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A b s t r a c t

Introduction: Alzheimer’s disease (AD) is a neurodegenerative disease with 
neurogenic fiber tangles caused by amyloid-β protein plaques and tau pro-
tein hyperphosphorylation as the pathological manifestations. This study 
was based on multi-omics to investigate the mechanisms and immune char-
acterization of AD.
Material and methods: Based on bulk RNA-seq (GSE122063 and GSE97760), 
we screened potential biomarkers for AD by differential expression analysis 
and machine learning algorithms. Then, we analyzed the expression char-
acteristics and immune functions of the above biomarkers by scRNA-seq 
(single-cell RNA sequencing) data analysis (GSM4996463 and GSM4996462) 
and immune infiltration analysis.
Results: Five biomarkers (RBM3, GOLGA8A, ALS2, FSD2, and LOC100287628) 
were identified using machine learning algorithms. Single-cell analysis re-
vealed distinct expression patterns of these biomarkers in astrocytes from 
AD samples compared to normal samples. Additionally, three key biomarkers 
were selected based on interaction networks, and the diagnostic models in-
dicated high diagnostic efficacy for these biomarkers. Based on immune in-
filtration and correlation analyses, RBM3, GOLGA8A, and ALS2 were all highly 
correlated with CD8 T cell content in the immune microenvironment of AD.
Conclusions: The biomarkers identified in this study demonstrate signifi-
cant diagnostic potential for AD. Notably, the downregulation of RBM3 in 
astrocytes and the decreased presence of CD8 T cells infiltrating brain tissue 
are potential risk factors for AD.

Key words: Alzheimer’s disease, biomarker, CD8 T cell, machine learning 
algorithm, trajectory analysis.

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease with amy-
loid beta protein plaques and tau protein hyperphosphorylation caus-
ing neurogenic fiber tangles as the main pathological manifestation [1]. 
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It is divided into two main categories, “sporadic 
AD (typical AD)” and “atypical AD”. Sporadic AD 
is common in the elderly and most typically pres-
ents clinically as a slowly progressive amnesic dis-
order that can eventually evolve into a multi-do-
main dementia in which amnesia predominates. 
The non-amnesic phenotype, on the other hand, 
is characterized mainly by dysfunction in the vi-
sual, language, executive, behavioral and mo-
tor domains and is most often seen in younger 
adults [2]. There are a number of hypotheses that 
explain the pathogenesis of AD; however, Grobler 
et al. noted that the most dominant of these 
pathophysiologic hypotheses include the amy-
loid-β (Aβ), inflammatory, vascular, and infectious 
hypotheses [3]. Research supports that myelin 
damage may even predate Aβ lesions in AD [4]. 
Increasing evidence suggested that the peripheral 
anion site of AChE contributes to Aβ aggregation 
and neurotoxicity in AD, offering prospects for de-
veloping multifunctional anti-AD agents [5]. Con-
currently, as confirmed by the studies, the cholin-
ergic circuitry, a vital subcortical-cortical network 
in the brain, is progressively disrupted in AD, even 
in its early stages [6, 7]. This evidence supports the 
cholinergic hypothesis of AD and has accelerated 
the development of drugs, specifically acetylcho-
linesterase inhibitors. Several drugs in this class 
have been approved by the U.S. Food and Drug 
Administration as primary therapeutic agents for 
AD, which increase synaptic acetylcholine levels 
to relieve symptoms [8, 9]. Despite the progress 
that has been made in these studies, the exact 
pathogenesis is still in the exploratory stage. The 
risk factors that contribute to its development are 
clearer, including vascular dysfunction [10], sleep 
disturbances [11], and gender differences [12]. 
This neurodegenerative disease is the leading 
cause of dementia in the elderly population and 
affects approximately 240,000 people worldwide 
[13]. As it is characterized by progressively in-
creasing cognitive deficits, language impairment, 
memory impairment, performance impairment, 
and personality-behavior changes, AD can lead to 
a decreased quality of life, increased dependency, 
and increased cost of care for patients [14–18]. 
In addition, AD patients often suffer from neuro-
psychiatric symptoms such as depression, apathy, 
and hallucinations, thus placing a heavier burden 
on the patients themselves and their families 
[19]. Therefore, an in-depth understanding of the 
mechanisms, metabolic pathways, and gene tar-
gets associated with AD can help us treat the dis-
ease and alleviate the heavy burden it brings.

Through the analysis, we found a close correla-
tion between AD and the oxidative phosphoryla-
tion (OXPHOS) pathway. Mitochondrial OXPHOS is 
a  crucial mechanism for energy production in eu-

karyotic cells and is central to cellular metabolism 
[20]. Based on its energy supply role and its involve-
ment in cellular metabolism, it also plays a  very 
important role in the development of diseases. 
Among cardiac diseases, cardiomyopathy and heart 
failure are common manifestations of mitochondri-
al diseases caused by defects in the mitochondrial  
OXPHOS system [21]. In neurodegenerative dis-
eases, OXPHOS also plays a  crucial role. On the 
one hand, oxidative stress involving OXPHOS is an 
essential factor for Aβ protein accumulation and 
tau protein hyperphosphorylation [22–24], and on 
the other hand, mitochondria are more susceptible 
to oxidative stress due to their role as sites of the 
ATP-generating electron transport chain and major 
sources of ROS [25, 26], and thus mitochondrial 
respiratory abnormalities have been seen in sever-
al neurodegenerative disorders, including AD  and 
Parkinson’s disease [27]. During the development 
of these diseases, brain glucose metabolism deteri-
orates in a region-specific and progressive manner; 
that is, the primary energy supply is converted from 
OXPHOS to glycolysis (metabolic reprogramming) 
[28]. Metabolic reprogramming leads to widespread 
defective impairment of cellular metabolism, ulti-
mately causing cellular dysfunction. If this process 
occurs in immune cells of the brain (e.g. microglia), it 
leads to the development of neuroinflammation and 
ultimately promotes the development of AD [29].

The aim of this study is to reveal the potential 
driver genes for the occurrence of AD through 
multi-omics analysis and to develop unique bio-
markers accordingly. Figure 1 illustrates the work-
flow of this study.

Material and methods

Transcriptome data and scRNA-seq (single-
cell RNA sequencing) data acquisition

Gene expression files for AD were obtained from 
the NCBI Gene Expression Omnibus public database 
(GEO) (https://www.ncbi.nlm.nih.gov/). The GEO 
datasets GSE122063 and GSE97760 were chosen. 
Samples from GSE97760 were extracted from pe-
ripheral blood. Samples from GSE122063 were ex-
tracted from the frontal and temporal cortex. After 
excluding 36 patients with vascular dementia, a to-
tal of 56 samples with AD and 44 healthy controls 
were retained in the GSE122063 dataset. A total of 
9 samples with AD and ten healthy controls were 
retained in the GSE97760 dataset. The scRNA-seq  
data of 1 AD sample and 1 healthy control 
(GSM4996463 and GSM4996462) of GSE164089 
were obtained from the GEO database.

Differential expression analysis

We replicated the DEG analysis with AD data-
sets (GSE122063 and GSE97760) to confirm the 
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differentially expressed genes (DEGs).  In R (ver-
sion 4.2.2), the limma and GSEABase packages 
were used for DEG identification and GSEA. Be-
tween the control group and AD group, the screen-
ing criteria for DEGs were a  p-value < 0.05 and 
|log2(fold change)| > 1.

Screening of co-expressed genes of AD-
related pathways by weighted gene co-
expression network analysis

Using the GSEA database, we selected 10 
potentially pathways relevant to AD, includ-
ing GOBP_RESPONSE_TO_OXIDATIVE_STRESS 
(https://www.gsea-msigdb.org/gsea/msigdb/
human/geneset/GOBP_RESPONSE_TO_OXIDA-

Figure 1. Flow chart for multi-omics method of the current study
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TIVE_STRESS) [30], GOBP_INTRINSIC_APOPTOT-
IC_SIGNALING_PATHWAY (https://www.gsea- 
msigdb.org/gsea/msigdb/human/geneset/GOBP_
INTRINSIC_APOPTOTIC_SIGNALING_PATHWAY) 
[31], HP_NEUROINFLAMMATION (https://www.
gsea-msigdb.org/gsea/msigdb/human/geneset/
HP_NEUROINFLAMMATION) [32], HALLMARK_
OXIDATIVE_PHOSPHORYLATION (http://www.
gsea-msigdb.org/gsea/msigdb/human/geneset/
HALLMARK_OXIDATIVE_PHOSPHORYLATION) [28], 
and BIOCARTA_HSP27_PATHWAY (https://www.
gsea-msigdb.org/gsea/msigdb/human/geneset/ 
BIOCARTA_HSP27_PATHWAY) [33]. The WGCNA 
package in R software was used to construct 
a  gene co-expression network to examine the 
co-expression relationships between genes and 
pathways [34]. We removed an abnormal sample 
based on cluster trees. To construct the similarity 
matrix, we calculated the correlation coefficient 
between each gene pair. We chose an appropriate 
soft threshold to transform the similarity matrix 
into an adjacency matrix, ensuring the construc-
tion of a  scale-free network. Then, the average 
network connectivity for each gene was calculated 
using a  topological overlap matrix (TOM). Genes 
with similar expression profiles were grouped into 
the same module using the blockwiseModules 
function and dynamic tree cutting. Different mod-
ules are characterized by different colors. Module 
eigengene (ME) is the first main component of 
each module’s gene expression profile. We also 
calculated module membership (MM), gene sig-
nificance (GS), and modules with AD-related path-
ways, and then visualized the network of feature 
genes. Finally, AD target genes were identified by 
intersecting WGCNA-derived significant module 
genes with DEGs from GSE122063 and GSE97760.

GO, DO, KEGG analyses

We used the clusterProfiler R package to per-
form GO (Gene Ontology), KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) and DO (Disease 
Ontology) analyses of the functions of the genes 
obtained from the intersection. A p-value < 0.05 
was set as the filtering criterion for the three 
analyses mentioned above. GO analysis was con-
ducted to identify target gene-related cellular 
components (CCs), molecular functions (MFs) and 
biological processes (BPs). DO analysis was used 
to identify diseases in which target genes are fre-
quently involved. Additionally, we screened signal-
ing pathways enriched by potential targets using 
KEGG enrichment analysis. 

Cerebral cortex marker screening in AD 
patients by machine learning algorithms

Two machine learning algorithms were used for 
this study: LASSO regression analysis and random 

forest analysis. Firstly, we used the glmnet pack-
age to perform the LASSO regression analysis. In 
addition, a random forest analysis was performed 
using the randomForest package and genes with 
a MeanDecreaseGini > 2 were selected. The inter-
section genes derived from two machine learning 
algorithms are considered potential cortex bio-
markers for patients with AD. 

Correlation analysis and GSEA of potential 
biomarkers

Using the corrplot package, we analyzed the 
correlation between the expression of potential 
biomarkers. Further, gene set enrichment analy-
ses (GSEA) were performed on the biomarkers to 
better understand their functions.

Single-cell data processing and cell 
annotation

Seurat objects were created from scRNA-seq 
data using the R software package Seurat 4.2.1 
[35], which was also utilized for normalization, 
grouping, differential gene expression analysis, 
and visualization. Integration was performed us-
ing the Harmony package by removing batch ef-
fects for different samples. First, we conducted 
quality control on the scRNA-seq data by deleting 
clusters with fewer than three cells, cells with at 
least 20% mitochondrial genes, and cells with no 
more than 50 genes mapped. Then, the different 
cell clusters were obtained based on the first 2000 
differential genes by descending and removing 
batch effects by principal component analysis 
(PCA) and the Harmony algorithm. The cluster-
ing analysis was done based on the FindClusters 
and FindNeighbors functions in the Seurat pack-
age, and the results were visualized using the 
RunUMAP function. Different cell clusters were 
annotated using the SingleR package. By the sub-
set() function, various cells from AD and control 
samples were extracted for differential gene ex-
pression analysis.

Trajectory analysis of single cells

The Monocle package (version 2.22.0) in R soft-
ware (version 4.1.3) was used to create single-cell 
pseudotime trajectories of astrocytes. First, two 
samples of astrocytes were selected from the 
annotated cell subpopulations. Then, we applied 
the newCellDataSet() function to create a  new 
object. Genes with mean expression < 0.1 were 
removed and the remaining genes were used for 
trajectory analysis. The reduceDimension() func-
tion was applied to reduce the dimension and we 
set the appropriate parameters (reduction_meth-
od = DDRTree and max_components = 2). Imme-
diately after, we used the plot_cell_trajectory() 
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function to cells for sorting and visualization. We 
calculated the significance of changes in potential 
biomarkers with pseudotime by using the differ-
entialGeneTest() function with parameters set to 
a q value<0.1 and visualized them with the plot_
pseudotime_heatmap() function.

Construction of the miRNA‒mRNA  
and TF-mRNA network

Investigating the relationship between miRNAs 
and potential biomarkers, transcription factors 
and potential biomarkers is essential for under-
standing the regulatory mechanisms and func-
tions of potential biomarkers. In addition, we used 
this network to find the most crucial potential bio-
markers that are interlinked among the biomark-
ers. Based on the NetworkAnalyst 3.0 platform 
(https://www.networkanalyst.ca/NetworkAna-
lyst/), we used the ChEA database to enrich po-
tential biomarker-associated transcription factors 
(TFs), and used the TarBase database to enrich 
potential biomarker-associated miRNAs.

Construction of the potential biomarker-
based nomogram

A nomogram was used to predict the relation-
ship between gene expression and prevalence in 
a  population. We selected potential biomarkers 
that were linked in both the TF-target gene net-
work and the miRNA-target gene network for the 
construction of the nomogram. The rms package 
was used to construct a nomogram based on the 
potential biomarker. Subsequently, the expression 
of potential biomarkers was used to predict AD 
prevalence in the population.

Immune infiltration and immune cell 
correlation analyses

The CIBERSORTx website (https://cibersortx.
stanford.edu/) was used to analyze the level of 
infiltration of 22 different immune cells in the ce-
rebral cortex and blood tissue of patients. Then, 
we performed a correlation analysis of the 22 im-
mune cells infiltrating the cerebral cortex of AD 
patients to better understand how the immune 
system changes.

Correlation analysis of key potential 
biomarkers and immune cell infiltration

The Spearman coefficient was used to investi-
gate the correlation between key potential marker 
genes and immune cell infiltration further, to iden-
tify which immune cells they have a  significant 
connection with, and to try to determine how key 
potential marker genes play an essential role in 
AD by regulating immune cell infiltration.

Results

Identification of DEGs in the cerebral cortex 
and peripheral blood of AD patients 

First, the sample was standardized to obtain 
307 and 2862 DEGs in the cerebral cortex (Figure 
2 A) and peripheral blood (Supplementary Figure 
S1 A) of patients with AD. Among the DEGs in 
the cerebral cortex, 118 genes were up-regulat-
ed and 189 genes were down-regulated. Mean-
while, among the DEGs in peripheral blood, 1283 
genes were down-regulated and 1579 genes 
were up-regulated. This DEG information was 
displayed as a volcano plot (Figure 2 B, Supple-
mentary Figure S1 B). Two heatmaps of the top 
100 DEGs were plotted (Figure 2 C, Supplemen-
tary Figure S1 C). Subsequently, GSEA of the 
307 and 2862 DEGs yielded nucleotide excision 
repair, alanine, aspartate and glutamate metab-
olism pathways, the hippo signaling pathway 
– multiple species and cell cycle, and RNA deg-
radation pathways (Figure 2 D, Supplementary Fig- 
ure S2 D).

Target gene screening using WGCNA

Weighted gene co-expression network anal-
ysis was performed on AD cortical samples and 
control samples. Outliers were removed in the 
process of sample clustering. Then, the scale-free 
fit index was adjusted to 0.9, and the minimum 
soft thresholds for constructing scale-free net-
works were set at 5 and 2, respectively (Figure  
2 E, Supplementary Figure S1 E). Additionally, the 
minimum number of genes in each module was set 
at 50, resulting in 4 and 25 modules, respectively 
(Figure 2 F, Supplementary Figure S1 F). Gene sig-
nificance (GS) denotes the relationship between 
samples and module genes. Module membership 
(MM) denotes the relationship between the mod-
ule eigen gene and module gene expression val-
ues. By calculating GS and MM values, the mod-
ules were connected to the passage and clinical 
features. The MEturquoise module in AD brain cor-
tical samples and the MEblue module in peripher-
al blood samples showed a strong correlation with 
both AD and OXPHOS (Figure 2 G, Supplementary 
Figure S1 G). Figure 2 H and Supplementary Figure 
S1 H demonstrate the correlation of target mod-
ule genes with OXPHOS-related genes. Notably, 
the turquoise module genes correlated extremely 
well with OXPHOS-related genes (correlation = 0.9,  
p < 1e-200) (Figure 2 H). Similarly, the genes in the 
blue module showed a similar correlation (correla-
tion = 0.92, p < 1e-200) (Supplementary Figure  
S1 H). Finally, the MEturquoise module genes and 
MEblue module genes were intersected with two 
DEG sets, yielding 29 target genes associated with 
both AD and OXPHOS (Figure 2 I).
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Figure 2. Identification of DEGs in frontal and 
temporal cortex samples and results of WGCNA. 
A  – Cortex samples displayed after standardiza-
tion. B – Volcano plot showing the expression 
characteristics of DEGs, where red represents gene 
upregulation in the AD group, and blue represents 
gene upregulation in the normal control group.  
C – Heat map showing expression of the top 50 
DEGs in the cortex samples. D – GSEA (gene set 
enrichment analysis) of DEGs
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GO, DO and KEGG enrichment analyses for 
the target genes

To study the biological functions (BFs) and re-
lated diseases of the target genes, GO, DO, and 
KEGG enrichment analyses were performed. By 
GO analysis, we discovered that these genes are 
engaged in a range of functions, including regula-
tion of macrophage activation. Furthermore, they 
are involved in many MFs, such as SH3 domain 

binding and adenylate cyclase binding, and are 
associated with several CCs, such as cytoplasmic 
side of plasma membrane and extrinsic compo-
nent of cytoplasmic side of plasma membrane 
(Supplementary Figures S2 A–C). Correspondingly, 
according to the results of the KEGG enrichment 
analysis, these target genes were predominantly 
enriched by diseases and signaling pathways such 
as amyotrophic lateral sclerosis (ALS), pathways 



Arch Med Sci 1, February / 2025 239

Figure 2. Cont. E – The left panel shows the scale-free fit index (scale independence, y-axis) as a function of soft 
threshold power (x-axis); the right panel shows the average connectivity (degree, y-axis) as a  function of soft 
threshold power (x-axis). F – AD module clustering dendrogram based on a dissimilarity measure (1-TOM). The col-
ored squares below the dendrogram represent the module assignment identified by dynamic tree cutting. G – Fea-
ture-module correlations. Each column corresponds to a clinical feature, whereas individual rows in the heat map 
correspond to an ME. Individual cells contain the corresponding p-value and correlation coefficient. H – Scatter plot 
of OXPHOS pathway correlation with genes in the turquoise module. I – WGCNA module genes mapped to DEGs 
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of neurodegeneration – multiple diseases and 
GABAergic synapse (Supplementary Figure S2 D). 
According to DO analysis, the target genes were 
linked to such conditions as craniosynostosis and 
neurodegenerative diseases including PD and ALS 
(Supplementary Figure S2 E). 

Machine learning algorithm-based 
biomarker screening in the cerebral cortex 
of AD patients 

This study used 2 machine learning techniques 
to further investigate putative AD biomarkers in 

29 target genes. The LASSO regression model was 
created using both control and AD samples. The 
λ analysis revealed that when λ = 18, the model 
could correctly forecast AD. Consequently, LASSO 
analysis produced 18 potential biomarkers (Figure 
3 A, Table I). Additionally, in the random forest re-
sults, 8 genes with a  MeanDecreaseGini greater 
than 3 were selected as candidate biomarkers 
(Figure 3 B, Table II). Finally, combining the re-
sults of the 2 algorithms yielded RBM3, GOLGA8A, 
ALS2, FSD2, and LOC100287628 in the cerebral 
cortex as potential biomarkers associated with 
AD (Figure 3 C).
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Correlation between potential biomarkers 
and GSEA

The correlation analysis of potential biomark-
ers showed a negative correlation between FSD2 
and ALS2, RBM3, GOLGA8A and LOC100287628 
(Figure 4 A). Then, these 5 potential biomarkers 
were subjected to GSEA functional analysis, and 
we identified several pathways, including ala-
nine, aspartate and glutamate metabolism path-
ways, hippo signaling pathway – multiple species, 
which closely matched the outcomes of the DEG 
functional analysis. Figures 4 B–F displays the 
outcomes of the GSEA functional analysis of the  
5 potential biomarkers. In addition, there are 
some biological functions that are highly asso-
ciated with these biomarkers, such as apoptosis 
and the NF-kB signaling pathway, suggesting that 
these genes may be involved in the inflammato-
ry response, cell proliferation, differentiation and 
survival [36], and play a  significant role in AD 
through these pathways.

Cell quality control, cell annotation and 
biomarker expression analysis

In the current study, 3594 cells from the AD and 
normal control samples of GSE188545 were used 
to generate the scRNA-seq data. The range of the 
number of genes detected, the level of sequenc-
ing, and the proportion of mitochondria in each 
sample were all within acceptable bounds (Figure 
5 A). Following data normalization, the top 2000 
highly variable genes (HVGs) were chosen (Fig-

Table II. Results of random forest analysis

No. Gene name MeanDecreaseGini

1 RBM3 5.677111625

2 GOLGA8A 5.481686647

3 CCT6B 4.316600027

4 ENPP5 3.992431065

5 ALS2 3.932123715

6 FSD2 3.670724866

7 LOC100287628 3.183618109

8 IL1RL1 3.101110037

9 LOC100505971 1.837803457

10 LOC100288814 1.509276095

11 TNS1 1.333639869

12 RGS1 1.17357217

13 TASP1 1.09041616

14 ZDHHC23 1.014779372

15 XIST 0.729755195

16 NELL1 0.707489867

17 ZNF215 0.623515798

18 FAM19A1 0.598571032

19 AKAP5 0.537364545

20 NEFM 0.507005845

21 XLOC_013896 0.506096223

22 CCDC66 0.493729086

23 PVALB 0.472640711

24 GNG2 0.437003367

25 KHDRBS2 0.418461147

26 SRRM2 0.407525122

27 CD200 0.406332736

28 SULT4A1 0.360802487

29 EFTUD1 0.30306696

Table I. Results of LASSO analysis

No. Gene name Coefficient

1 CCDC66 –0.023330326

2 FSD2 0.144008264

3 PVALB 0.033221064

4 TNS1 0.052256082

5 KHDRBS2 0.037955948

6 LOC100505971 0.000779881

7 EFTUD1 –0.062305877

8 LOC100287628 –0.002449124

9 FAM19A1 0.013057823

10 RBM3 –0.21634374

11 GNG2 0.016065787

12 RGS1 0.074340248

13 ALS2 0.037761796

14 XIST 0.013727952

15 LOC100288814 –0.01847535

16 GOLGA8A –0.198714156

17 XLOC_013896 0.038040005

18 ZDHHC23 –0.061786556

ure 5 B). The PCA method and Harmony software 
package were used to reduce dimensions and re-
move batch effects (Figure 5 D), and the cells were 
finally classified into 14 clusters (Figure 5 C). With 
the SingleR package to annotate the cells, we clas-
sified the cells into 4 subclusters, namely astro-
cytes, endothelial cells, macrophages, and tissue 
stem cells (Figure 5 E). By separating AD samples 
from normal samples, we analyzed the differences 
in expression of four potential biomarkers – ALS2, 
FSD2, GOLGA8A and RBM3 – between the two 
samples (LOC100287628 was not analyzed as 
we did not have a gene symbol for it). The results 
showed lower expression of ALS2 and GOLGA8A 
in astrocytes (Figure 5 F); expression of ALS and 
RBM3 was higher in endothelial cells (Figure 5 G); 
GOLGA8A expression was lower in macrophages 
(Figure 5 H); and GOLGA8A and RBM3 showed 
lower expression in tissue stem cells (Figure 5 I) of 
AD samples compared with the control samples. 
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Figure 4. GSEA of potential biomarkers. A – Correlation analysis between five potential biomarkers. B–D – GSEA 
functional analysis of five potential biomarkers (B – RBM3, C – GOLGA8A, D – LOC100287628)
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Differential expression of potential biomarkers in 
different cells may be a potential mechanism for 
causing AD.

Trajectory of astrocyte in AD

Due to the high content of astrocytes in the 
current single-cell data and the low risk of analysis 
bias, we selected astrocytes for trajectory analysis. 
Subsequently, after reducing the dimensionality 
of astrocytes according to different genes (Figure 
5 J), we visualized the trajectory of astrocyte dis-
tribution with pseudotime. Both trajectory analy-
ses yielded 1 key time node, and we divided the 
astrocytes into 3 cell states by dividing the time 
node (Figures 5 K, L). By analyzing the changes in 
expression of potential biomarkers across astro-
cyte states (Figures 5 M, N) and calculating the 
significance of changes in marker expression with 
pseudotime (Figures 5 O, P), we found significant 
changes in the expression of GOLGA8A and FSD2 
in AD samples and ALS2, RBM3 and FSD2 in con-
trol samples.

Regulatory mechanisms and relevance of 
potential biomarkers

TFs are engaged in the transcription of genes, 
while one or more miRNAs show fine regulation 

of gene expression. By constructing the miRNA- 
mRNA network and TF-mRNA network, we clari-
fied the regulatory relevance of potential biomark-
ers and searched for the most important potential 
biomarkers. The results of network construction 
suggest that RBM3, GOLGA8A and ALS2 may be 
regulated by the same miRNAs, such as has-mir-
101-3p, hsa-mir-23b-3p, hsa-mir-30b-5p, hsa-
mir-30c-5p, hsa-mir-124-3p, hsa-mir-16-5p and 
hsa-mir-129-2-3p (Supplementary Figure S3 A).  
Meanwhile, RBM3, GOLGA8A, ALS2 and FSD2 
were regulated by the same TFs, such as CREM, 
STAT4, MTF2, TBP and GATA1, while E2F1 may 
be involved in the regulation of these four genes 
(Supplementary Figure S3 B).

Clinical diagnostic evaluation of key 
potential biomarkers

The diagnostic bar graph shows that low ex-
pression of 3 key biomarkers contributes to the 
clinical diagnosis of AD. We calculated the likeli-
hood that a patient would be given an AD diagno-
sis by combining the gene scores (Figure 6 A). Also, 
the column line model exhibited great capacity to 
forecast AD, according to calibration curves (Figure 
6 B). Additionally, DCA (Figure 6 C) and CIC (Figure 
6 D) visually illustrated that the column line dia-

Figure 4. Cont. E–F – GSEA functional analysis of five potential biomarkers (E – FSD2, F – ALS2)
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Figure 5. Results of single-cell analysis and trajec-
tory analysis. A – Quality control of scRNA-seq data 
from AD samples (human brain middle temporal 
gyrus). B – Variance plot showing 20,432 genes in 
all cells, with red dots representing the top 2,000 
highly variable genes. The 8 most highly variable 
genes were labeled. C – Visualization of 14 clus-
ters using the UMAP algorithm. D – Visualization 
of cells after removal of batch effects. E – Cell sub-
clusters identification
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gram had superior overall net benefit over a prac-
tical and wide range of threshold probabilities, in-
dicating that the column line diagram acquired in 
our current research could assist clinicians in more 
accurately determining patient prognosis. Taken 
together, these findings imply that RBM3, GOL-
GA8A, and ALS2 have the potential to function as 
reliable diagnostic biomarkers for AD.

Immune cell infiltration results

The microenvironment in the brain contains 
a variety of growth factors, inflammatory factors, 
extracellular matrix and immune cells that have 
an important impact on the development of brain 
diseases. With the CIBERSORT algorithm, we esti-
mated the proportion of 22 types of immune cells 
in 44 control samples and 56 AD samples in the 
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Figure 5. Cont. F-I – Differential expression of potential biomarkers in 4 types of cells in AD versus normal control. 
F – Astrocyte, G – endothelial cells, H – macrophage, I – tissue stem cells. J – Dimensionality reduction in trajectory 
analysis of cells from AD and control samples (above, AD; below, control)
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Figure 5. Cont. K, L – Trajectory plot of Monocle 2 shows the dynamics of the astrocyte of AD (K) and control (L) 
samples and their pseudotime curve. M – Variation in expression of potential biomarkers in different astrocyte 
states (M – AD)
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Figure 5. Cont. N – Variation in expression of potential biomarkers in different astrocyte states (N – control). O, 
P – Significance analysis of potential biomarkers’ change along the pseudotime (q value < 0.1) (O – AD; P – control)
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cerebral cortex (Figure 7 A) and performed the 
same analysis on control and AD samples of blood 
and visualized the results (Supplementary Figure 
S4 A). Also, in cortical samples from AD brains, we 
examined the relationship between immune cell 
infiltration (Figure 7 B). Then, immune cell infiltra-
tion in AD cerebral cortex and blood samples and 
respective control samples was compared in two 
boxplots (Figure 7 C, Supplementary Figure S4 B).  
The results showed that in the cerebral cortex, 
the proportions of T cells CD8 (p < 0.05) were sig-
nificantly lower in the AD group than in the con-
trol group. In peripheral blood, the proportions of 
memory B cells (p < 0.05) and resting memory T 
cells (p < 0.05) were significantly higher in the AD 
group than in the control group, while the propor-
tions of CD4-naïve T cells (p < 0.05), monocytes 

(p < 0.05) and macrophages M0 (p < 0.01) were 
lower.

Correlation analysis between key potential 
biomarkers and immune cells

Correlation analysis of biomarker genes and 22 
immune cells allows us to speculate how these 
genes are involved in the process of AD by regulat-
ing the infiltration of immune cells. We explored 
the relevance of 3 key potential biomarkers to im-
mune cells in cortical samples of AD brains (Fig- 
ure 8). The marker gene RBM3 in AD was positively 
correlated with resting mast cells, eosinophils and 
CD8 T cells, and negatively correlated with activat-
ed mast cells (Figure 8 A). The gene GOLGA8A was 
positively correlated with CD8 T cells, whereas it 
was negatively correlated with follicular helper T 
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Figure 6. Construction of diagnostic models.  
A  – Nomogram; we calculated the corresponding 
score for each genetic variable, then drew a straight 
line above the “point axis” and added the calculated 
scores for all the variables to find the final value on 
the “total score axis” and then drew a vertical line 
on the “probability axis” to identify the patient’s risk 
of developing AD. B – Calibration curve showing the 
relationship between predicted and actual proba-
bility. C – Decision curve analysis (DCA); horizontal 
line indicates no AD, gray diagonal line indicates no 
AD, and column diagram showed more net benefit 
within the threshold probability range. D – Clinical 
impact curves; red curves show the number of in-
dividuals classified as positive by the model at each 
threshold probability; green curves show the num-
ber of true positives at each threshold probability
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Figure 7. Results of immune cell infiltration of AD brain cortex samples. A – Relative percentage of 22 immune 
cells in each AD brain cortex sample. B – Heatmap of correlation in 18 types of immune cells in cortex samples  
(4 types of immune cells were eliminated due to the absence of infiltration). Brown represents a positive correla-
tion, while blue represents a negative correlation. Darker color indicates stronger association
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Figure 7. Cont. C – Box plot for immune cell infiltration analysis in AD cortex. Red represents the AD group and blue 
represents the control group. ns: not significant, *p < 0.05; **p < 0.01; ***p < 0.001
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cells and M0 macrophages (Figure 8 B). The gene 
ALS2 was positively correlated with eosinophils 
and CD8 T cells, and negatively correlated with 
resting NK cells, M0 macrophages and neutrophils 
(Figure 8 C). 

Discussion

This study employed AD target gene screening 
and functional analysis. Also, machine learning 
algorithms were applied for biomarker screen-
ing and regulatory mechanism prediction of the 
screened biomarkers was performed. These re-
sults have theoretical value for the diagnosis and 
prediction of AD as well as insight into the im-
mune characterization of AD. First, we screened 
cortical samples and blood samples from AD pa-
tients for 29 common genes that may be closely 
related to the OXPHOS pathway. Eukaryotic OX-
PHOS, crucial for ATP production, significantly in-
fluences AD development [37]. On the other hand, 
OXPHOS facilitates the maintenance of central 
immune system homeostasis. An essential role 
for neuroinflammation in the etiology of AD may 
be played by microglia, according to the discov-
ery of higher levels of inflammatory markers in AD 
patients and the finding of AD risk genes relat-
ed to innate immune function [38]. The 29 target 
genes were found to be highly co-expressed with 
genes involved in the OXPHOS pathway, implying 
that these target genes may affect the develop-
ment of neuroinflammation and AD directly or 
indirectly through the OXPHOS pathway. Resi-

dent macrophages of the central nervous system 
(CNS), microglia, play a dual role in brain function 
by secreting both pro-inflammatory cytokines and 
neurotrophic factors. They interact bidirectionally 
with other brain cells and peripheral immune cells, 
influencing diseases such as neuroinflammation 
and maintaining healthy brain tissue [39, 40]. 
Some of the above target genes regulate macro-
phage activation, potentially affecting AD progres-
sion by altering microglial activation. In the patho-
genesis of AD, reduced estrogen signaling leads to 
diminished estrogen-mediated neuroprotection. 
Estrogen, a neuroactive steroid, plays a neuropro-
tective role in AD by reducing glutamate toxicity, 
Aβ, brain inflammation, and tau hyperphosphory-
lation [41–45]. Reduced ERα expression in AD pa-
tients’ hippocampal neurons demonstrates estro-
gen’s protective effects, involving pathways such 
as Ca2+ mobilization and adenylate cyclase-mod-
ulated G protein-coupled receptor signaling [46]. 
Some of the target genes may also mediate simi-
lar protective functions.

We screened five potential biomarkers based 
on two machine learning algorithms, namely 
FSD2, ALS2, RBM3, GOLGA8A and LOC100287628. 
Autophagy, a  lysosome-driven self-degradation 
process, plays a  key role in cellular homeostasis 
by removing dysfunctional organelles and pro-
teins [47, 48]. Mitophagy specifically targets mito-
chondria [49]. Autophagy dysfunction, often due 
to DNA damage, is linked to aging and diseases 
such as AD and PD [48]. Our study’s GSEA analy-
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A

Figure 8. Relationship between 3 potential diagnostic biomarkers and immune infiltration in AD (cortex sample). 
A – RBM3
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B

Figure 8. Cont. B – GOLGA8A
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C

Figure 8. Cont. C – ALS2
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sis shows that biomarker FSD2, upregulated in AD 
patients’ cortical samples, might inhibit autoph-
agy in the CNS, leading to protein and organelle 
accumulation. New research now suggests that 
microglia autophagy plays an integral role in the 
development of AD. Pyroptosis, autophagy, and 
ferroptosis of microglia have a significant impact 
on AD [50].

Astrocytes, abundant in the CNS, are key to 
regulating neuroinflammation and maintaining 
CNS health [51, 52]. In AD, reactive astrocytes ac-
cumulate around amyloid plaques, participating 
in phagocytosis and secreting inflammatory cyto-
kines, exacerbating neurodegeneration. Further-
more, dysregulated interaction between astro-
cytes, microglia, and neurons contributes to AD’s 
neuroinflammation [53, 54]. RBM3 (RNA-binding 
motif protein 3) is a cold shock protein that is rap-
idly increased in cold conditions to maintain cel-
lular and internal environmental equilibrium and 
aid survival [55]. Various cellular physiological 
processes, including tumorigenesis [56] and neu-
roprotection [57], are likewise regulated by RBM3. 
Furthermore, RBM3 is expressed in a variety of im-
mune cells, including eosinophils, T cells, and mac-
rophages [58]. Our analysis showed that in nor-
mal samples, there was a trend of elevated RBM3 
expression as astrocytes developed and matured, 
while there was no such trend in AD samples. In 
AD patients, downregulation of RBM3 in astro-
cytes affects various RBM3-mediated physiolog-
ical functions, including cell cycle inhibition and 
neuroprotective effects [57, 59], and may also in-
terfere with cellular communication [54], thereby 
causing abnormal activation of microglia, which 
in turn promotes the development of neuroin-
flammation and the progression of AD. Badrani  
et al. also reported that RBM3 intrinsically inhibits 
innate lymphocyte activation and inflammation 
partially through CysLT1R, suggesting that RBM3 
may contribute to the suppression of central 
neuroinflammation [58], which aligns with our 
results.

MicroRNAs (miRNA), produced by RNA poly-
merase II, are crucial for post-transcriptional gene 
regulation in eukaryotes [60, 61]. They are linked 
to AD progression, influencing neuronal functions 
and gene expression [62]. A bioinformatics anal-
ysis also pointed to miRNAs as biomarkers and 
therapeutic targets for AD [63]. Based on five po-
tential biomarkers, we explored the correlation 
between them by constructing miRNA-mRNA net-
works. The results showed that mRNAs of three 
genes could constitute miRNA-mRNA networks 
with each other. These three genes are GOLGA8A, 
ALS2, and RBM3. The mRNAs produced by tran-
scription of the three genes are regulated by the 
same miRNAs, such as hsa-mir-101-3p, hsa-mir-
23b-3p, hsa-mir-30b-5p, hsa-mir-30c-5p, hsa-mir-

124-3p, hsa-mir-16-5p, and hsa-mir-129-2-3p. In 
our study, we found that GOLGA8A, ALS2, and 
RBM3 are correlated with the development of AD 
by bioinformatic methods, and the above seven 
miRNAs are jointly involved in the expression of 
these genes, suggesting that these miRNAs may 
influence the CNS through ROS accumulation, mi-
tochondrial function, and Aβ deposition to affect 
the occurrence and development of AD. Interest-
ingly, one study showed that the role of hsa-miR-
101-3p in AD increases with NFT stage and regu-
lates RAC1 [64], while hsa-mir-124-3p emerged as 
a predictive biomarker for AD [65, 66].

We constructed TF-mRNA networks for 5 po-
tential biomarkers to explore the relevance of 
transcriptional regulation of these potential bio-
markers. The results showed that 4 genes are 
known to possess transcriptional regulatory rel-
evance. We found that the transcription factor 
E2F1 co-regulates the transcription of four genes: 
GOLGA8A, ALS2, RBM3, and FSD2; similarly, SPI1 
co-regulates the transcription of three genes: 
ALS2, RBM3, and FSD2. KLF4 merits consider-
ation as well. KLF4, a  zinc finger nuclear protein 
[67], binds GC-rich DNA sequences and CACCC 
elements to control transcription [68, 69]. It is 
linked to inflammation regulation in endothelial 
cells and macrophages [70, 71] and is upregulated 
by Aβ42-induced neuroinflammation and activat-
ed P53 in microglial cells [72]. This inflammation, 
worsened by activated astrocytes producing IL-1, 
IL-6, TNF-α [73, 74], contributes to neuronal apop-
tosis and dysfunction.

We selected three genes that are linked in the 
miRNA-mRNA network among potential biomark-
ers, namely RBM3, GOLGA8A and ALS2, to con-
struct a  nomogram to estimate the accuracy of 
these three genes for predicting the occurrence 
of AD, and this prediction accuracy was over 90%. 
Based on the results of our study, RBM3, GOLGA8A 
and ALS2 may possess potential as diagnostic bio-
markers of AD. 

Recent data show that innate immune cells 
crucially impact CNS immune homeostasis, influ-
encing the neuropathogenesis of AD either pos-
itively or negatively [75]. By immune infiltration 
analysis, we found a  significantly lower percent-
age of CD8 T cell infiltration in cortical samples 
from AD patients, and these immune cells may 
be derived from peripheral blood. However, the 
functional relevance of CD8 T lymphocytes in the 
AD brain remains largely unknown. The cellular 
component “postsynaptic” and biological process 
“regulation of neuronal synaptic plasticity” were 
over-represented after CD8 T cell ablation, and the 
pathways “long-term dementia”, “calcium signal-
ing”, and “axon guidance” were upregulated [76]. 
Hence, we conclude that there is a decreased pro-
portion of CD8 T cell infiltration in the AD brain, 
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and the direct involvement of these lymphocytes 
in controlling synaptic plasticity may lead to neu-
ronal dysfunction. Of note to us are the results of 
the correlation analysis between the expression 
of key potential biomarkers and immune cells 
showing that RBM3, GOLGA8A and ALS2 all have 
a  significant positive correlation with CD8 T cell 
infiltration. Therefore, these three genes may play 
a crucial role in CD8 T cells affecting neuronal dys-
function in the AD brain. 

In conclusion, our study identified the biomark-
ers RBM3, GOLGA8A, and ALS2, which may me-
diate the onset and progression of AD by modu-
lating the OXPHOS pathway and influencing the 
proportion of CD8 T cell infiltration. The above re-
sults provide new target genes and research ideas 
for studying the pathogenesis and development 
of AD, as well as potential biomarkers for clinical 
prediction of AD.
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