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A b s t r a c t

Introduction: Breast cancer has become the most prevalent malignant tu-
mor among women globally, posing a  serious threat to women’s life and 
health. Neoadjuvant therapy (NAT) has emerged as one of the standard 
treatment approaches for breast cancer patients. However, due to varying 
responses to NAT among different patients, significant differences in treat-
ment effectiveness occur, impacting the timely alteration of treatment strat-
egies for patients.
Material and methods: This study included a  total of 201 breast cancer 
patients who completed NAT, divided into a training group of 140 cases and 
a validation group of 61 cases. Based on clinical and pathological character-
istics along with the Residual Cancer Burden (RCB) score, we utilized a sup-
port vector machine (SVM) algorithm to construct a Pathomics Breast Cancer 
Signature (PBCS) prediction model. We thoroughly validated the PBCS and 
compared it to a Pathomics Signature (PS) prediction model.
Results: In our study, we used CellProfiler to extract nine pathological fea-
tures highly correlated with patients’ RCB scoring from HE-stained slides of 
breast cancer NAT. Employing the SVM algorithm, we developed a patholog-
ical prediction label, named PS. Subsequently, through univariate and multi-
variate analysis, we discovered a significant correlation between HER2 and 
the patients’ RCB scores. Integrating HER2 into PS, we constructed a breast 
cancer pathological prediction model, named PBCS. PBCS exhibits good per-
formance in predicting the effectiveness of postoperative therapy (RCB 0–I) 
in both the training sets (AUC = 0.86 [95% CI: 0.7988–0.9173]) and valida-
tion sets (AUC = 0.83 [95% CI: 0.7219–0.9382]). In the validation set, PBCS 
significantly outperforms the PS (AUC = 0.65 [95% CI: 0.5121–0.7886]). Cali-
bration curves and clinical decision curves also strongly support PBCS’s abil-
ity to effectively predict the efficacy of therapy (RCB 0–I).
Conclusions: PBCS can assist clinical and pathological physicians in accu-
rately predicting patients’ post-treatment RCB grading before initiating NAT. 
This offers a new approach to forecast breast cancer patients’ responsive-
ness to NAT, aiding in devising personalized treatment strategies for pa-
tients.
Key words: breast cancer, pathomics, residual cancer burden, neoadjuvant 
therapy.
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Introduction

Breast cancer, as a  malignant tumor, poses 
a severe threat to women’s life and health. During 
the period from 2014 to 2018, the incidence of 
breast cancer continued to rise, and it has now be-
come the most prevalent malignant tumor among 
women [1, 2]. Neoadjuvant therapy (NAT) can help 
reduce staging and shrink tumors, thereby poten-
tially facilitating subsequent surgical treatment [3, 
4]. This significantly improves patients’ event-free 
survival (EFS) and overall survival (OS) [5]. Thus, 
it is becoming one of the standard treatment ap-
proaches for breast cancer patients [6].

The Residual Cancer Burden (RCB) assessment 
system was first introduced in 2007. As a continu-
ous numerical value, it comprehensively analyzes 
the two-dimensional size of the largest residual tu-
mor, the proportion of tumor cells, and the status 
of lymph node metastasis [7]. This system enables 
a  more comprehensive and effective evaluation 
of the effectiveness of NAT and patient prognosis 
in breast cancer [8]. Studies have shown that the 
pathologic complete response (pCR) after NAT can 
serve as a marker for patients’ disease-free surviv-
al (DFS) and OS [9, 10]. The team of researchers led 
by Christina Yau from the University of California, 
San Francisco, published a multicenter retrospec-
tive study in The Lancet: Cancer, revealing that for 
each unit increase in RCB score, there is an 82% 
increase in the risk of recurrence, metastasis, or 
death in breast cancer patients (HR = 1.82), and 
researchers believe that RCB scoring and grading 
can independently predict the long-term survival 
of breast cancer patients in various clinical re-
search centers and within different breast cancer 
subgroups [10].

However, in clinical practice, not all patients 
can achieve pathological relief after receiving 
NAT, and some patients do not respond effective-
ly to NAT, while the condition may even worsen 
in some cases [11]. Therefore, numerous biologi-
cal indicators have been proposed for predicting 
the effectiveness of NAT [12, 13]. As we know, 
histological type, histological grade, molecular 
subtypes, estrogen receptor (ER), progesterone 
receptor (PR), human epidermal growth factor re-
ceptor-2 (HER2), and Ki67 in breast cancer tissues 
are all related to patients’ response to NAT [14]. 
However, due to the heterogeneity of tumors, the 
responsiveness to treatment is not always con-
sistent among different patients [15]. Further 
exploration is necessary to identify more precise 
prognostic markers, providing a theoretical basis 
for the clinical prognosis assessment of breast 
cancer and thus enabling correct and effective 
personalized treatment.

Over the past decade, with the advancement of 
computer technology, machine learning has made 

substantial progress in the field of medicine, es-
pecially in computer-aided screening, precise 
diagnostics, and treatment decisions. Machine 
learning offers a new approach to assist clinicians 
in classifying medical information and images. 
Pathologists can extract information about the 
tumor from pathological slides of tumor tissue. 
Through visual inspection and evaluation based 
on diagnostic criteria and their accumulated di-
agnostic experience, they assess the pathological 
grading of the tumor. However, due to variations 
in pathologists’ experiences, this diagnostic mod-
el still lacks specificity and efficiency. 

Recently, researchers from Southwest Medical 
University developed a multi-scale fusion model 
based on the Support Vector Machine (SVM) al-
gorithm, combining computed tomography (CT) 
and whole-slide images (WSI) images of breast 
cancer patients. This model is designed for pre-
dicting the pCR after neoadjuvant chemotherapy 
(NAC) [16]. However, the assessment of pCR in 
breast cancer patients who received NAC in this 
study is based on clinical doctors’ experience. 
The evaluation criteria are not standardized in 
pathological practice, making it challenging to 
accurately distinguish various degrees of tumor 
residue. We decided to evaluate the efficacy of 
NAT for breast cancer using pathological charac-
teristics combined with RCB scoring. We catego-
rized RCB 0-I as the significantly effective therapy 
group (NAT-sensitive), and RCB II–III as the group 
showing a  less significant response to therapy 
(NAT-resistant) [7].

Therefore, based on WSI of breast cancer he-
matoxylin and eosin (H&E) stained slides and 
pathological analysis methods, we established 
a  model to classify the chemotherapy outcomes 
after breast cancer NAT. The aim was to identify 
patients who can achieve a  good chemotherapy 
response, providing guidance for clinicians in de-
vising personalized treatment strategies.

Material and methods

H&E slicer

Research design

A total of 289 patients records who underwent 
NAT and surgical treatment at Renmin Hospital of 
Wuhan University between January 2021 and June 
2023 were collected. Based on the inclusion crite-
ria, 201 patients were ultimately included. Among 
them, 20 cases were excluded due to insufficient 
cancer tissue in the biopsy samples to extract 
enough histological features, 16 cases were ex-
cluded due to concomitant presence of other ma-
lignancies or diagnosed distant metastases at the 
time of diagnosis, 11 cases were excluded due to 
incomplete clinical or pathological information, 
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NAT-sensitive NAT-resistant

4 cases were excluded due to the destruction of 
tumor masses in the surgical samples, making 
the RCB assessment inaccurate, and 37 cases 
were excluded due to unclear image quality in the 
scanned WSI images, making it impossible to ac-
curately extract the Primary Score. Finally, a total 
of 201 eligible patients were obtained (Figure 1). 
Clinical baseline information of the patients was 
collected preoperatively, including age, histological 
grading, histological type, ER, PR, androgen recep-
tor (AR), HER2, Ki67, and cytological lymph node 
involvement. This retrospective study has ob-
tained approval from the Ethics Review Commit-
tee of Renmin Hospital of Wuhan University (Eth-
ics No. WDRY2024-K04) and has been exempted 
from the requirement for informed consent.

Pathological response assessment

Currently, there are three commonly used 
methods for prognostic assessment of NAT in 
breast cancer: the Miller-Payne system, the Amer-
ican Joint Committee on Cancer (AJCC) ypTNM 
staging, and the RCB system [17, 18]. Among 
these, the RCB assessment system can consider 
the dimensions of the primary tumor, the number 
of tumor bed cells, and the axillary lymph node 
burden. Therefore, the RCB score demonstrates 
very good accuracy, objectivity, and feasibility in 
predicting the prognosis of NAT for breast cancer 
[7, 10]. This study also utilized the RCB score to 
evaluate the therapeutic effects of neoadjuvant 
treatment for breast cancer, with the RCB index 
calculated using an online-based calculator (cal-
culation website: http://www.mdanderson.org/
breast cancer_RCB). According to the calculation 
results of the RCB index, the RCB classification is 
divided into four levels: RCB 0 (complete patho-

logical response, pCR), RCB I  (0 < RCB ≤ 1.36, 
minimal residual lesions), RCB II (1.36 < RCB ≤ 
3.28, moderate residual lesions), and RCB III (RCB  
> 3.28, extensive residual lesions) [7] (Figure 2).

Patients were treated according to the Guide-
lines and Norms for the Diagnosis and Treatment 
of Breast Cancer developed by the Breast Cancer 
Committee of the Chinese Anti-Cancer Associa-
tion in 2019 [19]. All patients underwent 3 to 9 
cycles of NAT, with chemotherapy regimens based 
on taxanes, carboplatin, and anthracycline drugs. 
HER2-positive patients also received treatment 
with trastuzumab. After completion of NAT, sur-
gical resection was performed. Postoperatively, 
sampling and assessment were conducted follow-
ing the methods recommended in the Expert Con-
sensus on Pathological Diagnosis of Neoadjuvant 
Therapy for Breast Cancer [20]. Based on the post-
operative RCB grading of patients, RCB grades 0 to 
I were classified as the significantly effective ther-
apy group, while RCB grades II to III were classified 
as the insignificantly effective therapy group.

Pathomics

Development and validation of breast 
cancer pathomics prediction model

The predictive values of the Pathomics model 
were combined with independent clinical predic-
tive factors using the SVM to construct a Path-
omics Breast Cancer Signature (PBCS) for the 
prediction of RCB scores in patients undergoing 
NAT for breast cancer. We conducted a compre-
hensive evaluation of the model using the fol-
lowing methods. Receiver operating character-
istic (ROC) curve analysis, sensitivity, specificity, 
positive predictive value (PPV), and negative pre-
dictive value (NPV) were employed to assess the 

Figure 1. Flow diagram of patient cohort selection

289 patients with BC completed NAT and 
planned surgery (Jan. 2021–Jun. 2023) 

Eligible patients of BC (n = 201)

RCB-0 (n = 77) RCB-I (n = 29) RCB-II (n = 58) RCB-III (n = 37)

Excluded (88) 
1) Too little biopsy tissue to extract sufficient PS (n = 20) 
2) BC with other tumors or distant metastasis (n = 16) 
3) Clinical and pathological data were missing (11) 
4) RCB cannot be evaluated (n = 4) 
5) Poor image quality (n = 37)
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Figure 2. Histological images of breast cancer patients before and after NAT. A – RCB-0: Tumor cells disappeared 
completely after NAT; B – RCB-I: Only a small amount of tumor remained after NAT; C – RCB- II: There was moderate 
residual lesion in the tumor bed after NAT; D – RCB- III: There was extensive residual lesion in the tumor bed after NAT 
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discriminative performance [21]. We assessed 
the model’s calibration using calibration curves. 
Decision curve analysis (DCA) was performed on 
all models to quantify the net benefit for patients 
at different probability thresholds, thereby evalu-
ating the clinical value of our predictive model in 
this study.

Sample preparation and selection of 
regions of interest

All included breast cancer tissue H&E stained 
slides were prepared from formalin-fixed paraf-
fin-embedded samples. Subsequently, the pa-
thology department director of Renmin Hospital 
of Wuhan University selected the slides that 
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best represented the tumor cell heterogeneity. 
KFBIO (KF-PRO-020) was used to scan the se-
lected slides at 20× magnification to acquire 
WSI of the patients and digitize the images 
into SVS format files. Managed using K-View-
er (version: 1.7.0.21), under the quality control 
of the director of the Pathology Department at 
Renmin Hospital of Wuhan University, two pa-
thologists selected 10 non-overlapping screen-
shots per case containing the most tumor cells, 
each with a field of view of 1800 × 900 pixels. 
We saved the selected screenshots as formatted 
files (JPEG). Using Photoshop (version: 24.0.0), 
we segmented all screenshots into non-overlap-
ping small frame images (500 × 500 pixels) for 
subsequent analysis.

Extraction of pathomics features
We used CellProfiler (version 4.0.7) [22] (an 

open-source image analysis software developed 
by the Broad Institute in Cambridge, Massachu-
setts) to extract quantitative pathological fea-
tures from the selected pathology screenshots. 
We used the UnmixColors module to separate 
H&E-stained images into grayscale images repre-
senting hematoxylin and eosin staining compo-
nents. Additionally, we utilized the ColorToGray 
module to convert the H&E images into grayscale 
images for further analysis. We conducted two 
measurements on the images. In the first com-
prehensive measurement, we accumulated a to-
tal of 285 primary features. We evaluated the 
image quality features of the grayscale images 
of H&E, hematoxylin, and eosin using the Mea-
sureImageQuality and MeasureImageIntensity 
modules. Subsequently, using the MeasureLocal-
ization module, we computed, on a per-pixel ba-
sis throughout the entire image, the co-localiza-
tion and correlation of intensities between each 
hematoxylin and eosin staining image. Assessing 
the granularity features of each image was done 
using the MeasureGranularity module. These 
features summarize three types of images. In 
the second measurement, we extracted detailed 
features in the hematoxylin staining. First, we 
identified the primary and secondary objects and 
then measured them separately, obtaining 831 
pathomics features. The extracted pathomics 
features were aggregated through the mean val-
ues of the features from 10 screenshots of each 
WSI. We cumulatively extracted 1116 pathom-
ics features, which were randomly divided into 
training and validation sets in a  7 : 3 ratio for 
subsequent model construction. For a  detailed 
summary of the extracted pathomics features, 
please refer to the supplementary materials 
(Supplementary Figures S1–S3).

Construction of pathomics models

Constructing pathomics features can reveal 
tumor information from the tumor microenviron-
ment. However, these features are high-dimen-
sional data, which adversely affect the prediction 
of RCB grading. Therefore, we should obtain the 
features most closely associated with RCB 0-I lev-
els in the training set. Initially, all variables were 
normalized and a U-test was conducted on each 
feature to eliminate redundant features. To thor-
oughly extract discriminative features in this 
process, the threshold for the p-value was set at 
0.05. Subsequently, considering the correlation 
between features, we conducted a  correlation 
analysis. If the correlation coefficient between 
two features exceeded 0.8, one of the features 
was excluded. Next, the Least Absolute Shrinkage 
and Selection Operator (LASSO) algorithm was 
used to select the extracted features, and tenfold 
cross-validation was employed to choose the val-
ue of lambda to determine the optimal features. 
Based on the optimal features from the aforemen-
tioned pathomics characteristics, we constructed 
a Pathomics Prediction Model using the Support 
SVM algorithm. Subsequently, Pathomics Pre-
dictive Values were utilized to build a  signature, 
named the PS.

Development and validation of breast 
cancer pathomics prediction model

The predictive values of the pathomics model 
for breast cancer. We conducted a comprehensive 
evaluation of the model using the following meth 
were combined with independent clinical predic-
tive factors using the SVM to construct a PBCS, for 
the pre-diction of RCB scores in patients undergo-
ing NAT for breast cancer. We conducted a com-
prehensive evaluation of the model using the fol-
lowing methods. ROC curve analysis, sensitivity, 
specificity, PPV and NPV were employed to assess 
the discriminative performance [21]. We assessed 
the model’s calibration using calibration curves. 
DCA was performed on all models to quantify the 
net benefit for patients at different probability 
thresh olds, thereby evaluating the clinical value 
of our predictive model in this study.

Statistical analysis

All statistical analyses were performed us-
ing R Studio (Version 4.1.1; R Studio, http://ww-
w.R-project.org) and Jupyter Notebook (Version 
6.4.11). The differences in categorical variables 
were calculated using the c2 test. The differences 
in continuous variables were analyzed using the 
Mann-Whitney U  test. All tests were two-tailed, 
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and a  two-tailed p-value < 0.05 was considered 
statistically significant.

Results

Correlation between clinicopathological 
features and RCB grading

This study included a total of 201 female breast 
cancer patients who underwent NAT, with an av-
erage age of 49.4 (ranging from 22 to 76) years. 
Postoperative specimens were assessed using 
the RCB grading system, with 77 (38.3%) patients 
classified as RCB 0, 29 (14.4%) patients as RCB I,  
58 patients (28.8%) as RCB II, and 37 (18.4%) 
patients as RCB III. According to the clinical ef-
ficacy of therapy, RCB 0-I  (106 cases) was de-
fined as effective therapy, and RCB II-III (95 
cases) was defined as ineffective. The c2 test 
showed that histological grade, histological type, 
ER, PR, HER2, and Ki67 proliferation index were 
all associated with the efficacy of NAT (Supple-
mentary Table SI). Further univariate logistic 
regression analysis indicated a  correlation be-
tween histological grade, histological type, ER, 
PR, HER2, and Ki67 proliferation index with the 
efficacy of NAT. Patients with higher histological 
grades, non-special type invasive breast cancer, 
negative expression of ER and PR, positive ex-
pression of HER2, and a  high Ki67 proliferation 
index (≥ 30%) were more likely to achieve RCB 0-I, 
and this association was statistically significant  
(p < 0.05). Multivariate logistic regression analysis 

revealed that HER2 is an independent predictive 
factor influencing the efficacy of NAT (p < 0.05) 
(Table I). The data of 201 cases were randomly 
divided into training and validation sets at a ratio 
of 7 : 3, resulting in 140 cases in the training set 
and 61 cases in the validation set. c2 tests were 
performed on both sets, demonstrating differenc-
es in ER, PR, and Ki67 expression between the 
groups. Additionally, no statistically significant 
difference was observed between the two groups 
of patients (Supplementary Table SII).

Selection of pathomics features and 
construction of the PS model

Using the U-test and Spearman correlation 
analysis, redundant features were eliminated, 
resulting in 12 pathomics features from 201 pa-
tients (Figure 3). Subsequently, LASSO was used 
for further feature selection. We performed ten-
fold cross-validation to find the optimal lambda 
value. We chose the features with a  lambda val-
ue equivalent to one standard error. Ultimately,  
9 pathomics features were obtained. Please re-
fer to the supplementary file for details. We ex-
tracted 9 highly correlated pathomics features 
with patient RCB scores from H&E stained slices 
of breast cancer NAT patients using CellProfiler. 
Subsequently, we employed the SVM algorithm to 
construct a PS. The ROC curve evaluated the mod-
el’s predictive performance, showing an AUC of 
0.75 in the training set and 0.65 in the validation 

Table I. Univariate and multivariate regression analysis of clinicopathological features and NAT

Factors Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Age (%) 

> 50 vs. ≤ 50 0.81 (0.463–1.405) 0.449

Histological grade (%) 

3 vs. 1–2 0.33 (0.177–0.597) < 0.001 0.587 (0.214–1.616) 0.303

Histological type (%) 

Other invasive histology 6.44 (1.801–23.004) 0.004 4.606 (0.849–24.972 0.077

vs. Invasive carcinoma of no special type

ER status (%) 

Positive vs. Negative 4.33 (2.370–7.927) < 0.001 2.088 (0.767–5.683) 0.150

PR status (%) 

Positive vs. Negative 5.76 (3.130–10.600) < 0.001 2.430 (0.913–6.469) 0.076

AR status (%)

Positive vs. Negative 1.218 (0.592–2.503) 0.592

HER2 (%) 

Positive vs. Negative 0.04 (0.015–0.109) < 0.001 0.042 (0.015–0.120) < 0.001

Ki67 expression status (cut-of 30%) (%) 

High (≥ 30%) vs. Low (< 30%) 0.29 (0.142–0.578) < 0.001 0.673 (0.207–2.186) 0.510
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Figure 4. ROC analysis of predictive models for predicting significant therapy response group in the training set 
(A) and validation set (B). C – Calibration curves of models in training set on discriminating group with significant 
effect of therapy versus group with insignificant effect of therapy. D – Decision curve analysis in training set using 
PS and PBCS
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set, indicating acceptable accuracy of the model 
(Figure 4).

Development and validation of PBCS

The results of the multifactor regression anal-
ysis showed that HER2 is an independent predic-
tive factor influencing the efficacy of NAT. Thus, 
integrating HER2 with PS into the training set, 
a  comprehensive predictive model, PBCS, was 
developed using the SVM algorithm. The model’s 
discriminative performance was evaluated using 
the ROC curve. PBCS accurately predicted effective 
therapy (RCB0-I) in the training set (AUC = 0.86 
[95% CI: 0.7988–0.9173]) and the validation set 
(AUC = 0.83 [95% CI: 0.7219–0.9382]) (Table II).

Discussion

Due to the high incidence and increasing trend 
of breast cancer among patients, NAT combined 
with surgical treatment as a  standardized ap-
proach brings hope to an increasing number of 
patients. However, due to individual variations, 
different patients also respond differently to ther-
apy [9]. Hence, numerous biological indicators 
predicting treatment response are gradually be-
coming a hot area in clinical research. Currently, 
decisions regarding whether patients should un-
dergo NAT are largely based on clinical patholog-
ical features. Numerous studies have shown that 
higher histological grading, a high Ki67 prolifera-
tion index, negative expression of ER and PR, and 
positive expression of HER2, are all associated 
with a favorable treatment response [23]. Among 
these, the molecular subtypes determined by ER, 
PR, HER2, and Ki67 are among the most important 
indicators for predicting NAT. This suggests that 
patients with HER2-enriched and triple-negative 
breast cancer are recommended candidates for 
NAT, while those with ER and PR positive expres-
sion (luminal subtype) may benefit more from 
hormonal therapy or surgical treatment. Klein  
et al.’s research also indicates higher sensitivity 
of HER2-positive and triple-negative breast cancer 
patients to neoadjuvant treatments [24]. There-
fore, in the complex clinical practice, relying sole-
ly on clinical pathological features does not yield 

Table II. Discrimination performance of predictive models for predicting RCB0-I in breast cancer patients

Variable AUC (95% CI) SEN (%) SPE (%) ACC (%) PPV (%) NPV (%)

Training set

PS 0.754513 (0.6663–0.8427) 0.911392 0.573770 0.764286 0.734694 0.833333

PBCS 0.858062 (0.7988–0.9173) 0.772152 0.770492 0.771429 0.813333 0.723077

Test set

PS 0.650327 (0.5121–0.7886) 0.962963 0.323529 0.606557 0.530612 0.916667

PBCS 0.830065 (0.7219–0.9382) 0.666667 0.941176 0.819672 0.900000 0.780488

satisfactory results, necessitating the urgent de-
velopment of more accurate biological markers to 
predict patients’ treatment responses.

In the field of digital pathology, artificial intelli-
gence techniques such as support vector machine 
algorithms and convolutional neural networks 
have been used to assist in the diagnosis of onco-
logic pathology [25–29]. Previous studies have con-
firmed the effectiveness of using ultrasound imag-
es of tumors to predict the outcome of pathological 
complete response to neoadjuvant chemotherapy 
in breast cancer patients [30]. Recently, some in-
vestigators have developed a CT-based radiological 
model that is effective in predicting the validity of 
axillary pathologic complete response after NAT 
[31]. In this study, based on clinical pathological 
features and pathological histological characteris-
tics, we developed a predictive model for the effica-
cy of NAT in breast cancer using an SVM algorithm. 
This model aims to forecast the RCB score in breast 
cancer patients after neoadjuvant treatment. The 
predictive model based on pathological character-
istics showed complete accuracy in predicting the 
RCB score, demonstrating good performance in 
discrimination, calibration, and at the level of clini-
cal decision-making. Internally validated within our 
center, the model exhibited a good AUC, high sen-
sitivity, specificity, and NPV. In clinical practice, our 
research provides an effective and replicable tool 
to predict the RCB score in breast cancer patients 
undergoing NAT. This tool can assist in timely ad-
justment of treatment strategies for patients with 
ineffective treatment (RCB II-III), enabling the devel-
opment of personalized treatment plans for them.

For breast cancer patients, accurately predict-
ing their RCB classification before initiating NAT 
can significantly maximize their treatment bene-
fits and aid in the early development of person-
alized treatment strategies. In the traditional 
treatment process, pathologists often use optical 
microscopes to determine the tumor’s malignan-
cy, differentiation degree, and growth pattern. 
Clinical physicians then combine the patients’ mo-
lecular characteristics and their own experience to 
decide on whether to use NAT. However, due to 
limitations in optical microscope magnification, 
variations in pathologists’ experiences, and the 
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heterogeneity of tumors among different patients, 
numerous biological markers do not always accu-
rately predict a  patient’s response to NAT. This 
leads to cases where patients with ineffective 
treatment (RCB II-III) are subjected to NAT strate-
gies. This not only fails to cause significant regres-
sion in tumor cells but also brings numerous side 
effects to patients and might delay the appropri-
ate timing for treatment. With the application of 
cell analysis software and the rapid advancement 
of computer storage technology, the digitization 
of pathological slides has become achievable. 
Within histopathological sections lie a multitude 
of microscopic structural details that elude the 
naked eye, reflecting the characteristics of tumor 
cells and microenvironment features [32]. This 
information can directly indicate the malignancy 
level of the tumor and its response to treatment.

In our study, the PS model, solely based on 
pathology image extraction in the validation set, 
showed an AUC of 0.65 for predicting NAT in breast 
cancer, yielding reasonably reliable results regard-
ing predicting patient responses to neoadjuvant 
treatment. Additionally, considering that patients’ 
clinical characteristics, particularly HER2 status, 
are closely associated with NAT efficacy, the PCBS 
model constructed by combining PS with the pa-
tients’ clinical feature HER2 exhibited a significant 
enhancement in predictive value (AUC = 0.83). 
The PBCS achieves a  predictive value for NAT in 
breast cancer with an AUC > 0.8, similar to the re-
sults in Zhang et al.’s study [16]. They used radio-
mics, pathomics, and deep learning pathomics to 
predict pCR in breast cancer NAC. However, their 
assessment of patients’ pathological response re-
lies on the clinical pathologists’ experience, which 
holds a degree of subjectivity. In contrast to their 
study, our research adopted a  more advanced 
and objective method, utilizing RCB classification 
to evaluate the effectiveness of NAT in patients, 
hence providing a  more accurate assessment of 
treatment outcomes. During the construction of 
our model, we conducted two extractions of our 
pathological images using CellProfile. The PBCS 
model demonstrated high sensitivity and NPV in 
an independent validation set, indicating its re-
liability in identifying individuals with no signifi-
cant response to neoadjuvant treatment.

Although our research pioneered the introduc-
tion of RCB classification as an evaluation tool for 
pathological remission of NAT for breast cancer pa-
tients, providing greater objectivity in distinguish-
ing treatment effects, the study still has certain 
limitations. Firstly, due to random assignment of 
cases in this study, the proportion of triple-nega-
tive breast cancer patients was significantly higher 
in the training set compared to the validation set, 
causing statistically significant differences in ER, 

PR, and Ki-67 between the training and validation 
set patients. Further single-factor and multi-factor 
regression analyses conducted separately on the 
training and validation sets showed that high his-
tological grading, negative expression of ER and 
PR, positive expression of HER2, and a high Ki67 
(≥ 30%) proliferation index were all factors influ-
encing patients’ chemotherapy response, leading 
to poor uniformity in clinical pathological factors 
between the training and validation sets. Second-
ly, our study is a single-center retrospective study 
where all breast cancer patients originated from 
the same medical institution. The sample size is 
limited. In the future, we aim to acquire sample 
data from more medical institutions and conduct 
prospective studies to validate the accuracy and 
applicability of PBCS.

In conclusion, we have developed the PBCS, 
a novel artificial intelligence model that predicts 
the RCB score after NAT for breast cancer by inte-
grating pathology biopsy WSI and clinical patho-
logical features. This model aids clinical physicians 
in preparing for NAT by predicting the therapy re-
sponse, enabling timely adjustment of personal-
ized treatment strategies for patients.
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