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A b s t r a c t

Introduction: Although their importance has gained attention, the clinical 
applications of methods for screening patients at high risk of sepsis after 
abdominal surgery have been restricted. Therefore, we aimed to develop and 
validate models for screening patients at high risk of sepsis after abdominal 
surgery based on machine learning with routine variables.
Material and methods: The whole dataset was composed of three repre-
sentative academic hospitals in China and the Medical Information Mart for 
Intensive Care IV (MIMIC-IV) database. Routine clinical variables were imple-
mented for model development. The Boruta algorithm was applied for fea-
ture selection. Afterwards, ensemble learning and eight other conventional 
algorithms were used for model fitting and validation based on all features 
and selected features. The area under the receiver operating characteristic 
curves (ROC AUC), sensitivity, specificity, F1 score, accuracy, net reclassi-
fication index (NRI), integrated discrimination improvement (IDI), decision 
curve analysis (DCA), and calibration curves were used for model evaluation.
Results: A total of 955 patients undergoing abdominal surgery were finally 
analyzed (sepsis: 285, non-sepsis: 670). After feature selection, the ensem-
ble learning model constructed by integrating k-Nearest Neighbor (KNN) and 
Support Vector Machine (SVM) yielded the ROC AUC of 0.892 (0.841–0.944) 
and accuracy of 85.0% on the test data, and the ROC AUC of 0.782 (0.727–
0.838) and accuracy of 68.1% on the validation data, which performed best. 
Albumin, ASA score, neutrophil-lymphocyte ratio, age, and glucose were the 
top features associated with postoperative sepsis by KNN and SVM.
Conclusions: We developed a new and potential generalizable model to pre-
operatively screen patients at high risk of sepsis after abdominal surgery, 
with the advantages of a representative training cohort and routine variables.

Key words: sepsis, machine learning, postoperative complications, 
perioperative period, risk assessment.

Introduction

Sepsis, a  syndrome of physiologic, pathologic, and biochemical ab-
normalities induced by infection, is a  major public health concern [1]. 
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When sepsis occurs after a surgical procedure or 
during the postoperative hospital stay, it is typi-
cally called postoperative or surgical sepsis [2]. 
Abdominal surgery is one of the types of surgery 
most susceptible to postoperative sepsis [2–4], 
due to the long procedure time, bacterial translo-
cation, and immune deficiency. It is reported that 
the incidence of severe postoperative sepsis has 
markedly increased, independently of patient de-
mographics, comorbidities, and surgery type [4]. 
Recently, Brakenridge et al. reported that despite 
the low in-hospital mortality of postoperative sep-
sis, it may affect the long-term outcome includ-
ing developing chronic critical illness and higher 
12-month mortality, especially for elderly patients 
[5]. Moreover, the postoperative sepsis-associat-
ed higher risk of readmission, reexamination and 
longer hospital stay would also bring a high eco-
nomic burden, especially in developing countries 
[6]. Therefore, strategies for preoperatively screen-
ing high-risk patients and specific perioperative 
care are badly needed.

In the last few decades, numerous teams have 
tried to develop tools for screening high risk [7–
10], early diagnosis [11, 12], or predicting mortal-
ity risk [13, 14] of postoperative sepsis. Though 
most of them achieved good results, the clinical 
application to preoperative screening of high-risk 
patients is still restricted. Most of the studies were 
for predicting the mortality risk of postoperative 
sepsis, not for the occurrence, let alone for preop-
erative screening of high-risk patients. qSOFA and 
SOFA scores were the most frequently used vari-
ables for this area; however, they are more suit-
able for predicting the mortality risk of sepsis pa-
tients rather than the onset. Moreover, they were 
designed for intensive care unit (ICU) patients, not 
specifically for surgical patients (e.g., they lack 
surgical-associated factors). Though studies on 
early identification of postoperative sepsis tried 
to apply more clinical variables for prediction, they 
paid more attention to the intra- and post-opera-
tive variables [9–12], or specific markers [8, 15]. 
With the application of machine learning (ML) al-
gorithms to the medical field, ML showed great 
potential to accurately predict sepsis onset ahead 
of time [16]. However, the heterogeneity of data-
sets, different availability of clinical variables, 
and unequal robustness of algorithms restrict 
the generalizability of models. For the models to 
predict postoperative sepsis onset based on ML 
algorithms, most of the datasets were from a sin-
gle center, without another dataset for external 
validation [8–10]. Meanwhile, despite the satis-
factory model performance, the variables used in 
some existing models are not routine [8, 12] or 
not specific for patients undergoing abdominal 
surgery [7, 9, 10]. The generalization and robust-

ness of the aforementioned ML-based models are 
affected by the single source of data, lack of exter-
nal validation, and non-routine and non-specific 
variables, which restrict the application to clinical 
situations. 

Due to the sample size and quality of the re-
al-world medical data, an individual learner tends 
to either easily underfit or overfit. Ensemble learn-
ing, as a machine learning strategy that combines 
predictions from multiple base models, exhibits 
robust performance in prediction and classifica-
tion tasks within the medical domain [10, 17]. In 
response to the characteristics of medical data, 
ensemble learning demonstrates superior pre-
dictive accuracy, enhanced model robustness, re-
duced risk of overfitting, and improved generaliza-
tion capabilities compared to single models [10, 
18, 19]. Therefore, we aimed to develop an ensem-
ble learning model for predicting the risk of post-
operative sepsis on a multicenter (Multi) dataset 
and conduct external validation on the Medical 
Information Mart for Intensive Care IV (MIMIC-IV) 
dataset with routine preoperative variables based 
on the better ones among eight conventional sin-
gle models by comparing the model performance; 
and to investigate the important variables associ-
ated with postoperative sepsis.

Material and methods

This study involved model construction, internal 
validation and external validation. For model con-
struction and internal validation, this multicenter 
study was conducted in three academic hospitals 
in different areas of China (Southwest Hospital of 
Third Military Medical University, Xuan Wu Hospi-
tal of Capital Medical University, and West China 
Hospital of Sichuan University). Ethical approvals 
were obtained for this retrospective study from the 
three hospitals (Certification Number: KY201936, 
2019-132, 2021-349, respectively). For external 
validation, Medical Information Mart for Intensive 
Care IV (MIMIC-IV) [20] was incorporated, which 
is approved by the institutional review boards of 
Beth Israel Deaconess Medical Center in Boston, 
Massachusetts, and the Massachusetts Institute 
of Technology. Data were obtained from Physio-
Net (https: //www.physionet.org/) by an author 
(Chunyong Yang, certification number: 46086293) 
with data usage agreement. No individual patient 
informed consent was required.

Patients

In the Multi dataset, clinical information of 
49 768 surgical patients from the aforementioned 
hospitals between May 2014 and January 2020 
were collected. The inclusion criteria were as fol-
lows: older than 18 years; American Society of 
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Anesthesiologists (ASA) score 2–4; undergoing 
abdominal surgery (spleen, gastrointestinal, hepa-
tobiliary and pancreas, adrenal gland, urinary fe-
male reproductive); no sepsis, infection, or other 
serious complications before surgery. The exclu-
sion criteria were as follows: undergoing surgery 
with local anesthesia; superficial or non-intra-ab-
dominal surgical site; patients with multiple or in-
complete surgical records; missing values > 30%. 
Herein, postoperative sepsis is determined as the 
presence of sepsis, severe sepsis, or septic shock 
after surgery by ICD-10 [21]. Patients with postop-
erative sepsis were determined as positive cases, 
while patients who met the criteria without post-
operative sepsis or other serious postoperative 
complications were determined as negative cas-
es. Due to the requirement of the algorithms, the 
negative cases were randomly matched according 
to the age range and surgical type of the positive 
cases with the ratio of 1 : 2.

For the validation dataset, MIMIC-IV includes 
information on 383 220 patients at Beth Israel 
Deaconess Medical Center from 2008 to 2019. 
The inclusion criteria were as follows: older than 
18 years; ASA score 2–4; undergoing abdominal 
surgery and transformed into PACU; no infection 

or not consistent with the Third International Con-
sensus Definitions for Sepsis and Septic Shock 
(Sepsis-3) [1] before surgery; without important 
variables missing. The exclusion criteria were the 
same as for the Multi dataset. Postoperative sep-
sis was defined as fulfilling the Sepsis-3 criteria 
only after surgery within 30 days, and those who 
did not meet Sepsis-3 throughout hospitalization 
and had no diagnosis of sepsis were negative cas-
es. Additionally, manual checking was performed 
according to the diagnosis after data extraction.

Data collection and processing

The whole process of the current study includ-
ed data pre-processing, feature selection, model 
fitting and evaluation (Figure 1). Continuous vari-
ables were processed and standardized by nor-
malization. After data pre-processing, the Multi 
dataset was randomly split into training (70%) 
and test (30%) datasets according to whether di-
agnosed with postoperative sepsis or not. Then 
feature selection and model fitting were conduct-
ed on the training dataset, while model evalua-
tion was conducted on the test dataset for inter-
nal validation, and the MIMIC dataset for external 
validation.

Figure 1. Development flow from raw data to model fitting and evaluation

GBM – Gradient Boosting Machine, GLM – Generalized Linear Models, KNN – k-Nearest Neighbor, XGBoost – Extreme 
Gradient Boosting, NNET – Neural Network, SVM – Support Vector Machine, AdaBoost – Adaptive Boosting, NB – Naive Bayes,  
AFM – models based on all variables, BFM – models based on the variables selected by Boruta.
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The preoperative clinical variables were select-
ed based on the accessibility and the association 
with the progress of postoperative sepsis accord-
ing to the experience of the physicians in the three 
academic hospitals. The laboratory results closest 
to the surgical day were used. The abdominal pro-
cedures were classified by the procedure approach 
and surgical site. Finally, the following features 
were extracted: (1) demographic features, includ-
ing age, body mass index (BMI), sex; (2) comor-
bidities: chemotherapy, hypertension, diabetes, 
cardiopathy, chronic obstructive pulmonary dis-
eases (COPD), nephropathy, cancer; (3) laboratory 
parameters: albumin, alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), bilirubin, 
K+, creatinine, glucose, white blood cells (WBC), 
platelets, hemoglobin, neutrophils, lymphocytes, 
neutrophil-lymphocyte ratio (NLR); (4) surgical in-
formation: emergency surgery, ASA score, type of 
surgery, procedure site.

Missing data that occur in more than one vari-
able present a  special challenge. The patients 
with missing values more than 30% were exclud-
ed, while others were imputed with KNN through 
DMwR2 R Packages [22]. The distribution of vari-
ables before and after imputation was assessed to 
ensure consistency. 

Model construction and importance ranking

Two types of models were constructed based 
on feature-selected variables and all variables re-
spectively. Feature selection on the training data-
set was completed with the Boruta algorithm [23]; 
when the median variable importance in the set 
runs was significantly higher or lower than the 
median of the maximum values for the shadow 
attribute (blue), the variable was confirmed as im-
portant (green) or rejected as unimportant (red); 
otherwise it was tentatively important (yellow). 
For comparison, we implemented eight conven-
tional ML algorithms: Gradient Boosting Machine 
(GBM), Generalized Linear Models (GLM), KNN, 
Extreme Gradient Boosting (XGBoost), Neural Net-
work (NNET), SVM, Adaptive Boosting (AdaBoost), 
and Naive Bayes (NB). The ensemble learning 
model was constructed from two individual mod-
els with better performance. The models based on 
the variables selected by Boruta were labelled the 
BFM group, while those based on all variables were 
labelled the AFM group. Meanwhile, to investigate 
the important variables associated with postoper-
ative sepsis, importance ranking was conducted 
on the training dataset by the final model.

Model evaluation

The model evaluation process was conducted 
using R (version 4.2.2). After the construction, the 

models’ performance was evaluated by the area 
under curves (AUCs) of the receiver operating 
characteristic curves (ROC), and sensitivity, speci-
ficity, positive predictive value (PPV), negative pre-
dictive value (NPV), accuracy (ACC, the arithmetic 
means of sensitivity and specificity) and F1 score 
(the harmonic means of the precision and recall). 
Through the comparisons of the above metrics, 
the better two models were chosen to develop 
an ensemble learning model. Finally, the ensem-
ble learning model was evaluated and compared 
with the single model through the net reclassifi-
cation index (NRI), integrated discrimination im-
provement (IDI) and decision curve analysis (DCA), 
which were used to compare the models’ clinical 
benefits and utility [24–27]. Meanwhile, the cali-
bration curve was also used to evaluate the mod-
els’ degree of calibration. Confidence intervals (CI) 
for model performance metrics were generated by 
bootstrap resampling of each dataset. 

Statistical analysis

Continuous variables were expressed as mean 
with standard deviation (SD) or median with inter-
quartile ranges (IQR) according to the data distri-
bution. The categorical variables were expressed 
as frequency and percentages. The difference in 
clinical variables between positive and negative pa-
tients was compared by t test, ANOVA, Mann-Whit-
ney test, or non-parametric test for continuous 
data, and the c2 or Fisher exact test for categorical 
data. Two-tailed tests were employed throughout. 
P < 0.05 was considered to indicate statistical sig-
nificance. All the analyses were performed using 
SPSS (version 26.0, IBM) and R (version 4.2.2).

Results

Descriptive characteristics

As shown in Figure 2, a  total of 955 patients 
were included in our study (648 patients from the 
Multi dataset, 307 patients from the MIMIC data-
set), of which 285 patients were diagnosed with 
postoperative sepsis. The comparisons of the gen-
eral characteristics and preoperative laboratory 
results between the sepsis and non-sepsis group 
in Multi and MIMIC datasets are shown in Tables 
I and II, respectively. In these two datasets, patients 
in the sepsis group had older age, more comorbid-
ities (cardiopathy, COPD and nephropathy), higher 
ASA score, higher creatinine, glucose, WBC, NLR, 
and lower albumin, hemoglobin, lymphocyte count, 
and frequency of emergency procedures, compared 
with those in the non-sepsis group (all p < 0.05). 

There are 9 variables with missing values after 
excluding the patients with missing data exceeding 
30%. Among them, 8 were preoperative laborato-
ry results (Supplementary Table SI). No significant 
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Figure 2. Consort diagram of the patient population. A – Multi dataset

A Southwest Hospital  
of Third Military Medical University

Multi DataSet (n = 79563) 
(surgical patients only) 

Non-postoperative sepsis  
(n = 21992) 

Excluded: 
• Less than 18 years old (n = 506) 
• Local anesthesia (n = 415) 
• Incomplete surgical record data (n = 354) 

Random Matched according to: 
• Ratio = 1 : 2 
• Age 
• Procedure type 

Excluded: 
• Missing values > 30% (n = 29) 
• Infection before surgery (n = 41) 

Excluded: 
• Sepsis or infection before surgery (n = 29) 
• Graded as ASA V (n = 1) 
• Missing values > 30% (n = 12) 

Patients were diagnosed as sepsis, septic shock and 
severe sepsis (n = 254) 

•  Southwest Hospital of Third Military Medical 
University (n = 173) 

• Xuan Wu Hospital of Capital Medical University (n = 24) 
• West China Hospital of Sichuan University (n = 53) 

Xuan Wu Hospital  
of Capital Medical University

West China Hospital  
of Sichuan University

Patients undergoing abdominal surgery (n = 23521)

Non-postoperative sepsis (n = 506) 

Non-postoperative sepsis (n = 436) Postoperative sepsis (n = 212) 

Patients for the final analysis (n = 648)

Training dataset (n = 455) Test dataset (n = 193) 

Patients undergoing abdominal surgery (n = 22246)

70% 30% 

difference between imputed and original data was 
found, with the distribution roughly the same (Sup-
plementary Table SII). Patient demographics and 
characteristics between the Multi dataset (training 
dataset and test dataset) and MIMIC dataset (val-
idation dataset) are presented in Supplementary 
Table SIII. The distribution was roughly the same 
between training and test datasets. 

Model performance

As shown in Table III, the eight conventional 
machine learning models achieved relatively good 

performance in both the BFM and AFM groups on 
the internal validation (test) dataset, slightly in-
ferior on the external validation dataset. All the 
models presented a decreasing trend from the test 
dataset to the validation data set. In this situation, 
in the validation dataset, only KNN and SVM have 
the ACC more than 65% in both the BFM and AFM 
groups. For BFM, KNN achieved the AUC of 0.758 
(95% CI: 0.700–0.817) and ACC of 69.4% on the 
validation dataset. SVM yielded 0.761 (95%  CI: 
0.698–0.824) and ACC of 67.1% on the valida-
tion dataset. In the AFM group, KNN achieved the 
AUC of 0.744 (95% CI: 0.685–0.803) and the ACC 
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of 70.7% on the validation dataset. SVM yield-
ed 0.768 (95%  CI: 0.706–0.830) and the ACC of 
66.4% on the validation dataset. Meanwhile, KNN 
and SVM yielded the specificity of more than 65% 
in BFM. In AFM, KNN also has specificity over 65% 
and SVM has the specificity of 64.1% (Figure 3). 

The ensemble learning model was construct-
ed by creating a  linear blend of KNN and SVM. 
In BFM, the ensemble learning model yielded the 
AUCs of 0.892 (95% CI: 0.841–0.944) and 0.782 
(95%  CI: 0.727–0.838) on the test and valida-
tion dataset, respectively. In AFM, the AUCs were 
0.877 (95% CI: 0.822–0.931) and 0.772 (95% CI: 
0.713–0.831). 

The NRI, IDI and DCA were used to compare the 
clinical benefits and utility among KNN, SVM and 
ensemble learning models. The ensemble learning 
model in BFM performed better than that in AFM; 

the NRI and IDI values were 0.064 and 0.023 on 
the test dataset, 0.846 and 0.585 on the valida-
tion dataset, respectively. In addition, in the BFM 
group, compared with the single model (KNN and 
SVM), the NRI values of the ensemble learning 
model were 0.080 and 0.215 on the test dataset, 
0.002 and 0.036 on the validation dataset, while 
the IDI values were 0.016 and 0.090 on the test 
dataset, 0.020 and 0.033 on the validation data-
set. As shown in Figure 4, the ensemble learning 
model in the BFM group performed better on 
calibration than the other models. In addition, 
when the threshold is 50%, the ensemble learning 
model performs better in the net benefit on both 
test and validation datasets. It indicated that the 
ensemble learning model had greater accuracy 
and clinical utility than the single models or those 
based on all features.

Patients identified in MIMIC-IV database (n = 383220) 

Patients undergoing abdominal procedure (n = 84030) 

Patients undergoing abdominal procedure (n = 56747) 

Postoperative sepsis (n = 333) 

Patients with both albumin and NLR (n = 73) Patients with both albumin and NLR (n = 234) 

Non-postoperative sepsis (n = 1087) 

Validation dataset (n = 307)

Patients consistent with Sepsis-3 (n = 1666)

Non-postoperative sepsis (n = 3813) 

Patients undergoing abdominal surgery and transferred to PACU (n = 5479)

Excluded: 
• Missing values > 30% (n = 2096) 
• Infection before surgery (n = 630)

Excluded: 
• Superficial or non-intra-abdominal surgical site (n = 16882) 
• Patients with multiple or incomplete surgical records (n = 10401)

Excluded: 
• Consistent with Sepsis-3 or infection before surgery (n = 580) 
• First consistent with Sepsis-3 after surgery over 30-day (n = 372) 
• Graded as ASA V (n = 12) 
• Missing values > 30% (n = 369) 

Figure 2. Cont. B – MIMIC-IV dataset

B
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Table I. Baseline information of patients with or without postoperative sepsis in Multi dataset

Multi dataset Sepsis (n = 212) Non-sepsis (n = 436) P-value

Age [years] M (P25, P75) 63.50 (48.0, 75.0) 52.0 (38.0, 66.0) < 0.001

BMI [kg/m2] M (P25, P75) 22.88 (20.70, 25.14) 23.05 (20.55, 25.69) 0.582

Female, n (%) 90 (42.5) 220 (50.5) 0.056

Comorbidity, n (%)

 Chemotherapy 14 (6.6) 1 (0.2) < 0.001

 Hypertension 51 (24.1) 55 (12.6) < 0.001

 Diabetes 31 (14.6) 43 (9.9) 0.074

 Cardiopathy 60 (28.3) 21 (4.8) < 0.001

 COPD 9 (4.3) 7 (1.6) 0.042

 Nephropathy 43 (20.3) 27 (6.2) < 0.001

 Cancer 91 (42.9) 221 (50.7) 0.063

Emergency surgery, n (%) < 0.001

 Yes 132 (62.3) 182 (41.7)

 No 80 (37.7) 254 (58.3)

ASA, n (%) < 0.001

 1 1 (0.5) 15 (3.4)

 2 82 (38.7) 330 (75.7)

 3 107 (50.5) 90 (20.6)

 4 22 (10.4) 1 (0.2)

Type of surgery, n (%) < 0.001

 Open 157 (74.1) 400 (91.7)

 Laparoscopy 55 (25.9) 36 (8.3)

Procedure site, n (%) 0.108

 Spleen 0 (21.2) 1 (12.8)

 Gastrointestinal 148 (42.5) 275 (42.9)

 Hepatobiliary and pancreas 19 (9.0) 60 (13.8)

 Adrenal gland 11 (16.0) 12 (20.0)

 Urinary 0 (6.1) 1 (7.8)

 Female reproductive 34 (5.2) 87 (2.8)

Preoperative laboratory results 

 Albumin [g/dl] M (P25, P75) 3.31 (2.81, 3.83) 4.11 (3.90, 4.37) < 0.001

 AST [IU/l] M (P25, P75) 18.40 (11.95, 33.0) 18.50 (12.90, 29.85) 0.773

 ALT [IU/l] M (P25, P75) 25.35 (18.28, 44.18) 23.0 (18.0, 32.0) 0.012

 Bilirubin [mg/dl] M (P25, P75) 0.85 (0.55, 1.46) 0.71 (0.52, 0.98) < 0.001

 K+ [mmol/l] M (P25, P75) 3.94 (3.68, 4.26) 4.03 (3.76, 4.28) 0.079

 Creatinine [mg/dl] M (P25, P75) 0.84 (0.67, 1.17) 0.74 (0.60, 0.89) < 0.001

 Glucose [mg/dl] M (P25, P75) 121.68 (97.02, 157.32) 97.92 (84.60, 120.06) < 0.001

 WBC [× 109/l] M (P25, P75) 7.79 (5.42, 11.71) 6.86 (5.39, 8.91) 0.002

 Platelets [× 109/l] M (P25, P75) 185.0 (138.25, 242.75) 194.0 (148.0, 257.0) 0.070

 Hemoglobin [g/dl] M (P25, P75) 11.85 (10.10, 13.38) 12.70 (11.40, 13.80) < 0.001

 Neutrophils [× 109/l] M (P25, P75) 5.64 (3.62, 9.41) 4.61 (3.35, 6.50) < 0.001

 Lymphocytes [× 109/l] M (P25, P75) 1.17 (0.73, 1.62) 1.35 (1.03, 1.74) < 0.001

 NLR [M (P25, P75) 5.33 (2.67, 11.22) 3.28 (2.23, 5.24) < 0.001

Data are expressed as number (proportion), median (IQR [range]). BMI – body mass index, COPD – chronic obstructive pulmonary diseases, 
ALT – alanine aminotransferase, AST – aspartate aminotransferase, WBC – white blood cells, NLR – neutrophil-lymphocyte ratio.
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Table II. Baseline information of patients with or without postoperative sepsis in MIMIC-IV dataset

MIMIC-IV dataset Sepsis (n = 73) Non-sepsis (n = 234) P-value

Age [years] (mean, SD) 64.60 (1.29) 59.12 (1.19) 0.002

BMI [kg/m2] M (P25, P75) 27.22 (23.64, 34.18) 28.30 (22.66, 30.98) 0.266

Female, n (%) 36 (49.3) 142 (60.7) 0.086

Comorbidity, n (%)

 Chemotherapy 8 (11.0) 14 (6.0) 0.150

 Hypertension 0 6 (2.6) 0.369

 Diabetes 29 (39.7) 46 (19.7) < 0.001

 Cardiopathy 42 (57.5) 51 (21.8) < 0.001

 COPD 15 (20.5) 13 (5.6) 0.042

 Nephropathy 56 (76.7) 53 (22.6) < 0.001

 Cancer 13 (17.8) 35 (15.0) 0.558

Emergency surgery, n (%)

 Yes 44 (60.3) 102 (43.6) 0.013

 No 29 (39.7) 132 (56.4)

ASA, n (%)

 1 2 (2.7) 70 (33.3) < 0.001

 2 46 (63.0) 120 (51.3)

 3 20 (27.4) 30 (12.8)

 4 5 (6.8) 6 (2.6)

Type of surgery, n (%) < 0.001

 Open 13 (17.8) 134 (57.3)

 Laparoscopy 60 (82.2) 100 (42.7)

Procedure site, n (%) 0.021

 Spleen 0 2 (0.9)

 Gastrointestinal 57 (78.1) 117 (50.0)

 Hepatobiliary and pancreas 13 (17.8) 102 (43.6)

 Adrenal gland 0 0

 Urinary 3 (4.1) 7 (3.0)

 Female reproductive 0 6 (2.6)

Preoperative laboratory results 

 Albumin [g/dl] (mean, SD) 3.08 (0.08) 3.69 (0.48) < 0.001

 AST [IU/l] M (P25, P75) 37 (20.5, 57.5) 27 (16, 43) 0.676

 ALT [IU/l] M (P25, P75) 23 (13, 48.5) 23 (14, 42) 0.076

 Bilirubin [mg/dl] M (P25, P75) 0.6 (0.4, 1.8) 0.6 (0.3, 0.9) 0.468

 K+ [mmol/l] M (P25, P75) 4 (3.7, 4.4) 4 (3.8, 4.2) 0.952

 Creatinine [mg/dl] M (P25, P75) 1.1 (0.7, 2.05) 0.7 (0.6, 0.8) < 0.001

 Glucose [mg/dl] M (P25, P75) 125.0 (96.0, 159.0) 103.0 (90.0, 125.0) < 0.001

 WBC [× 109/l] M (P25, P75) 10.30 (6.40, 14.90) 8.2 (6.2, 12.0) 0.044

 Platelets [× 109/l] (mean, SD) 193.47 (11.82) 241.73 (5.66) < 0.001

 Hemoglobin [g/dl] M (P25, P75) 7.95 (7.95, 9.6) 8.8 (8.8, 12.2) < 0.001

 Neutrophils [× 109/l] M (P25, P75) 8.54 (4.47, 13.13) 7.34 (4.31, 12.48) 0.189

 Lymphocytes [× 109/l] M (P25, P75) 0.98 (0.55, 1.42) 1.04 (0.75, 2.75) 0.003

 NLR, M (P25, P75) 7.54 (4.11, 15.64) 6.95 (3.71, 12.7) 0.005

Data are expressed as number (proportion), mean (SD) or median (IQR [range]). BMI – body mass index, COPD – chronic obstructive 
pulmonary diseases, ALT – alanine aminotransferase, AST – aspartate aminotransferase, WBC – white blood cells, NLR – neutrophil-
lymphocyte ratio, SD – standard deviation.
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Table III. Performance of models based on different algorithms in BFM and AFM group

Models based on selected variables by Boruta

Datasets AUC (95% CI) Sens
 (%)

Spec
 (%)

PPV
 (%)

NPV
 (%)

F1 
score

ACC
 (%)

Model 1: GBM

Test 0.886 (0.835–0.936) 68.3 91.5 79.6 85.6 0.735 83.9 (77.9–88.8)

Validation 0.762 (0.705–0.818) 90.4 49.2 35.7 94.3 0.512 59.0 (53.2–64.5)

Model 2: GLM

Test 0.876 (0.821–0.932) 66.7 89.2 75.0 84.7 0.706 81.9 (75.7–87.0)

Validation 0.737 (0.668–0.805) 80.8 55.1 36.0 90.2 0.498 61.2 (55.5–66.7)

Model 3: KNN

Test 0.860 (0.803–0.918) 55.6 96.2 87.5 81.7 0.680 82.9 (76.8–87.9)

Validation 0.758 (0.700–0.817) 74.0 68.0 41.9 89.3 0.535 69.4 (63.9–74.5)

Model 4: XGBoost

Test 0.873 (0.815–0.931) 61.9 92.3 79.6 83.3 0.696 82.4 (76.3–87.5)

Validation 0.747 (0.688–0.806) 87.7 46.2 33.7 92.3 0.487 56.0 (50.3–61.7)

Model 5: NNET

Test 0.876 (0.821–0.931) 74.6 83.1 68.1 87.1 0.712 80.3 (74.0–85.7)

Validation 0.747 (0.681–0.813) 84.9 45.7 32.8 90.7 0.473 55.1 (49.3–60.7)

Model 6: SVM

Test* 0.877 (0.820–0.934) 60.3 92.3 79.2 82.8 0.685 81.9 (75.7–87.0)

Validation 0.761 (0.698–0.824) 74.0 65.0 39.7 88.9 0.517 67.1 (61.5–72.3)

Model 7: AdaBoost

Test 0.877 (0.820–0.934) 61.9 90.0 75.0 83.0 0.678 80.8 (74.6–86.1)

Validation 0.761 (0.705–0.818) 86.3 51.7 35.8 92.4 0.506 59.9 (54.2–65.5)

Model 8: NB

Test 0.863 (0.805–0.920) 74.6 83.1 68.1 87.1 0.712 80.3 (74.0–85.7)

Validation 0.685 (0.610–0.760) 82.2 22.7 24.9 80.3 0.382 36.8 (31.4–42.5)

Model 9: Ensemble Learning (KNN + SVM)

Test* 0.892 (0.841–0.944) 65.1 94.6 85.4 84.8 0.739 84.9 (79.1–89.7)

Validation† 0.782 (0.726–0.838) 76.7 65.4 40.9 90.0 0.533 68.1 (62.5–73.3)

Models based on all variables

Model 1: GBM

Test 0.891 (0.842–0.939) 65.1 91.5 78.9 84.4 0.713 82.9 (76.8–87.9)

Validation 0.745 (0.686–0.805) 86.3 50.4 35.2 92.2 0.500 59.0 (53.2–64.5)

Model 2: GLM

Test 0.876 (0.821–0.932) 66.7 89.2 75.0 84.7 0.706 81.9 (75.7–87.0)

Validation 0.737 (0.669–0.805) 79.5 54.7 35.4 89.5 0.489 60.6 (54.9–66.1)

Model 3: KNN

Test 0.805 (0.738–0.872) 42.9 95.4 81.8 77.5 0.563 78.2 (71.7–83.8)

Validation 0.744 (0.685–0.803) 67.1 71.8 42.6 87.5 0.521 70.7 (65.3–75.7)

Model 4: XGBoost

Test 0.870 (0.816–0.923) 63.5 90.0 75.5 83.6 0.690 81.4 (75.1–86.6)

Validation 0.774 (0.717–0.831) 83.6 53.0 35.7 91.2 0.500 60.3 (54.5–65.8)

Model 5: NNET

Test 0.876 (0.822–0.929) 74.6 83.9 69.1 87.2 0.718 80.8 (74.6–86.1)

Validation 0.778 (0.718–0.838) 94.5 42.7 34.0 96.2 0.500 55.1 (49.3–60.7)
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Feature selection and importance analysis

As shown in Figure 5 A, albumin, cardiopathy, ASA 
score, type, age, neutrophil, creatinine, NLR, bilirubin, 
WBC, chemotherapy, glucose, lymphocyte count, 
emergency, hemoglobin, cancer, and AST were con-
firmed as important by Boruta. ALT, site, and BMI 
were found to be tentatively important. These vari-
ables were used for model construction and fitting, 
while others were rejected as unimportant.

Meanwhile, according to the results of each 
feature’s contribution determined by KNN and 
SVM, the importance ranking of the selected vari-
ables in the actual model was also conducted (Fig-

ures 5 B, C). Albumin, ASA score, NLR, age and glu-
cose were identified as the top-ranking features 
associated with postoperative sepsis.

Discussion

In this study, we developed models using ML 
algorithms based on routine variables from the 
Multi dataset to predict the risk of postopera-
tive sepsis for patients undergoing abdominal 
surgery, and externally validated the models on 
the MIMIC IV dataset. It may help doctors preop-
eratively screen patients at high risk for postop-
erative sepsis, then provide timely management, 

Models based on selected variables by Boruta

Datasets AUC (95% CI) Sens
 (%)

Spec
 (%)

PPV
 (%)

NPV
 (%)

F1 
score

ACC
 (%)

Model 6: SVM

Test 0.873 (0.817–0.928) 61.9 93.9 83.0 83.6 0.709 83.4 (77.4–88.4)

Validation 0.768 (0.706–0.830) 74.0 64.1 39.1 88.8 0.512 66.4 (60.9–71.7)

Model 7: AdaBoost

Test 0.873 (0.817–0.928) 58.7 90.0 74.0 81.8 65.487 79.8 (73.4–85.2)

Validation 0.779 (0.725–0.834) 80.8 56.8 36.9 90.5 50.644 62.5 (56.9–68.0)

Model 8: NB

Test 0.858 (0.801–0.915) 73.0 80.8 64.8 86.1 68.657 78.2 (71.7–83.8)

Validation 0.709 (0.639–0.780) 86.3 23.5 26.0 84.6 40.000 38.4 (32.7–44.1)

Model 9: Ensemble Learning (KNN + SVM)

Test 0.877 (0.822–0.931) 58.7 94.6 84.1 82.6 69.159 82.9 (76.8–87.9)

Validation† 0.772 (0.713–0.831) 76.7 65.8 41.2 90.1 53.589 68.4 (62.9–73.6)

GBM – Gradient Boosting Machine, GLM – Generalized Linear Models, KNN – k-Nearest Neighbor, XGBoost – Extreme Gradient Boosting, 
NNET – Neural Network, SVM – Support Vector Machine, AdaBoost – Adaptive Boosting, NB – Naive Bayes; *ensemble learning vs. SVM in 
models based on selected variables by Boruta on the test dataset, NRI and IDI were p < 0.05; †ensemble learning in models based on the 
variables selected by Boruta vs ensemble learning in models based on all variables on the validation dataset; NRI and IDI were p < 0.05.

Figure 3. ROCs of SVM, KNN, and ensemble learning models in test and validation datasets

KNN – k-Nearest Neighbor, SVM – Support Vector Machine, AFM – models based on all variables, BFM – models based on the 
variables selected by Boruta.
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Figure 4. DCAs and calibration curves of SVM, KNN, and ensemble learning models in test and validation datasets

KNN – k-Nearest Neighbor, SVM – Support Vector Machine, AFM – models based on all variables, BFM – models based on the 
variables selected by Boruta.
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eventually benefiting surgical patients. Lower al-
bumin, higher ASA score, older age, higher NLR, 
and higher glucose were the important indicators 
associated with postoperative sepsis, suggesting 
that doctors should pay more attention to them 
preoperatively.

Early recognition is particularly important as 
prompt management of septic patients may im-
prove outcomes [28]. The Implementation of Na-
tional Early Warning Score (NEWS), one of the best 
early warning scores for sepsis in England, was 
confirmed to reduce mortality in the suspicion of 
sepsis cohort [29]. Moreover, Croft et al. reported 
that applying a computerized sepsis management 
system would increase early recognition by 12% 
and reduce hospital mortality by 6% [30]. 

With the growing attempts and endeavors for 
applying ML algorithms as new tools to solve medi-
cal problems, the quality of data, and the generaliz-
ability and robustness of models are the main lim-
itations for application to real-world data. To some 
extent, the quality of data from the real world is 
the main problem; it includes the limited number 
of positive cases, heterogeneity of data, and nu-
merous missing data. As we described above, the 
incidence of postoperative sepsis is low both in 
the current study and other existing ones, which 
may be one of the reasons that research on pre-
operatively screening patients at high risk of post-
operative sepsis is limited. The heterogeneity of 
medical data is widely accepted, as the incidence 
of postoperative sepsis varies among medical cen-
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Figure 5. Results of feature selection and importance ranking. A – Feature selection by Boruta. The red box was 
rejected, the yellow one was tentative, and the green one was confirmed as important. Meanwhile, the rectangular 
box with red dotted line represents the variables selected for model construction. B – Feature importance ranking 
calculated by derivation from KNN on the training dataset. The rectangular box with red dotted line represents the 
top ranked features that were correlated with postoperative sepsis. C – Feature importance ranking calculated by 
derivation from SVM on the training dataset. The rectangular box with red dotted line represents the top ranked 
features that were correlated with postoperative sepsis

KNN – k-Nearest Neighbor, SVM – Support Vector Machine, BMI – body mass index, COPD – chronic obstructive pulmonary 
diseases, ALT – alanine aminotransferase, AST – aspartate aminotransferase, WBC – white blood cells, NLR – neutrophil-
lymphocyte ratio.
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ters and countries, and representative datasets are 
sorely needed to enhance the generalizability and 
robustness of models. However, most of the exist-
ing studies were conducted on single-center data-
sets or public datasets due to data availability and 
standardization [8–10]. To address the growing 
need, we made efforts to improve the robustness 
of our model via multi-source data. Our data were 
extracted from three representative large-scale ac-
ademic hospitals in China. Moreover, most of the 
previous studies only performed internal valida-
tion [7, 8], which resulted in the unclear robust per-
formance of the established models. In this study, 
we also used the MIMIC IV dataset as a validation 
dataset to perform external validation, which was 
quite different from our multi-source data. On the 
other hand, most real-world data have missing 
values, especially the multicenter studies, as well 
as MIMIC IV. Only a  few studies using their own 

hospital data allow data sharing [31], which may 
aggravate the limitations on screening for postop-
erative sepsis. The lack of high-quality data and 
scarcity of models developed or validated in mid-
dle- or low-income countries are likely promoting 
inequality in healthcare. Herein, we excluded pa-
tients with more than 30% missing data to make 
the selected feature relatively integrated. Also, 
KNN was used to impute missing values for cases 
with less than 30% missing to increase volumes. 
By collecting the routine structured data and pre-
processing the missing data, the data quality was 
increased, and our model may be applied in other 
centers. For increasing the robustness and gener-
alizability of the model, the ML algorithms used 
were also important. Besides constructing single 
conventional ML models, we chose the best two 
to build an ensemble learning model through the 
caretEnsemble R package. 
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According to the results of NRI and IDI, the en-
semble learning model was comparable to KNN 
and SVM. However, based on calibration curves 
and DCA curves, the ensemble learning model 
performed better than KNN and SVM. Ensemble 
learning could flexibly assemble prediction models 
to build an accurate one, which has been shown 
effective in many applications [32, 33]. Likewise, 
the relatively satisfactory model performance 
manifested in our study indicated its potential for 
real-world medical datasets. 

Compared with other existing studies, we had 
several advantages. Studies for predicting postop-
erative sepsis are scarce. Among them, most were 
for a single surgical type, or based on single-center 
data, or not for preoperatively screening high-risk 
patients, or used non-routine variables, or had no 
external validation. Bunn et al. developed a tool to 
screen patients at high risk for postoperative sep-
sis based on LR, RF, XGboost and support vector 
machine (SVM) algorithms with a total of 223,214 
appendectomies from the national surgery quality 
improvement program database (NSQIP). How-
ever, it achieved only moderate discrimination 
ability (a maximum AUC of 0.7) on a test dataset 
[7]. Zhang et al. developed a postoperative sepsis 
scoring tool for hepatobiliary and pancreatic sur-
gery from a  single-center dataset based on the 
LR algorithm, but, due to the unbalance of data 
(total patients: 522, postoperative sepsis: 55), the 
PPV was only 35% [8]. Moreover, some variables 
used for model development, such as interleukin 
and TNF-α, are not routine, which further affected 
the promotion of this tool [8, 15]. Our model was 
developed and evaluated on representative mul-
ticenter data, and variables were all preoperative 
and routine. Furthermore, the performance of our 
model was relatively satisfactory, with external 
validation in the MIMIC dataset acceptable. There-
fore, our model has greater potential for applica-
tion to other centers for preoperative screening of 
patients at high risk for postoperative sepsis.

Feature selection and importance ranking help 
elevate the model’s performance and interpret-
ability. In the current study, we chose the variables 
associated with the progression of postoperative 
sepsis based on the literature or experience of the 
physicians for the initial analysis. Then, feature se-
lection was conducted using the Boruta algorithm, 
which is powerful, fast, and robust for both high-di-
mensional and low-dimensional datasets [23]. Af-
ter model construction and fitting, we also ranked 
the importance of selected variables. Taking the 
rank by Boruta and importance ranking into con-
sideration, the top 5 predictors were found to be 
the most important for postoperative sepsis. They 
were albumin, ASA score, NLR, age and glucose. 
Among these features, lower albumin, higher ASA 

score, and older age reflect the poor physiologi-
cal state of the patient. Intact innate and adap-
tive immune responses depend on albumin, and 
low albumin is associated with increased risks of 
severity and death in patients with severe sepsis 
or organ failure [34]. NLR, a biomarker of system-
ic inflammation, indicates the balance between 
neutrophil and lymphocyte counts, and high NLR 
may indicate unfavorable prognoses in patients 
with sepsis [35, 36]. High glucose levels at sep-
sis onset have been proved to be independently 
associated with a worse prognosis, irrespective of 
the presence or absence of preexisting diabetes 
[37, 38]. Despite several features not actually be-
ing abnormal, it is recommended that anesthesi-
ologists and surgeons pay more attention to them 
and adjust them to appropriate levels before sur-
gery. The other variables selected for final analysis 
in our study, such as creatinine, neutrophil, WBC, 
ALT, and cardiopathy, are known to be clinically 
associated with postoperative sepsis [39–42]. Due 
to the important roles of albumin and NLR (these 
two variables were missing in more than 70% of 
the MIMIC-IV dataset), patients without albumin 
or NLR were excluded during data processing. 
Especially, anesthesiologists and surgeons could 
complete these two examinations before surgery, 
as both of them are routine and accessible.

There are a few limitations of this study. First, 
every effort was made to collect all patients with 
postoperative sepsis, but the amount of data is 
still relatively small compared with other big-data 
studies, and a larger volume of data is needed to 
improve the robustness. Second, this is a  retro-
spective study, which may have the problems of 
missing data and inaccurate diagnosis and can 
only establish associations between factors, rath-
er than causality. Prospective multicenter studies 
should be carried out to validate our model in the 
near future.

In conclusion, we confirm the feasibility of us-
ing an ensemble learning model based on KNN 
and SVM to accurately predict postoperative 
sepsis in patients undergoing abdominal surgery 
based on routine preoperative indicators. Mean-
while, albumin, ASA score, age, NLR, and glucose 
were considered as the important variables, sug-
gesting that doctors should pay more attention to 
these variables preoperatively. 
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