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Whole-body water mass and osteoarthritis: 
a Mendelian randomization study
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A b s t r a c t

Introduction: This study aimed to elucidate the potential impact of whole-
body water mass on osteoarthritis at the genetic prediction level through 
a two-sample Mendelian randomization (MR) analysis.
Material and methods: Using summary data from genome-wide association 
studies, we obtained information on whole-body water mass and various 
forms of osteoarthritis, including knee and hip osteoarthritis, knee osteo-
arthritis, and hip osteoarthritis from a large-scale genome-wide association 
study. MR analysis used inverse variance weighting, weighted median, MR-
Egger, simple mode, and weighted estimation. Sensitivity analyses, includ-
ing the MR-Egger method, MR-PRESSO, Cochran’s Q-test, and leave-one-out 
assessment, were performed to assess the reliability of the results.
Results: In the inverse variance weighting model, increased genetic suscep-
tibility to whole-body water mass was significantly associated with knee 
and hip osteoarthritis, knee osteoarthritis, and hip osteoarthritis (OR = 1.45, 
95% CI: 1.27–1.65, p = 3.24 × 10–8; OR = 1.53, 95% CI: 1.30–1.79, p = 2.18 × 
10–7; OR = 1.25, 95% CI: 1.04–1.50, p = 0.02). These results indicate a posi-
tive causal relationship between whole-body water mass and osteoarthritis. 
The MR-Egger intercept and Cochran’s Q-test indicated the absence of het-
erogeneity and horizontal pleiotropy in the analyses of whole-body water 
mass and knee and hip osteoarthritis, knee osteoarthritis, and hip osteo-
arthritis.
Conclusions: The MR analysis suggests a  positive correlation between 
whole-body water mass and risk of osteoarthritis.

Key words: whole-body water mass, osteoarthritis, causal relationship, 
Mendelian randomization.

Introduction

Osteoarthritis (OA) is the most common degenerative joint disorder 
worldwide and a prevalent chronic clinical condition [1]. Based on the 
Global Burden of Disease Study 2019, it is estimated that there are ap-
proximately 527 million cases of the disorder worldwide. The prevalence 
of OA is about 3% of the elderly population worldwide [2]. After the age 
of 50, OA is more prevalent in females than males, with an estimated 
occurrence of 10% in males and 18% in females [2, 3]. Knee osteoarthri-
tis (KOA) and hip osteoarthritis (HOA) are the most commonly encoun-

Clinical research
Rheumatology 

https://doi.org/


Whole-body water mass and osteoarthritis: a Mendelian randomization study

Arch Med Sci 5, October / 2025� 1917

tered manifestations [4], with KOA accounting for 
approximately 60.6% of the total prevalent cases 
and HOA at 5.5% [5]. OA predominantly mani-
fests as morning stiffness, joint pain, tenderness, 
joint swelling, or deformity, collectively resulting 
in a diminished quality of life for affected individ-
uals and an increased economic burden on both 
households and society at large [3, 6]. OA is a sys-
temic ailment involving bone, cartilage, synovium, 
ligaments, and joint capsules [1]. Moreover, fac-
tors such as obesity, prior joint injuries, mechani-
cal characteristics, and genetic predisposition can 
contribute to osteoarthritis development in both 
young and older populations [7].

Research suggests that easily measurable hu-
man body composition indices such as fat mass, 
lean mass, waist circumference, and waist-to-hip 
ratio can be valuable predictive indicators for OA 
[8]. Thus, it is worth considering whether other 
variations in body composition could also be indic-
ative of OA. One such measure is whole-body wa-
ter mass (BWM), which can be obtained through 
bioimpedance analysis. Water is a significant con-
stituent of the human body, accounting for approx-
imately 50% to 55% of adult female body weight. 
Muscle tissue, in particular, comprises about 76% 
water content, indicating that water loss may im-
pact muscle function [9]. Water emerges as an ideal 
biomarker for the early diagnosis of OA, with mea-
surements of water content offering insights into 
cartilage mass status and early OA detection. The 
gradual and age-associated loss of water content 
may partially contribute to functional impairments 
over time [10]. Recent studies have established 
causal relationships between BWM and atrial fibril-
lation [11] and its association with sleep apnea 
[12]. However, to date, no research has employed 
Mendelian randomization (MR) methodology to as-
sess the relationship between BWM and OA.

MR is widely used to evaluate the causal rela-
tionship between exposures and clinical outcomes 
based on summary data from genome-wide asso-
ciation studies (GWAS), using single nucleotide 
polymorphisms (SNPs) as instrumental variables 
[13]. MR is an epidemiological method that uses 
genetic variants to serve as proxies for exposure, 
allowing for the prediction of its causal associa-
tion with an outcome. The fundamental principle 
of MR analysis is that genetic variants are ran-
domly inherited at conception. Because their dis-
tribution in a population is natural, it is presumed 
that the results of MR analyses are less suscepti-
ble to environmental influence and confounding 
factors [13]. In the present study, we utilized vali-
dated SNPs and summary statistics from publicly 
available GWAS datasets to investigate the causal 
association between BWM and OA development 
using the MR method. These provide valuable in-

sights for the detection, prediction, and preven-
tion of OA.

Material and methods

Data sources

Databases from GWAS, including GWAS Cat-
alog, Integrative Epidemiology Unit (IEU) open 
GWAS, and NealE Lab, were searched, and eligible 
datasets were extracted [14]. Since all data used 
were already in the public domain, no additional 
ethical approval was required. The study popula-
tion’s genetic background was limited to individ-
uals of European ancestry to minimize potential 
bias from ethnically related confounding factors. 
The BWM-related GWAS data (ukb-a-267) were 
sourced from Neale Lab (http://www.nealelab.is/). 
Neale Lab conducted a  GWAS analysis involving 
thousands of human characteristics in 331 315 
unrelated European individuals using data from 
the UKB (http://www.nealelab.is/uk-biobank). 
Participant BWM was assessed using impedance 
technique and recorded in kilograms, with a pre-
cision of 0.1 kg. This study utilized OA data from 
three sources: knee and hip osteoarthritis (K/HOA), 
KOA, and HOA, all derived from the IEU GWAS da-
tabase (https://gwas.mrcieu.ac.uk). The sample 
sizes for K/HOA (ebi-a-GCST007092), KOA (ebi-a-
GCST007090), and HOA (ebi-a-GCST007091) are 
417 596, 403 124, and 393 873, with SNP counts 
of 30 265 359, 29 999 696 and 29 771 219. It is 
important to note that all the above GWAS data 
are derived from European populations (Supple-
mentary Table SI).

Instrumental variable selection

To ensure effective IVs, the three basic model 
assumptions of MR analysis should be met. First, 
we established uniform filtering criteria (p < 5 
× 10–8) for the instrumental variables to ensure 
statistical significance. For each corresponding 
SNP of each instrumental variable, we conduct-
ed a  linkage disequilibrium analysis, considering 
the linkage disequilibrium correlation coefficient 
(r2 < 0.001) and base pair distance between the 
two SNPs (kb > 10,000) [15]. Then, among the se-
lected instrumental SNPs, we excluded those with 
intermediate allele frequencies, palindrome SNPs, 
and incompatible SNPs. We summarized and ex-
amined the p-values in the data, eliminating SNPs 
highly correlated with OA [16]. Confounder-related 
SNPs refer to SNPs that are related to the outcome 
(OA in our study) or its risk factors except the se-
lected exposure (BWM in our study). In this study, 
we retrieved previously published OA-related MR 
studies from PubMed and identified risk factors 
causally associated with OA. These risk factors 
might be the potential confounding factors of this 
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MR study. Therefore, we further conducted a com-
prehensive search in the GWAS Catalog for wheth-
er any SNP in this study was associated with these 
confounders. These factors include BMI [17] or 
obesity or fat mass, bone density [18], smoking 
[19], alcohol consumption [20], and coffee intake 
[21]. If any instrumental variables associated with 
potential confounding factors were observed, 
they were manually discarded, and MR analysis 
was recomputed to validate the consistency of 
the results. Finally, to ensure the robustness of our 
analysis, we set a stringent threshold for statisti-
cal strength, with F > 10 as the criterion for strong 
correlation, minimizing the potential for weak in-
strument bias [22]. The F-statistic was calculated 
utilizing the following formula: 

N – k – 1
k

R2

1 – R2
F = × , 

R2 is the proportion of variability in the exposure 
explained by the IVs, k represents the number of 
IVs (6) used in the model, and n represents the 
sample size.

MR analysis method

In this study, we employed a  two-sample MR 
approach to assess the causal relationship be-
tween BWM and the risk of OA. MR analysis 
is predicated on three key assumptions [13]:  
(1) SNPs are strongly associated with the exposure 
(BWM); (2) there is no association between SNPs 
and confounding factors; (3) SNPs can only affect 
the outcome (OA) through the exposure (BWM), 
i.e., there is no gene pleiotropy (Figure 1).

We conducted three primary methods in 
a  two-sample MR analysis, namely the inverse 
variance weighted method (IVW), weighted me-
dian estimation (WME), and MR-Egger regression. 
We used the IVW method as the primary estimate. 

The WME estimator provides a  robust result, re-
quiring that at least half of the SNPs used in the 
analysis are valid [23]. In addition, we also applied 
other MR estimates, including simple mode and 
weighted mode, as complementary tools to ex-
plore the causality.

Statistical analysis

To meet MR assumptions, we conducted mul-
tiple sensitivity analyses to assess heterogeneity 
and pleiotropy within the genetic instruments. 
Pleiotropy refers to a locus affecting multiple phe-
notypes, and a genetic variant is associated with 
more than one phenotype, which is a violation of 
MR assumption 3. We applied MR-PRESSO and 
MR-Egger regression tests to monitor the poten-
tial horizontal pleiotropy effect. For each SNP, the 
MR-PRESSO outlier test calculated a p-value for its 
pleiotropy significance, whereas the MR-PRESSO 
global test calculated a  p-value for overall hori-
zontal pleiotropy [24]. The MR-Egger regression 
model provided a relatively robust estimate inde-
pendent of IV validity and an adjusted result by 
existing horizontal pleiotropy via the regression 
slope and intercept [25]. The list of SNPs remain-
ing after removing pleiotropic SNPs was used 
for the subsequent MR analysis. The asymmetry 
of the funnel plot can also be considered an in-
dicator of horizontal pleiotropy [26]. To find het-
erogeneity, we employed the IVW approach and 
MR-Egger regression; the heterogeneities were 
quantified by Cochran’s Q statistic [27]. Finally, 
several sensitivity analyses, such as leave-one-out 
analysis, were applied to identify whether a single 
SNP influenced the main causal relationship [28].

All two-sample MR analyses and related sen-
sitivity analyses were conducted using the R 
package Two Sample MR. MR-PRESSO analysis 
was performed using the R package MR-PRESSO. 

Figure 1. Schematic representation of the MR study

SNPs – single-nucleotide polymorphisms, K/HOA – knee and hip osteoarthritis, KOA – knee osteoarthritis, HOA – hip osteoarthritis. 

Cohort-level results restricted to 
European-ancestry involving 331,315 

individuals (10,894,596 SNPs) for 
whole body water mass

Filter

Intrumental varitables 

BWM-associated SNPs  
(ukb-a-267) 

Outcome

K/HOA ebi-a-GCST007092 

KOA ebi-a-GCST007090 

HOA ebi-a-GCST007091 

Assumption 2 Confounders

Exposure 
Whole body water 

mass 
Assumption 1 

Assumption 3  



Whole-body water mass and osteoarthritis: a Mendelian randomization study

Arch Med Sci 5, October / 2025� 1919

All analyses were carried out in R version 4.1.2. 
P-values < 0.05 were considered statistically sig-
nificant.

Results

Selection of the tool variables

Following the IV selection criteria in this study, 
after removing IVs exhibiting linkage disequilibri-
um, the study incorporated a  total of 418 SNPs 
for K/HOA analysis (p < 5 × 10–8, R2 < 0.01). Ad-
ditionally, 61 palindrome SNPs were excluded, 
along with 118 SNPs associated with outcome-re-
lated confounding factors (Supplementary Table 
SII). Consequently, 239 SNPs were included in 
the analysis. For KOA, the dataset comprised 418 
SNPs after excluding 61 palindrome SNPs, along 
with 126 SNPs associated with outcome-related 
confounding factors (Supplementary Table SIII). 
Consequently, 231 SNPs were included in the anal-
ysis. In the case of HOA, a total of 417 SNPs were 
incorporated after excluding 61 palindrome SNPs. 
Simultaneously, 121 SNPs linked to outcome-relat-
ed confounding factors were eliminated (Supple-
mentary Table SIV), leading to the inclusion of 235 
SNPs for analysis. Based on the above selection 
criteria, we included 239, 231 and 235 SNPs for K/
HOA, KOA, and HOA, respectively. The F-values of 
these instrumental variables were all > 10 (rang-
ing from 25.3969 to 94.8889 for K/HOA, 11.7123 
to 94.8889 for KOA, and 11.7123 to 94.8889 for 
HOA), suggesting that there was no weak IV bias 
(Supplementary Tables SII–SIV).

Causation and effect of exposure (BWM) 
on outcome (K/HOA)

The result of the IVW method suggested that 
there was a  positive association between BWM 
and higher genetic predictability for the risk of 
K/HOA (OR = 1.45, 95% CI: 1.27–1.65, p = 3.24 × 
10–8). The WME, weighted mode and simple mode 
methods showed consistent results (WME: OR = 
1.45, 95% CI: 1.26–1.67, p = 3.38 × 10–7; weight-
ed mode: OR = 1.64, 95% CI: 1.06–2.53, p = 2.62 
× 10–2; simple mode method: OR = 1.98, 95% CI: 
1.20–3.27, p = 7.87 × 10–3). However, the MR-Egger 
method did not show a significant association be-
tween BWM and K/HOA (OR = 1.10, 95% CI: 0.75–
1.62, p = 0.613). Because the IVW method has 
higher accuracy than the MR-Egger method and is 
consistent with WME estimates, we conclude that 
BWM has a positive causal effect on total osteoar-
thritis (Supplementary Table SV, Figure 2).

In this study, there was no indication of plei-
otropy using the intercept derived from the MR-
Egger regression (Egger intercept = 0.004, p = 
0.15) (Supplementary Table SVI). After the remov-
al of 45 distorted outliers (Supplementary Table 

SVII), the MR-PRESSO global test was utilized to 
test for horizontal pleiotropy (p < 0.05), indicat-
ing no significant directional horizontal pleiot-
ropy (Supplementary Table SVI). In addition, the 
results of Cochran’s Q test revealed no significant 
heterogeneity (MR-Egger: Q value = 197.41, p = 
0.36; IVW: Q value = 198.56, p = 0.36) (Supple-
mentary Table SVIII). With the removal of these 
genetic variants, the IVW analysis was finally per-
formed (OR = 1.47, 95% CI: 1.33–1.61, p = 1.74 
× 10–15), and the correlation remained significant 
(Supplementary Table SIX, Figure 3). Scatter plots 
and funnel plots for K/HOA are presented in Sup-
plementary Figures S1–S4, showing a comparison 
before and after MR-PRESSO analysis. Leave-one-
out analysis (Figure 4 and Supplementary Figures 
S5) did not reveal any individual SNPs altering the 
overall impact of BWM on K/HOA.

Causation and effect of exposure (BWM) 
on outcome (KOA)

The result of the IVW method suggested that 
there was a  positive association between BWM 
and higher genetic predictability for the risk of 
KOA (OR = 1.53, 95% CI: 1.30–1.79, p = 2.18 × 
10–7). The WME showed consistent results (OR = 
1.51, 95% CI: 1.26–1.79, p = 6.89 × 10–6). How-
ever, the MR-Egger method, simple mode and 
weighted mode did not show a  significant link 
between BWM and KOA (MR-Egger: OR = 1.19,  
95% CI: 0.74–1.91, p = 4.77 × 10–1; OR = 1.35,  
95% CI: 0.72–2.53, p = 3.43 × 10–1; weighted 
mode: (OR = 1.35, 95% CI: 0.81–2.25, p = 2.45 × 
10–1). Because the IVW method has higher accu-
racy than the MR-Egger method and is consistent 
with WME estimates, we conclude that BWM has 
a  positive causal effect on KOA (Supplementary 
Table SV, Figure 2).

In this study, there was no indication of plei-
otropy using the intercept derived from the MR-
Egger regression (Egger intercept = 0.004, p = 
0.23) (Supplementary Table SVI). Subsequent 
analysis using the MR-PRESSO method identi-
fied and removed potential outliers, eliminating 
43 outliers (Supplementary Table SX). Post-out-
lier removal analysis using MR-PRESSO showed 
a significant correlation (p = 0.38), as presented 
in Supplementary Table SVI. These results indicat-
ed the absence of horizontal pleiotropy and po-
tential causal effect violations in the instrumental 
variables (p > 0.05). In addition, the results of Co-
chran’s Q test revealed no significant heterogene-
ity (MR-Egger: Q value = 192.87, p = 0.33; IVW: 
Q value = 192.91, p = 0.35) (Supplementary Ta-
ble SVIII). With the removal of these genetic vari-
ants, the IVW analysis was finally performed (OR 
= 1.62, 95% CI: 1.44–1.82, p = 1.41 × 10–15), and 
the correlation remained significant (Supplemen-
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Outcome	 No. of SNP	 Method	 OR (95% CI)	 P-value

K/HOA 	 239 	 IVW 	 1.446 (1.269 to 1.648) 	 < 0.001

		  MR Egger 	 1.105 (0.752 to 1.623) 	 0.613

		  Weighted median 	 1.448 (1.256 to 1.669) 	 < 0.001

		  Weighted mode 	 1.639 (1.063 to 2.527) 	 0.026

		  Simple mode 	 1.983 (1.202 to 3.273) 	 0.008

KOA 	 231 	 IVW 	 1.525 (1.300 to 1.789) 	 < 0.001

		  MR Egger 	 1.189 (0.739 to 1.914) 	 0.477

		  Weighted median 	 1.505 (1.260 to 1.799) 	 < 0.001

		  Weighted mode 	 1.354 (0.813 to 2.253) 	 0.245

		  Simple mode 	 1.354 (0.724 to 2.529) 	 0.343

HOA 	 235 	 IVW 	 1.253 (1.045 to 1.502) 	 0.015

		  MR Egger 	 0.830 (0.482 to 1.429) 	 0.503

		  Weighted median 	 1.213 (0.982 to 1.498) 	 0.073

		  Weighted mode 	 1.126 (0.618 to 2.051) 	 0.699

		  Simple mode 	 1.839 (0.917 to 3.688) 	 0.088

Outcome	 No. of SNP	 Method	 OR (95% CI)	 P-value

K/HOA 	 194 	 IVW 	 1.467 (1.335 to 1.612) 	 < 0.001

		  MR Egger 	 1.280 (0.976 to 1.678) 	 0.076

		  Weighted median 	 1.450 (1.254 to 1.677) 	 < 0.001

		  Weighted mode 	 0.908 (0.595 to 1.385) 	 0.654

		  Simple mode 	 2.018 (1.262 to 3.226) 	 0.004

KOA 	 188 	 IVW 	 1.618 (1.437 to 1.820) 	 < 0.001

		  MR Egger 	 1.566 (1.112 to 2.204)	 0.011

		  Weighted median 	 1.526 (1.281 to 1.817)	 < 0.001

		  Weighted mode 	 1.404 (0.876 to 2.250) 	 0.160

		  Simple mode 	 1.451 (0.827 to 2.547) 	 0.196

HOA 	 195 	 IVW 	 1.236 (1.073 to 1.425) 	 0.003

		  MR Egger 	 0.866 (0.554 to 1.354) 	 0.529

		  Weighted median 	 1.238 (1.002 to 1.530) 	 0.048

		  Weighted mode 	 1.063 (0.616 to 1.836) 	 0.826

		  Simple mode 	 2.077 (1.046 to 4.123) 	 0.826

Figure 2. Forest plots of Mendelian randomization analyses of the causal effects of BWM on OA at various ana-
tomical locations before MR-PRESSO

Figure 3. Forest plots of Mendelian randomization analyses of the causal effects of BWM on OA at various ana-
tomical locations after MR-PRESSO
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tary Table SIX, Figure 3). Scatter plots and funnel 
plots for KOA are presented in Supplementary 
Figures S1–S4, showing a comparison before and 
after MR-PRESSO analysis. Leave-one-out analysis 
(Figure 4 and Supplementary Figures S5) did not 
reveal any individual SNPs altering the overall im-
pact of BWM on KOA.

Causation and effect of exposure (BWM) 
on outcome (HOA)

The IVW results showed that the per unit in-
crease in the log odds of having BWM was signifi-
cantly associated with an increased risk of having 
HOA at p < 0.05 (OR = 1.25, 95% CI: 1.04–1.50, p = 
0.02), while the MR-Egger, WME, weighted mode 
and simple mode did not reveal a significant as-

Figure 4. Forest plots and leave-one-out analysis depicting the Mendelian randomization analysis assessing the 
causal relationship between BWM and osteoarthritis after applying MR-PRESSO



Qi Qu, Rui Jiang, Yizhou Chen, Zheng Zhang, Wensheng Zhu

1922� Arch Med Sci 5, October / 2025

sociation between BWM and HOA (MR-Egger: OR 
= 0.83, 95% CI: 0.48–1.43, p = 0.50; WME: OR = 
1.21, 95% CI: 0.98–1.50, p = 0.07; weighted mode: 
OR = 1.13, 95% CI: 0.61–2.05, p = 0.70; simple 
mode: OR = 1.84, 95% CI: 0.91–3.69, p = 0.09) 
(Supplementary Table SV, Figure 2). Because the 
IVW method has higher accuracy than the MR-
Egger method [29], we conclude that BWM has 
a positive causal effect on HOA.

In this study, there was no indication of plei-
otropy using the intercept derived from the MR-
Egger regression (Egger intercept = 0.006, p = 
0.12) (Supplementary Table SVI). After the re-
moval of 39 distorted outliers (Supplementary 
Table SXI), post-outlier removal analysis using 
MR-PRESSO showed a  significant correlation  
(p = 0.94), indicating no significant directional hor-
izontal pleiotropy (Supplementary Table SVI). In 
addition, the results of Cochran’s Q test revealed 
no significant heterogeneity (MR-Egger: Q value = 
164.76, p = 0.94; IVW: Q value = 162.06, p = 0.95) 
(Supplementary Table SVIII). With the removal of 
these genetic variants, the IVW analysis was final-
ly performed (OR = 1.24, 95% CI: 1.07–1.42, p = 
0.003), and the correlation remained significant 
(Supplementary Table SIX, Figure 3). Scatter plots 
and funnel plots for HOA are presented in Supple-
mentary Figures S1–S4, showing a comparison 
before and after MR-PRESSO analysis. Leave-one-
out analysis (Figure 4 and Supplementary Figures 
S5) did not reveal any individual SNPs altering the 
overall impact of BWM on HOA. 

Discussion

This study aimed to investigate the relation-
ship between BWM and the risk of OA through 
a two-sample MR study based on GWAS. The pri-
mary method employed was the IVW approach, 
which revealed a significant association between 
genetically increased BWM and OA in K/HOA, KOA, 
and HOA (OR = 1.45, 95% CI: 1.27–1.65, p = 3.24 × 
10–8; OR = 1.53, 95% CI: 1.30–1.79, p = 2.18 × 10–7; 
OR = 1.25, 95% CI: 1.04–1.50, p = 0.02) (Supple-
mentary Table SV). These results suggest a causal 
relationship between BWM and an increased risk 
of OA.

As the prevalence of OA continues to rise, un-
derstanding various risk factors for OA becomes 
crucial. This study provides evidence that higher 
genetic susceptibility to elevated BWM may con-
tribute to OA onset. Utilizing the MR framework 
and employing five MR models (IVW, MR-Egger, 
weighted median, weighted mode, and simple 
mode), the study consistently estimated causal 
relationships, thereby corroborating the main MR 
findings. The analysis of SNP data related to BWM 
and OA always indicated a  positive correlation, 
suggesting that increasing BWM is associated 

with an elevated risk of OA. Water distribution 
within the body consists of intracellular water 
(ICW) and extracellular water (ECW), including 
plasma and tissue fluid. Water flows according to 
changes in extracellular fluid osmotic pressure [9]. 
The ECW/ICW ratio is a recognized biomarker for 
muscle mass [30]. Studies have shown that knee 
OA patients have higher ECW/ICW ratios than 
healthy individuals [31]. Muscle dysfunction in the 
thigh is a well-established risk factor for knee OA 
and functional loss [32]. Higher ECW/ICW ratios 
are associated with deterioration in the quadri-
ceps femoris muscle in knee OA patients, lead-
ing to functional impairment, and elevated ECW/
ICW ratios are related to worse knee joint scores 
[30, 33]. Skeletal muscle contains a  substantial 
amount of water, and a  higher ECW/ICW ratio 
indicates a higher level of non-contractile tissue 
relative to strength [34, 35]. Therefore, monitor-
ing the expansion of extracellular water content 
within the skeletal muscle is essential for evalu-
ating muscle degradation in OA patients. Joint 
effusion is a significant finding in OA, associated 
with pain signaling, disease activity, and progno-
sis [36, 37]. Studies have demonstrated that bone 
marrow edema is related to pain in knee OA, and 
there is a dose-response relationship, with more 
pain accompanying more extensive edema [38]. 
The study indicates that bone marrow edema is 
a  significant factor causing pain in OA patients. 
The extracellular matrix of cartilage contains ap-
proximately 70–80% water, and the pathological 
result of joint fluid entering the medullary cavity 
due to cartilage injury is local edema [39]. With 
the volume of the medullary cavity remaining con-
stant, the increased content (local exudate, tissue 
fluid accumulation) leads to higher local bone 
pressure, resulting in severe local joint pain [40]. 
This suggests that as the area of bone marrow 
edema increases, joint pain becomes more pow-
erful. The research indicates that in early OA ca-
nine models induced by anterior cruciate ligament 
(ACL) transection, although histological changes 
are minimal, an increase in water content in the 
superficial zone is observed as early as 3 weeks af-
ter surgery [41]. Additionally, clinical studies have 
also found a 10–15% increase in water content in 
the cartilage of osteoarthritic human joints com-
pared to healthy controls [42]. Therefore, it is nec-
essary to predict the prognosis of patients with 
KOA by means of BWM to provide clinical value. 
Additional studies are needed to elucidate the bi-
ological mechanisms linking BWM and KOA.

This MR study is the first to assess the caus-
al relationship between BWM and OA, providing 
evidence for a causal link between genetically de-
termined BWM and OA risk. These findings may 
have a positive impact on OA prevention, diagno-
sis, and treatment strategies. MR analysis offers 
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advantages over observational studies, as it helps 
avoid reverse causation and confounding factors 
while saving time and resources. However, certain 
aspects of this analysis could be improved: Firstly, 
the study focused on European populations, lim-
iting the generalizability of the results to other 
ethnic groups. Secondly, despite excluding several 
common confounders in sensitivity analysis, un-
identified potential confounders may still exist. 
Thirdly, this study only analyzed the causal effect 
of BWM on OA risk, and further research is needed 
to explore the mechanisms underlying the impact 
of BWM on OA risk. Finally, being the first study 
to assess the relationship between BWM and OA, 
there may be limitations on the conclusions that 
can be drawn, and future research is encouraged 
to explore this subject in greater depth.

In conclusion, this study investigated the re-
lationship between BWM and OA, identifying 
a  strong association between the quantity of 
BWM and the onset of OA. The pivotal finding of 
the study was a  significant positive correlation 
between BWM and OA, having substantial impli-
cations for clinical application. Monitoring and 
regulating fluid levels in this demographic may 
emerge as a key strategy in OA prevention, there-
by enhancing the quality of life for individuals af-
fected by this condition.
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