellProfiler. Subsequently, we employed the SVM 

algorithm to construct a PS. The ROC curve evaluated the model's predictive performance, 

showing an AUC of 0.75 in the training set and 0.65 in the validation set, indicating 

acceptable accuracy of the model(Figure5). 

Development and Validation of PBCS 

  The results of the multifactor regression analysis showed that HER2 is an independent 

predictive factor influencing the efficacy of NAT. Thus, integrating HER2 with PS into the 

training set, a comprehensive predictive model PBCS was developed using the SVM 

algorithm. The model's discriminative performance was evaluated using the ROC curve. 

PBCS accurately predicted effective therapy (RCB0-I) in the training set (AUC 0.86 [95% CI 

0.7988-0.9173]) and the validation set (AUC 0.83 [95% CI 0.7219-0.9382])(Table 2). 

 

Discussion 

Due to the high incidence and increasing trend of breast cancer among patients, NAT 

combined with surgical treatment as a standardized approach brings hope to an increasing 

number of patients. However, due to individual variations, different patients also respond 

differently to therapy[28]. Hence, numerous biological indicators predicting treatment 

response are gradually becoming a hot area in clinical research. Currently, decisions regarding 

whether patients should undergo NAT are largely based on clinical pathological features. 

Numerous studies have shown that higher histological grading, a high Ki67 proliferation 

index, negative expression of ER and PR, as well as positive expression of HER2, are all 

associated with a favorable treatment response[29]. Among these, the molecular subtypes 

determined by ER, PR, HER2, and Ki67 serve as one of the most important indicators for 
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predicting NAT. This suggests that patients with HER2-enriched and triple-negative breast 

cancer are recommended candidates for NAT, while those with ER and PR positive expression 

(Luminal subtype) may benefit more from hormonal therapy or surgical treatment. Klein et 

al.'s research also indicates a more pronounced sensitivity of HER2-positive and 

triple-negative breast cancer patients to neoadjuvant treatments[30]. Therefore, in the 

complex clinical practice, relying solely on clinical pathological features does not yield 

satisfactory results, necessitating the urgent development of more accurate biological markers 

to predict patients' treatment responses. 

In the field of digital pathology, artificial intelligence techniques such as support vector 

machine algorithms and convolutional neural networks have been used to assist in the 

diagnosis of oncologic pathology[31-35].Previous studies have confirmed the effectiveness of 

using ultrasound images of tumors to predict the outcome of pathological complete response 

to neoadjuvant chemotherapy in breast cancer patients[36]. Recently, some investigators have 

developed a CT-based radiological model that is effective in predicting the validity of axillary 

pathologic complete response after neoadjuvant chemotherapy[37].In this study, based on 

clinical pathological features and pathological histological characteristics, we developed a 

predictive model for the efficacy of NAT in breast cancer using an SVM algorithm. This 

model aims to forecast the RCB score in breast cancer patients after neoadjuvant treatment. 

The predictive model based on pathological characteristics showed complete accuracy in 

predicting the RCB score, demonstrating good performance in discrimination, calibration, and 

at the level of clinical decision-making. Internally validated within our center, the model 

exhibited a good AUC, high sensitivity, specificity, and NPV. In clinical practice, our research 

provides an effective and replicable tool to predict the RCB score in breast cancer patients 

undergoing NAT. This tool can assist in timely adjustment of treatment strategies for patients 

with ineffective treatment (RCB II-III), enabling the development of personalized treatment 

plans for them. 

For breast cancer patients, accurately predicting their RCB classification before initiating 

NAT can significantly maximize their treatment benefits and aid in the early development of 

personalized treatment strategies. In the traditional treatment process, pathologists often use 

optical microscopes to determine the tumor's malignancy, differentiation degree, and growth 

pattern. Clinical physicians then combine the patients' molecular characteristics and their own 

experience to decide on whether to use NAT. However, due to limitations in optical 

microscope magnification, variations in pathologists' experiences, and the heterogeneity of 

tumors among different patients, numerous biological markers do not always accurately 

predict a patient's response to NAT. This leads to cases where patients with ineffective 

treatment (RCB II-III) are subjected to NAT strategies. This not only fails to cause a 

significant regression in tumor cells but also brings numerous side effects to patients and 

might delay the appropriate timing for treatment. With the application of cell analysis 

software and the rapid advancement of computer storage technology, the digitization of 

pathological slides has become achievable. Within histopathological sections lie a multitude 

of microscopic structural details that elude the naked eye, reflecting the characteristics of 

tumor cells and microenvironment features[38]. This information can directly indicate the 

malignancy level of the tumor and its response to treatment. 

In our study, the PS model, solely based on pathology image extraction in the validation 
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set, showed an AUC of 0.65 for predicting NAT in breast cancer, yielding reasonably reliable 

results regarding predicting patient responses to neoadjuvant treatment. Additionally, 

considering that patients' clinical characteristics, particularly HER2 status, are closely 

associated with NAT efficacy, the PCBS model constructed by combining PS with the 

patients' clinical feature HER2 exhibited a significant enhancement in predictive value 

(AUC=0.83).The PBCS achieves a predictive value for NAT in breast cancer with an AUC 

(>0.8), similar to the results in Zhang et al.'s study[16]. They used radiomics, pathomics, and 

deep learning pathomics to predict pCR in breast cancer NAC. However, their assessment of 

patients' pathological response relies on the clinical pathologists' experience, which holds a 

degree of subjectivity. In contrast to their study, our research adopts a more advanced and 

objective method, utilizing RCB classification to evaluate the effectiveness of NAT in patients, 

hence providing a more accurate assessment of treatment outcomes. During the construction 

of our model, we conducted two extractions of our pathological images using CellProfile. The 

PBCS model demonstrated high sensitivity and NPV in an independent validation set, 

indicating its reliability in identifying individuals with no significant response to neoadjuvant 

treatment. 

Although our research pioneered the introduction of RCB classification as an evaluation 

tool for pathological remission of NAT for breast cancer patients, providing a stronger 

objectivity in distinguishing treatment effects, the study still has certain limitations. Firstly, 

due to random assignment of cases in this study, the proportion of triple-negative breast 

cancer patients was significantly higher in the training set compared to the validation set, 

causing statistically significant differences in ER, PR, and Ki-67 between the training and 

validation set patients. Further single-factor and multi-factor regression analyses conducted 

separately on the training and validation sets showed that high histological grading, negative 

expression of ER and PR, positive expression of HER2, and a high Ki67 (≥30%) 

proliferation index were all influencing factors on patients' chemotherapy response, leading to 

poor uniformity in clinical pathological factors between the training and validation 

sets.Secondly, our study is a single-center retrospective study where all breast cancer patients 

originated from the same medical institution. The sample size is limited. In the future, we aim 

to acquire sample data from more medical institutions and conduct prospective studies to 

validate the accuracy and applicability of PBCS. 

 

Conclusion 

We have developed the PBCS, a novel artificial intelligence model that predicts the RCB 

score after NAT for breast cancer by integrating pathology biopsy WSI and clinical 

pathological features. This model aids clinical physicians in preparing for NAT by predicting 

the therapy response, enabling timely adjustment of personalized treatment strategies for 

patients. 
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Tabel1 Univariate and multivariate regression analysis of clinicopathological features and NAT 

Factors Univariate analysis  Multivariate analysis 

 OR(95%CI) P  OR(95%CI) P 

Age（%）      

   >50 vs ≤50 0.81（0.463~1.405） 0.449    

Histological grade（%）      

   3 vs 1~2 0.33（0.177~0.597） <0.001  0.569（0.199~1.628） 0.293 

Histological type（%）      

   Other invasive histology 6.44（1.801~23.004） 0.004  4.783（0.820~27.889） 0.082 

    vs Invasive carcinoma 

of no special type 
     

ER status（%）      

   Positive vs Negative 4.33（2.370~7.927） <0.001  1.748（0.630~4.850） 0.283 

PR status（%）      

   Positive vs Negative 5.76（3.130~10.600） <0.001  2.160（0.791~5.897） 0.133 

AR status（%）＊      

   Positive vs Negative 1.249（0.608~2.566） 0.544    

HER2（%）      

   Positive vs Negative 0.03（0.009~0.098） <0.001  0.029（0.008~0.106） <0.001 

Ki67 expression status 

(cut-of 30%)（%） 
     

   High (≥30%) vs Low 

(<30%) 
0.29（0.142~0.578） <0.001  0.521（0.152~1.779） 0.298 

 

 

Table 2 Discrimination performance of predict models for predicting RCB0-I in breast cancer 

patients 

Training set 
AUC（95%Cl） 

SEN(%) SPE(%) ACC(%) PPV(%) NPV(%) 

PS 
0.754513(0.6663 - 

0.8427) 
0.911392 0.573770 0.764286 0.734694 0.833333 

PSBC 
0.858062(0.7988 - 

0.9173) 
0.772152 0.770492 0.771429 0.813333 0.723077 

Test set 
AUC（95%Cl） 

SEN(%) SPE(%) ACC(%) PPV(%) NPV(%) 
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PS 
0.650327(0.5121 - 

0.7886） 
0.962963 0.323529 0.606557 0.530612 0.916667 

PSBC 
0.830065(0.7219 - 

0.9382) 
0.666667 0.941176 0.819672 0.900000 0.780488 

 

 

 

Figure1 Flow diagram of patient cohort selection 
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Figure2   Histological images of breast cancer patients before and after NAT. RCB-0：Tumor 

cells disappeared completely after NAT.（A）；RCB-I:Only a small amount of tumor remained after 

NAT(B);   RCB- II：There was moderate residual lesion in the tumor bed after NAT（C）；RCB- 

III：There was extensive residual lesion in the tumor bed after NAT（D） 
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Figure3. Feature selection process. pathomics features (A, B) were selected by the LASSO model 

with tuning parameter (λ) using fivefold cross-validation via minimum and 1se criteria 
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Figure4. ROC analysis of predict models for predicting Significant therapy response group in the 

training set (A) and validation set (B), respectively. C Calibration curves of models in training set 

on discriminating Group with significant effect of therapy versus Group with insignificant effect 

of therapy. D Decision curve analysis in training set using PS, PBCS . 
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