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Combretastatin A4 phosphate encapsulated in 
hyaluronic acid nanoparticles is highly cytotoxic to oral 
squamous cell carcinoma 

Chuanxi Sun1,2,3, Ziqi Zhou1,2,3, Fangqiang Liu4, Hong Li5, Zhe Liu2,3,6 

A b s t r a c t

Introduction: To investigate the toxicity of combretastatin A4 phosphate 
(CA4P) hyaluronic acid (HA) gel nanoparticles (HA-CA4P-NPs) in OSCC (oral 
squamous cell carcinoma).
Methods: Toxicity was investigated using fluorescence microscopy, MTT as-
say, flow cytometry, and OSCC xenograft mouse models.
Results: Compared with CA4P, HA-CA4P-NPs generated nearly 10 times more 
fluorescence in OSCC cells. Cytotoxicity assays showed that HACA4P-NPs 
were more toxic to SCC-4 cells but not to HNECs. Remarkable necrosis was 
induced in SCC-4 cells after exposure to HA-CA4P-NPs, and related proteins 
were upregulated. Furthermore, HA-CA4P-NPs significantly reduced the tu-
mour size.
Conclusions: HA-CA4P-NPs improved drug release and delivery, and in-
creased cytotoxicity to cancer cells.

Key words: oral squamous cell carcinoma, targeted drug delivery, 
combretastatin A4, antitumour activity.

Oral squamous cell carcinoma (OSCC) is a  highly malignant cancer 
of the oral cavity with poor prognosis. Currently, OSCC is treated with 
various surgical, radiotherapy, and chemotherapy methods. However, 
because of its specific anatomical location, surgical excision of OSCC tu-
mour tissues is often technically challenging and leads to unavoidable 
injury to the surrounding anatomical structures [1]. 

Thus, various nanotechnologies are being explored as drug delivery 
systems (DDS) to address the shortcomings of chemotherapeutics [2]. 
DDS can either passively target tumours with increased cell membrane 
permeability and retention ability [3] or actively target cancer cells with 
decorated ligands that interact with or bind to receptors or proteins 
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expressed on the surface of targeted cells [4]. 
The phosphorylated prodrug combretastatin A-4 
phosphate (CA4P) is synthesised as a  vascular 
disrupting agent (VDA). However, little is known 
about the anti-cancer and therapeutic activities of 
CA4P in OSCC. 

Hyaluronic acid (HA) is an acidic polysaccharide 
containing D-glucuronic acid and N-acetyl-D-glu-
cosamine, and has been explored as a drug carrier 
to deliver drugs to achieve targeted and synergis-
tic combination therapy against cancers [5]. How-
ever, the anticancer activity of CA4P encapsulat-
ed in HA nanoparticles (NPs) in OSCC has not yet 
been extensively investigated. 

Methods. HA-CA4P-NPs were prepared accord-
ing to a previously reported method [6]. The size 
and zeta potential of the NPs were determined be-
fore subsequent experiments using a  ZetaView® 
Nanoparticle Tracking Analyser with a helium-ne-
on laser at a wavelength of 633 nm and a fixed 
scattering angle of 90°. The human OSCC cell line 
SCC-4 and human normal epithelial cells (HNECs) 
were cultured at 37°C in F-12 medium. CA4P re-
leased from the NPs was quantified using the di-
alysis method. Briefly, CA4P (1 mg) in lyophilised 
NP powder was dissolved in 5  ml of F-12 medi-
um in a dialysis tube, which was then placed into 
a 200 ml falcon tube with 150 ml of F-12 medium 
and continuously stirred on a Cimarec stirring hot 
plate (Cole-Parmer, USA) at 37°C. The quantity of 
released CA4P was determined using HPLC, as 
previously reported [7]. 

To determine cellular delivery, HA-CA4P-NPs 
and CA4P were labelled with Texas Red fluores-
cent dye, added to F-12 medium containing cells 
at a final concentration equivalent to 50 μM CA4P, 
and cultured for an additional 24 h. The intensity 
of fluorescence emitted from the drugs was de-
termined at different time points. To measure the 
cytotoxicity of NPs, cell viability was assessed us-
ing an MTT assay kit. Necrotic cells were detected 
using the YO-PRO-1/PI Apoptosis and Necrosis As-
say Kit after the cells were inoculated with various 
concentrations of drugs and grown at 37°C in 5% 
CO2 for 24 h. The stained cells were loaded onto 
a FACSymphony Cell Analyser and analysed using 
the built-in software. To detect the levels of ne-
crosis-related proteins, Western blot analysis was 
performed as previously described [8], using an-
tibodies against Bax, RIP1, and RIP3. β-Actin was 
used as a loading control. 

To assess pharmacokinetics, nude mice (BAL-
B/c) were used. Animals were injected with CA4P 
and HA-CA4P-NPs (10 mg CA4P equivalent/kg) 
through the tail vein. At predetermined time 
points, venous blood was drawn to measure the 
CA4P content by HPLC. To assess antitumour ac-
tivity, SCC-4 cells (106 cells/l) were subcutaneous-

ly injected into the right upper abdomen of nude 
mice as a  xenograft mouse model. Six days af-
ter the injection, the animals were injected with  
200 μl of PBS (control), CAP4, or HA-CAP4-NPs. Tu-
mour development was monitored by measuring 
the longest axis of the mass. 

Results. The mean size of HA-CA4P-NPs was 
~85 nm, most NPs were between 55 and 130 nm, 
and the zeta potential was ~ –42 mV (Figure 1 A).  
HPLC analysis showed that the encapsulation 
efficiency of CA4P was ~84% in the NP prepara-
tion. CA4P was released from the HA-CA4P-NPs 
in a  controlled and smooth manner. In the first  
8 h, 15% of CA4P was released; the release slowed 
down after 16 h, and by 56 h, approximately 98% 
of CA4P was released from the NPs (Figure 1 B). In 
contrast, free CAP4 was released much faster and 
completed in less than 10 h (Figure 1 B). To inves-
tigate whether HA-CA4P-NPs selectively increased 
the delivery of CA4P into OSCC cells, fluorometry 
investigations showed that, compared with CA4P, 
HA-CA4P-NPs-incubated OSCC cells had nearly 
10 times higher fluorescence intensity, indicating 
that HA-CA4P-NPs delivered more drug into the 
cells or bonded to the cell surfaces (Figure 1 C). 
Furthermore, SCC-4 emitted higher fluorescence 
than HNECs after incubation with HA-CA4P-NPs, 
but the fluorescence was low and similar between 
SCC-4 and HNECS after incubation with CA4P, indi-
cating that HA-CA4P-NPs selectively targeted the 
cancer cells (Figures 1 C, D). 

Cytotoxicity was compared using the HNECs 
and SCC-4 cells. The viability of SCC-4 cells after 
exposed to 40 μM HA-CA4P-NPs and CA4P de-
creased from 90% at 0 μM to 17% and 65% at 
40 μM (Figure 1 E). In contrast, both HA-CA4P-NPs 
and CA4P had low toxicity to HNECs in the same 
concentration range as SCC-4 cells (Figure 1 E). 
Furthermore, flow cytometry showed that after 
incubation with the drugs at 40 μM for 48 h, HA-
CA4P-NP led to 30% necrotic SCC-4 cells, which 
was 3 times after CA4P treatment (Figure 1 F).  
Western blot analysis showed that NP-treated 
OSCC cells had significantly higher expression of 
necrosis-related proteins Bax, RIP1, and RIP3, sug-
gesting that programmed necrosis was activated, 
particularly after NP treatment (Figure 1 G). 

To assess drug pharmacokinetics, HA-CA4P-
NPs and CA4P were administered to mice and 
CA4P circulation was assessed. The data revealed 
that free CA4P was cleared very quickly in the 
blood, and its concentration declined remarkably 
in 2 h and was barely detected at 5 h after admin-
istration. However, for the HA-encapsulated CA4P, 
the circulation time was significantly prolonged. 
Six hours later, the blood CA4P concentration was 
still very high in HA-CA4P-NP- administered mice 
(Figure 1 H). Compared with free CA4P, the area 
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Figure 1. Preparation, releases, cellular cytotoxicity, drug dynamics and antitumour activity of HA-CA4P-NPs.  
A, B – The size distribution of HA-CA4P-NPs (A) and release profile of HA-CA4P-NPs (B). HA-CA4P-NPs and CA4P 
were added to F-12 medium in a dialysis tube and gently stirred in F-12 medium at 37°C. Samples were taken at 
different times to quantify released CA4P using HPLC. C, D – Cellular delivery of CA4P and HA-CA4P-NPs in HNECs 
and SCC-4 cells. HNECs and SCC-4 cells were incubated with 50 μM fluorescent dye Texas Red labelled drugs for  
24 h. The cells were then harvested by centrifugation at 500 g and room temperature for 10 min, rinsed 5 times 
with pre-chilled PBS (pH7.4) buffer, loaded onto a AquaMate 7100 fluorometer (Themo Scientific, USA) to deter-
mine the intensity of fluorescence emitted from the drugs at 560 nm after excited at 488 nm. C – Fluorescence 
intensity after incubation with CA4P and HA-CA4P-NPs. D – representative microscopy photos of CA4P and HA-
CA4P-NPs-treated HNECs and SCC-4 cells. DAPI was used to stain the nucleus. E–G – Cell viability, necrosis and 
protein expression after exposed to CA4P and HA-CA4P-NP. HNECs and SCC-4 cells were treated with 0 to 40 μM 
CA4P and HA-CA4P-NP for 48 h. The viability and necrosis of cells were determined using MTT assays and flow 
cytometer (E, F), respectively
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under the curve (AUC) and mean residence time 
(MRT) of HA-CA4P-NPs were more than 3 times 
that of free CA4P, and the elimination rate con-
stant ke was similar (Table I). The antitumour 
activity of HA-CA4P-NPs was assessed using xe-
nograft models. The results showed that the tu-

mours grew slowly in the first 10 days after the 
injection of SCC-4 cells and quickly in PBS- and 
CAP4-treated mice; however, growth was strongly 
suppressed in HA-CA4P-NPs-treated mice (Fig-
ures 1 I, J). Sixteen days after grating, the weights 
of the tumours in the HA-CA4P-NPs-treated mice 
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Figure 1. Cont. Expression of necrosis-related proteins was analysed using Western blots (F). F – left panel, flow cy-
tometry results of necrosis assay; right panel, statistical analysis of necrotic cell. **, ##p < 0.01 vs. CA4P and HNECs, 
respectively. *,**p < 0.05 or < 0.01 vs. 0 μM HA-CA4P-NP
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Figure 1. Cont. G – left panel, representative Western blots; right panel, statistical analysis of protein levels.  
H – Dynamics of serum CA4P levels in mice injected with CA4P and HA-CA4P-NPs. Mice were injected with CA4P 
and HA-CA4P-NPs at 10 mg/kg and blood samples were taken to measure serum CA4P levels at different time 
points using HPLC. **p < 0.01 vs. CA4P. I, J – Tumour growth in xenograft models of mouse after treatment with 
HA-CA4P-NPs and CA4P. Mice were injected with SCC-4 cells to establish xenograft models. The tumour-bearing 
mice were treated with CA4P and HA-CA4P-NPs. I – Tumour size at different days after drug treatment. J – Isolated 
tumours at final day of drug treatment. D **p < 0.01 CA4P

were only one-fifth of those in the CA4P-treated 
mice (Figures 1 H, J). 

Discussion. In this study, we prepared HA-
CA4P-NPs with a  mean size of 85 nm and ana-
lysed their potential for OSCC treatment. Drug 
release and delivery studies showed that CA4P 
was released from HA-CA4P-NPs in a  controlled 

and smooth manner. HA-CA4P-NPs generated 
more fluorescence than CA4P in SCC-4 cells and 
had higher toxicity to SCC-4, but not to HNECs. 
Pharmacokinetic analysis showed that HA-CA4P-
NPs had better drug kinetics, and animal experi-
ments demonstrated that the NPs had significant-
ly stronger antitumour activity than CAP4. These 

Table I. Comparison of mean pharmacokinetic parameters of HA–CA4P-NP and CA4P in mice

DVaVariable AUC [h*ng*ml–1] MRT [h] T1/2 [h] Ke [h-1]

CA4P 768.20 1.18 1.60 2.21

HA-CA4P-NP 1934.31* 4.77* 3.32* 2.13

*p < 0.05 vs. CA4P.
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findings indicate that HA-CA4P-NP is a  potent 
drug delivery system for OSCC and should be fur-
ther explored for its therapeutic efficacy in OSCC 
and other cancers. 

To address the issues associated with chemo-
therapy, various nanotechnology-based drug car-
rier systems have been explored to improve the 
selectivity and delivery efficacy of the drug target 
with a higher drug concentration in the target le-
sion for potential applications in cancers, including 
OSCC [9, 10]. Polymeric nanoparticles, nanolipo-
somes, solid lipid nanoparticles, and receptor-me-
diated drug delivery systems have been studied to 
reduce systemic toxicity, nephrotoxicity, neurotox-
icity, and gastrointestinal toxicity; improve ther-
apeutic effects; and prevent drug resistance [11, 
12]. The mean size of HA-CA4P-NPs was 85 nm, 
which is in the desired range reported to avoid 
rapid kidney clearance [13]. The in vitro release of 
HA-CA4P-NPs was much slower than that of free 
CA4, suggesting that HA-CA4P-NPs functioned as 
a slow-release system for CA4. At the same time, 
HA-CA4P-NPs targeted OSCC more than free CA4P 
did. HA has high affinity for CD receptors, which 
are highly expressed on the surface of cancer 
cells. This might explain the selective delivery of 
HA-CA4P-NP to OSCC cells. Low fluorescence was 
generated after incubation of HA-CA4P-NP with 
non-cancer HNEC, further indicating that HA-
based NPs actively target cancer cells, probably 
because RHAMM receptors are highly expressed 
in cancer cells [14]. 

We found that the toxicity of CA4P in OSCC cells 
was low. However, high cytotoxicity was observed 
when HA-CA4P-NP were used to treat OSCC cells, 
although its toxicity against HNECs was low. This 
was probably due to increased delivery of the 
drug to OSCC cells. The low toxicity of HA-CA4P-
NP to HNECs suggests that it has excellent bio-
compatibility with non-cancer cells and is suitable 
for systemic administration in cancer treatment. 
As a tubulin-depolymerising agent, CA4P induces 
extensive  ischaemic necrosis  in various cancers 
[15]. Flow cytometry analysis revealed that SCC-4 
cells had a high percentage of necrotic cells after 
HA-CA4P-NP treatment, and proteins related to 
necrosis were upregulated, indicating that HA-
CA4P-NPs probably activated the ROS/JNK/c-Jun 
and RIP1/RIP3/MLKL pathways [16]. 

Improved pharmacokinetics were observed in 
mice treated with HA-CA4P-NPs compared with 
those treated with CA4P. This was likely due to 
the higher stability and controlled release of CA4P 
encapsulated in the HA. Previously, the encapsula-
tion of drugs in liposome-derived NPs was shown 
to slow in vivo clearance [17]. Therapeutic effica-
cy studies showed that compared with CA4P, HA-
CA4P-NPs had much stronger antitumour activity, 

which is probably due to the improved pharmaco-
kinetics and targeted delivery of HA-CA4P-NPs to 
cancer cells.
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