Single Cell sequencing reveals heterogenicity of differential gene-expression and altered interactome in post ischemic mice brain cells

Keywords
Hypoxia, neuronal cells, Cerebral-ischemia, single cell genomics, Hif-1

Abstract
Introduction
Ischemia, resulting from reduced blood supply due to arterial constriction or blockages, leads to oxygen and nutrient deprivation, impacting various body systems and contributing to numerous diseases. Despite extensive research on ischemia, molecular studies with spatial and temporal specificity are limited. Our study utilized single-cell genomics to investigate hypoxia-induced changes in the mouse brain at 30 and 60 minutes of exposure, aiming to map cellular trajectories, ontologies, and expression patterns in a cell-specific manner.

Material and methods
We developed a mouse model of hypoxia using the thread-plug method. Experimental groups were exposed to hypoxia for 30 minutes (T_30) and 60 minutes (T_60), with a sham surgery group as control. After excising the cerebral cortex, we performed nuclear isolation and library construction for spatio-temporal analysis of cortical cells. Data analysis included differential gene expression, trajectory analysis, examination of gene regulatory networks, and hallmark analysis.

Results
Single-cell genomics analysis revealed 12 distinct cell populations with different transcriptomic profiles. Spatio-temporal distinctions in cell signaling were observed, showing a switch from Ras GTPase signaling to calmodulin and calcium-dependent signaling between the two hypoxia levels. In the T_30 group, distal axons and growth cones were transcriptionally active, while in the T_60 group, cell edges and post-synaptic areas were more active. The synaptic vesicle cycle was implicated in transcriptional changes across the T_30 and T_60 groups.

Conclusions
Our single-cell genomics study provides new insights into cellular dynamics during hypoxia. The identified cell populations and molecular pathways highlight potential targets for further research and the development of targeted therapies for ischemia.
Single Cell sequencing reveals heterogenicity of differential gene-expression and altered interactome in post ischemic mice brain cells

Ting Lu¹#, Shengzhen Hou²#, Liyun Wang³, Haitao Li², Zunlu Zhang², Mingzhe Hu², Jinping Zhang²*

¹Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, No. 16766#, Jingshi Road, Jinan City, Shandong Province, 250014, China.
²Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan City, Shandong Province, 250014, China.
³Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, No. 16766#, Jingshi Road, Jinan City, Shandong Province, 250014, China.
#Both Ting Lu and Shengzhen Hou contributed equally to the study.

*Corresponding author:
Dr. Jinping Zhang, Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan City, Shandong Province, 250014, China.
E-mail: zhangjinpingdoctor@126.com

Abstract

Introduction:

Ischemia, resulting from reduced blood supply, poses a critical health challenge. It is known to be caused by arterial constriction or blockages and triggers oxygen and nutrient deprivation, impacting multiple body systems and leading to a multitude of diseases and associated health conditions. Due to its muti-facet association with several diseases, ischemia is a subject of
interest in many clinical studies. Over several decades of information on ischemia and related molecular changes have provided valuable insight into its pathophysiological outcomes. However, the scarcity of molecular studies, especially genomic inquiries employing spatial and temporal segregation, remains mostly unaddressed. The emerging field of single-cell genomics offers promising solutions to such inquiries. Therefore, we performed our study by utilizing a single-cell genomics approach, employing a mouse brain model of hypoxia at two distinct time points (30 minutes and 60 minutes of exposure with hypoxia) to delineate cellular trajectories, ontology, and the clustering of expression-based patterns in a cell-specific manner.

Materials and Methods: The present study we developed a mouse model of hypoxia, which was established using the thread-plug method. The experimental groups subjected to hypoxia for 30 minutes (T_30,) and 60 minutes (T_60), while sham surgery group was used as control. Following excision of the cerebral cortex, nuclear isolation and library construction were performed before conducting spatio-temporal analysis of cortical cells. Comprehensive data analysis encompassed differential gene expression analysis, trajectory analysis, examination of gene regulatory networks, and hallmark analysis.

Results: The primary outcome of the single cell genomics analysis emerged as clustering of 12 distinct cell populations suggesting contrasting transcriptomic profiles. Furthermore, spatio-temporal distinction in cell signaling was identified as switch from Ras GTPase signaling to calmodulin and calcium dependent signaling across two levels of ischemia. Moreover, the most dynamic regions in terms of transcription were distal axons and growth cones in T_30 group, while cell edges and post-synaptic area in case of T_60 group. Also, synaptic vesicle cycle is likely to be involved in transcription switching across T_30 and T_60 groups.
Conclusion: In conclusion, our study employing a single-cell genomics approach provides valuable insights into the cellular dynamics during hypoxia exposure. The identified cell populations and associated molecular pathways offer potential targets for further research and development of targeted therapies in addressing the complex challenges posed by ischemia.

Key words: Hypoxia, Cerebral-ischemia, single cell genomics, neuronal cells, Hif-1.

Introduction

Ischemia, characterized by reduced blood supply to tissues, significantly impacts human health by depriving organs of oxygen and essential nutrients [1,2]. This condition can lead to serious physiological issues, including strokes, which may include subarachnoid haemorrhage, intracerebral haemorrhage, and ischemic stroke [3]. Ischemic strokes, marked by sudden or waking neurologic deficits, constitute about 80% of strokes and account for 11% of global deaths according to the WHO [4]. Cerebrovascular diseases rank as the second leading cause of mortality and dementia worldwide, and the third leading cause of death among men. Stroke incidence varies globally, averaging 200 cases per 100,000 inhabitants, with higher rates in non-industrialized nations [5,6]. Japan has the highest stroke incidence, while the UK, Germany, and New Zealand report the lowest. Incidence increases with age, particularly in individuals over 55 years, with higher rates in Japan, Russia, and Ukraine. Males consistently show a higher incidence than females, and China has the highest estimated lifetime risk of stroke [7]. A 2013 survey in China reported an age-standardized prevalence, incidence, and mortality of stroke at 1.1%, 246.8 per 100,000 person-years, and 114.8 per 100,000 person-years, respectively [8]. Stroke incidence follows a circadian rhythm, peaking between 6 am and 12 noon, with 55% of ischemic strokes occurring during this period [9]. Ischemic stroke typically presents with dysarthria and unilateral weakness, but can be mimicked by seizures, conversion disorders, migraines, and hypoglycemia [10]. Post-stroke conditions can range
from lethality to significant disabilities, such as paralysis, speech issues, and cognitive impairments, posing severe challenges to individuals [11]. Preventive strategies for ischemic stroke involve improving care systems to minimize treatment delays and swiftly administering reperfusion therapies like intravenous thrombolysis, which significantly reduce disability if given within 4.5 hours of onset [12]. Thrombolysis can be extended up to 9 hours post-onset for patients with salvageable brain tissue, and endovascular thrombectomy is highly effective within 6 hours of onset for large vessel occlusions [13]. Selected patients, identified through perfusion imaging, may benefit from thrombectomy up to 24 hours post-onset, further reducing disability. Post-management focuses on secondary prevention, including blood pressure control, cholesterol management, and appropriate antithrombotic medications to prevent recurrent strokes [14,15]. Tailored interventions, such as anticoagulation for atrial fibrillation and carotid endarterectomy for severe symptomatic carotid artery stenosis, are crucial. These measures aim to reduce the incidence and impact of ischemic strokes, enhancing patient outcomes and minimizing long-term disability [16].

The cerebrum, a key brain region governing motor function, vision, hearing, and analytical reasoning, promptly responds to ischemia [17]. Ischemic stroke triggers a cascade of molecular events in the cerebrum, leading to significant neuronal damage and subsequent functional impairments. Researchers have investigated neuroprotection, regeneration processes, and associated molecular pathways to mitigate this damage. Ischemia-induced vascular obstruction generates excessive reactive oxygen species (ROS), intensifying neuronal injury through oxidative stress. Identifying pathways that respond to and mitigate oxidative stress is critical for minimizing injuries. Moreover, ischemia-induced inflammation exacerbates post-stroke neuronal damage, highlighting the importance of effectively modulating immune responses to reduce injuries. Animal models, such as middle cerebral artery occlusion (MCAO) in murine models, offer valuable insights into stroke mechanisms and simulate clinical interventions like
mechanical thrombolysis, providing insights into potential future treatments. Despite extensive research and the availability of high-throughput data, significant gaps persist in understanding the intricate genomics and transcriptomics underlying ischemic stroke. Comprehensive elucidation of genomic factors contributing to an individual's susceptibility, such as specific genetic variants or mutations predisposing individuals to vascular pathology, remains incomplete. Additionally, understanding transcriptomic alterations within various brain cell types, particularly their variable spatio-temporal response to ischemic insults and their implications in disease progression is an area with limited comprehension. Single-cell sequencing emerges as a promising avenue to address these knowledge gaps. Traditional bulk sequencing methods often mask the inherent heterogeneity in complex tissues like the brain. Single-cell sequencing technologies allow researchers to explore the intricacies of individual cells, revealing cell-specific genetic and transcriptomic signatures in response to ischemic insult. This approach facilitates the identification of rare cell populations crucial in cerebral ischemia pathophysiology, often overlooked in bulk analyses. By employing single-cell sequencing techniques, it is possible to unravel the heterogeneity of brain cell types affected by ischemia. This includes identifying distinct molecular profiles associated with different neuronal subtypes, glial cells, endothelial cells, and immune cells. The method also aids in exploring temporal changes in gene expression during various stages of ischemic injury, shedding light on dynamic molecular responses within specific cell populations. Moreover, single-cell sequencing can help identify previously unrecognized genetic variants or transcriptomic alterations specific to certain vulnerable or resilient cell types in response to ischemic insult. Deciphering these molecular signatures at the single-cell level holds the potential to pinpoint novel therapeutic targets or pathways for intervention, enabling the development of more tailored treatments to mitigate the impact of cerebral ischemia. Therefore, single-cell sequencing was used to achieve the primary objective of the study, which was to
mainly look at the cellular heterogeneity in terms of response to hypoxic insult, which is otherwise not possible in conventional approaches. Hence the use of a single-cell approach (which itself is a state-of-the-art technology, although with some limitations), was explored as a potential means to refurbish the information and context on ischemia-induced changes. In the present study, we conducted single-cell transcriptomic analysis on the mice's cerebral cortex, subjecting it to two distinct ischemia regimens over a temporal scale of 30 minutes and 60 minutes. These conditions were then compared to control animals with an aim to identify unique cellular signatures related to ischemic response in cells and their spatio-temporal variation.

Material and Methods

Experiment design and Ischemia Model of Mice

In our study, we developed a mouse model of ischemia to investigate the effects of hypoxia on brain cells. Mice were anaesthetized with intraperitoneal tribromoethanol (1.25%) and positioned supine on a surgical table. A midline neck incision was made, followed by dissection to expose the carotid arteries. The common carotid artery (CCA), external carotid artery (ECA), and internal carotid artery (ICA) were isolated. The ECA was ligated, and a suture was passed beneath its proximal end. Microvascular clamps occluded the CCA and ICA, and an MCAO thread was inserted via an incision in the ECA into the CCA and then redirected into the ICA. The thread plug was advanced 2 cm into the ICA to induce ischemia for either 30 minutes or one hour. After the ischemic period, the thread was withdrawn, the ECA was ligated, and the incision was sutured. Mice were allowed to recover and were returned to their housing cages. We used triplicate models for each experiment (n=3) and the ischemia group for 30 minutes was labelled T_30, while the 1-hour ischemia group was labelled T_60. A sham group of animals (n=3) which underwent the anaesthesia and sham surgery without the introduction
of the thread-plug was labelled and used as an experimental control. The cerebral cortex of animals was excised and prepared for nuclei separation, which was followed by library construction and detailed analysis of the single-cell transcriptome (Fig 1).

Gexscope® Nuclear Separation and Quality analysis

The extraction of nuclei from the tissue was performed to prepare RNA libraries and hence high-quality nuclear separation was warranted. Initially, the frozen tissue samples weighing 100 mg were extracted and to eliminate blood stains or any surface impurities, a pre-cooled PBSE solution (PBS buffer containing 2 mM EGTA) washing was performed on a temperature-controlled shaker. The tissue was minced using surgical scissors into small pieces. We then used live Tissue Dissociation Solution (Singleron Biotechnologies, cat #1190062) at 37 °C for 15 min in a 15-ml centrifuge tube for lysis. The process of lysis was monitored using a light microscope in real-time. The resulting mixture was then filtered into a 50 ml centrifuge tube, and subsequent filter screens were washed with a pre-cooled nuclear washing solution.

Following centrifugation at 200 rcf. for 2 minutes, the supernatant was collected. To monitor the presence of nuclei in the solution we used DAPI staining procedure followed by routine microscopy. DAPI staining solution (200 μL) was added to the supernatant, followed by the incorporation of 5 ml pre-cooled PBSE and visualised under microscope for the nucleic-quality check and count. The nuclear solution was filtered using a 40 μm filter and collected nuclei were resuspended in 100-200 μL of pre-cooled PBS, adjusting the nucleus concentration to 3-4×10⁵ nuclei/mL. Following this, 50 μL of pre-cooled Nuclear Extraction Buffer (NEB), enriched with RNase inhibitor and DTT at final concentrations of 0.2 U/μL and 1 mM, respectively, and stored for further use.

Single-cell RNA-seq and library preparation

Single-cell nucleus suspensions as prepared using Gexscope instructions (as per previous section) were loaded onto microfluidic devices, and used to construct scRNA-seq libraries.
utilizing the GEXSCOPE Single-Cell RNA Library Kit (Singleron Biotechnologies, #4 161 031) as per the manufacturer’s instructions. Briefly, it involved cell lysis, mRNA trapping, labelling cells (barcode), and mRNA (UMI), reverse transcription of mRNA into cDNA, amplification, and eventual fragmentation of cDNA. The individual libraries were diluted to 4 nM and then combined for sequencing on an Illumina HiSeq X, employing 150 bp paired-end reads. In order to ensure data quality, raw reads underwent processing through fastQC and fastp to eliminate low-quality reads. Subsequently, cut-adapt was employed to remove poly-A tails and adaptor sequences. After rigorous quality control measures, the reads were mapped to the reference genome using STAR. Gene counts and UMI counts were obtained through featureCounts software. Expression matrix files, crucial for subsequent analyses, were generated based on these gene counts and UMI counts.

Processing of raw-read data

The initial processing step involved the transformation of raw reads from scRNA-seq into gene expression matrices through an internal pipeline. This sequence began by subjecting the raw reads to quality control using fastQC [18] v0.11.4 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and fastp [19] to eliminate low-quality reads. Subsequent steps included using cutadapt [20] to trim poly-A tails and adapter sequences, followed by the extraction of cell barcode and UMI. For read mapping, STAR [21] v2.5.3a was employed, aligning the reads to the reference genome GRCh38 (ensembl version 92 annotation). UMI counts and gene counts per cell were obtained using featureCounts [22] v1.6.2 software. These counts played a crucial role in generating expression matrix files, and facilitating subsequent analyses.

Quality control, dimension-reduction and clustering

Before analysis, cells underwent filtration based on specific criteria, including gene counts greater than 100, the top 2% of gene count values, the top 2% of UMI counts, and mitochondrial
content exceeding 50%. Following this filtration process, Seurat v2.3 functions were employed for dimension reduction and clustering. Subsequently, normalization and scaling of all gene expressions were executed using the Normalize Data and Scale Data functions. The top 2000 variable genes were selected utilizing the FindVariableFeatures function for PCA analysis. Employing the top 20 principal components, cells were segregated into distinct clusters through the FindClusters function. Batch effects across samples were mitigated using the Harmony method [23]. Finally, the UMAP algorithm was implemented to visualize cells in a two-dimensional space.

Differentially expressed genes (DEGs) analysis

To identify differentially expressed genes (DEGs), the Seurat FindMarkers function, utilizing the Wilcoxon likelihood-ratio test and default parameters, was employed. DEGs were defined as genes expressed in more than 10% of cells within a cluster, with an average log (Fold Change) value exceeding 0.25. For cell type annotation within each cluster, a combination of canonical markers found among the DEGs and insights from the literature was utilized. Visualization of cell type marker expression was accomplished through heatmaps, dot plots, and violin plots generated using Seurat's DoHeatmap, DotPlot, and Vlnplot functions. Doublet cells, characterized by the expression of markers for distinct cell-types, were manually identified and subsequently removed from the analysis.

Pathway enrichment and gene regulatory network inference

To investigate the potential functions of the identified DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted using the "clusterProfiler" R package [24]. Pathways with a p_adj value below 0.05 were considered significantly enriched. Gene Ontology gene sets, covering molecular function (MF), biological process (BP), and cellular component (CC) categories, served as the reference for analysis.
Furthermore, predictions regarding protein-protein interactions (PPI) among DEGs within each cluster were made by leveraging known gene interactions linked to relevant GO terms within the StringDB v1.22.0 database.

Gene Regulatory Network Inference

To explore the functions of identified DEGs, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses using the "clusterProfiler" R package [24], considering pathways significantly enriched with a p_adj value < 0.05. GO gene sets encompassing molecular function (MF), biological process (BP), and cellular component (CC) categories served as the reference. Protein-protein interaction (PPI) predictions among DEGs within clusters utilized known gene interactions from the StringDB v1.22.0 database. For transcription factor regulatory network analysis, we employed the SCENIC R toolkit [25], integrating scRNA expression matrix and transcription factors from AnimalTFDB, predicting networks with the GENIE3 package based on co-expression patterns. Additionally, we identified transcription factor binding motifs with the RcisTarget package. Defining genes within predicted networks as a gene set, their activity was assessed using the AUCell package to calculate the area under the curve (AUC) value as an indicator of regulatory network activity.

Trajectory and Cell-Cell Interaction Analysis

The Monocle2 tool [26] was employed to reconstruct cell differentiation trajectories, ordering cells based on spatial-temporal differentiation using differentially expressed genes. Dimension reduction was performed using DDRTree through FindVariableFeatures. The trajectory was visualized using the plot_cell_trajectory function. Cell-cell interaction analysis utilized CellPhoneDB [27], focusing on receptor-ligand interactions between different cell types or subtypes. To calculate the null distribution of average ligand-receptor expression levels among interacting clusters, 1000 random permutations of cluster labels were performed. The ligand or
receptor expression levels were normalised based on the average log gene expression distribution across all cell types using a cutoff value. Significant interactions were identified based on criteria where the p-value was < 0.05 and the average log expression exceeded 0.1. Visualization of significant interactions was conducted using the circlize (0.4.10) tool in the R package.

Network analysis

The network of interacting genes was established utilizing the STRING database with the provided input feature. Subsequently, a suitable layout was selected, and gene clustering was performed using the K-means approach. The resulting network maps were exported and employed for further corroboration. Furthermore, cytoscape was also used for improved visualization of the networks obtained from STRING database.

Results

Mice brain cells showed heterogeneity and differential changes in population size post ischemia

The initial challenge after obtaining the single cell data was to cluster the cell-types based on their pattern of gene expression. We performed, cluster analysis utilizing the Uniform Manifold Approximation and Projection (UMAP) approach, renowned for its robustness, and non-linear dimension reduction. The analysis revealed 12 distinct subpopulations, with neurons predominating alongside oligodendrocytes, astrocytes, microglia, and fibroblasts (Fig 2a). Regarding cellular origin, the population exhibited a mixture but primarily mirrored the T_60 origin, indicating the predominant cell type. However, cells from other origins closely resembled those from the T_60 experimental group (Fig 2b). Due to heterogeneity in the expression pattern of neuron-specific markers, neuronal cells were further classified into eight separate sub-populations labelled N1 through N8. Given that neurons constitute the main
proportion of each sample and are significantly affected by cerebral ischemia, subsequent analyses were focused on these cells. Fractions of cells among various populations were analyzed and compared across the experimental groups. N1 and N4 populations exhibited a declining trend during ischemia. N1 comprised 0.4% of total cells in the control group, whereas in both ischemic groups (T_30 and T_60), the fractions notably decreased to 0.33%. Similarly, N4 showed proportions of 0.1%, 0.07%, and 0.09% in the control, T_30, and T_60 groups, respectively. N7, although a minor cell group, exhibited a similar pattern. Another group of cells, including N3 (0.08%, 0.1%, and 0.11%), oligodendrocytes (0.05%, 0.05%, and 0.07%), and astrocytes, demonstrated the highest proportion in T_60 cells, indicating the most affected continuum of cells by ischemia. N2, N8, fibroblasts, and microglial cells responded to ischemia, with proportions significantly higher in the ischemic group compared to the control, yet the change across the two ischemic groups (T_30 and T_60) was nonsignificant (p>.01). Interestingly, the N5 population exhibited a unique pattern, with a significant increase in proportion in the T_30 group (0.13%) compared to the control group (0.03%). However, the proportion was restored to 0.07% in the T_60 group. The N6 population of neuronal cells showed no significant change across the three experimental groups, suggesting a degree of resilience towards ischemia (Fig 2c, d). These results are limited by a number of additional factors such as ischemia induced discomfort to the animal and stress induced thereof which might not represent actual ischemia in higher organisms.

Post-ischemic differential gene-expression hints the changes in cognition and memory

After conducting cell population analysis, our focus shifted to understanding the potential causes of cell dynamics and their impact on various physiological aspects through the gene ontology evaluation of differentially expressed genes, including various microRNAs and coding RNAs, specifically in neuronal cells. While gene expression for non-neuronal cell types (oligodendrocytes, astrocytes, and glial cells) was also evaluated, it was not directly relevant
to the present hypothesis (see supplementary material 1). Our conclusions were derived from three types of pairwise comparisons. In the initial comparison between the control (T-NC) and the 30-minute ischemia group (T_30), we observed significant differences in the expression of 281 transcripts. Filtering out transcripts based on relevance and expression patterns, we selected 40 for further analysis. Gene ontology analysis revealed significant correlations with the top three biological processes: learning and memory, regulation of cell projection organization, and cognition, indicating clinically relevant physiological indicators. The cellular components primarily involved axons and growth cones, with GTPase binding emerging as the primary cellular function impacted during the 30-minute ischemia (Fig 3a). In the subsequent comparison between the control group and the cortex subjected to 60 minutes of ischemia (T_60), we identified 472 differentially expressed transcripts. After filtering out non-significant or non-relevant genes, gene ontology analysis indicated similarities with the T_30 group, with cognition and learning as top processes, and an additional impact on locomotory behaviour observed. Contrary to the T_30 group, the T_60 group exhibited differences in both molecular signalling and cellular locations of differentially expressed proteins, with most proteins localized in the cell's leading edge or post-synaptic area (Fig 3b). In the third comparison between the cortex subjected to 30 minutes of ischemia (T_30) and 60 minutes of ischemia (T_60), we identified 177 differentially expressed transcripts. After excluding non-significant genes, gene ontology analysis revealed cognition as a significant biological process, with the synaptic vesicle cycle and vesicle-mediated transport emerging as highly significant processes in this comparison. This finding was supported by cellular compartment ontology. Additionally, calmodulin and calcium-mediated signalling were implicated in driving prolonged changes due to ischemia, indicating their potential role in mediating ischemic effects (Fig 3c). The gene expression patterns in higher organisms are also a subject of various secondary factors such as
additional epigenetic regulation, stress induced post translational modification of proteins which could not be assessed in the present study.

Furthermore, the network and interaction analysis of translational products of active transcripts resulted in a closely interacting network of more than 20 proteins organized into three distinct clusters (K-means), suggesting a possible cross talk and potential role of these biological interactions pertaining to ischemic insult.

Post-ischemic differential gene-expression is associated with enhanced cell-cell interaction and temporal changes in cell-differentiation

To explore the potential underlying cellular mechanisms driving the observed changes in expression patterns across experimental groups, we conducted microenvironment cell-interaction analysis and trajectory analysis of neuronal cell subpopulations. Trajectory analysis involved examining gene expression profiles from individual cells to reconstruct developmental or differentiation paths. Starting with single-cell RNA sequencing data, we implemented preprocessing steps, including quality control and clustering to group cells with similar expression profiles. The core of trajectory analysis lies in reconstructing cellular paths using algorithms that order cells along a continuum (pseudotime) or model transitions between cell states. Visualization tools aided in reconstructing paths as lineage trees or plots, facilitating an understanding of cellular relationships. The cell-interaction analysis revealed that in the cerebral ischemia model, the overall interaction between cells significantly increased after 30 minutes of treatment, surpassing even the 60-minute mark. Fibroblast-neuron cell interactions showed progressive enhancement during the disease and may be associated with disease progression. While neuron-neuron interactions were predominant in the control group, there was a significant increase in neuron-astrocyte and neuron-fibroblast interactions across the T_30 population. Moreover, in the T_60 group, neuron-fibroblast interaction appeared stronger
and dominant compared to neuron-astrocyte interaction, which was more prominent in the T\textsubscript{30} population (Fig 4a). As a limitation, it must be admitted that time points T\textsubscript{30} and T\textsubscript{60} lie somewhere in between the ischemia mediated adaptability and beginning of changes, yet there may be some initial stimulus caused by ischemia possibly induced by radicals and PTMs which are discussed elsewhere in previous studies and thus doses not remain the focus of current study.

During principal component analysis, we observed variations in expression patterns among populations. While populations N1, N2, N3, and N8 were homogeneous across the two components, population N5 displayed high heterogeneity and inclination towards component 1 (Fig 4b). Furthermore, the differential dot plots of selected genes across all neural populations refined the expression profiles, indicating that the N5 population of neurons showed significantly higher upward expression of genes Adam2, Gm10827, Ptprd, Sltm, Cntn5, and AC122450.2. Genes Gm28153 and Tcf20 exhibited increased expression across N8 and N6 populations (Fig 4c), while all other populations were heterogeneous for the aforementioned gene expression, providing intriguing mechanistic insights into the trajectory of N5 cells.

Angiogenesis, hypoxia and proliferation are the most affected cellular-physiological indices in the ischemic cortex

To draw conclusive insights from the single-cell genomics dataset, we conducted hallmark analysis and delved deeper into genes associated with key processes. GSVA analysis of the HALLMARK dataset revealed significant differences in gene sets across various stages, encompassing angiogenesis, hypoxia, proliferation, and other pathways significantly enriched during ischemia. However, functions such as oxidative phosphorylation and pancreatic β cells exhibited significant weakening (Fig 5a). The differential expression of hypoxia, angiogenesis, and proliferation-related gene sets in the three groups of sample neurons showed notable
distinctions, particularly between the T_30 and T_60 groups in comparison to the control. As the model treatment time extended, substantial differences emerged in the expression patterns of various genes (Fig 5b). The hallmark analysis is still a subject to correlation with other genetic and lifestyle induced changes in the brain, hence to establish these hallmarks as exclusive conclusion on our experimental model is still a challenge which must be explored further in future studies.

Discussion

In humans, prolonged oxygen deprivation induces pulmonary arterial hypertension (PAH). Traditionally, researchers employ rodent models exposed to hypoxia to study this condition [28]. With the advent of single-cell RNA sequencing, we can now explore hypoxia-induced changes in gene activity at a cell-specific level in live organisms [29, 30]. Previous studies using a mouse model of hypoxia identified that hypoxia influences the quantities of specific cell types, particularly immune and endothelial cells in the lung. It was indicated in several studies that hypoxia preconditioning for 180 minutes and above results in relative hypoxic tolerance, but the induction of genes about hypoxia is apparent in the 30-60 minute period [31, 32]. Hence, we chose two typical conditions of hypoxia exposure, T_30 and T_60, to understand well the temporal switching of hypoxia-inducible genes. They investigated the role of Notch 3 genes by employing single-cell RNA sequencing to compare lung cells of wild-type (Wt) mice exposed to 28 days of hypoxia against those of control mice in normoxic conditions [33]. Additionally, hypoxia, a hallmark of cancers, was examined using single-cell sequencing in a study by Yanru Zhang. The study unveiled significant interactions, particularly between macrophages and tumour cells, in this oxygen-deprived microenvironment. We also unveiled distinctive functional variations among tumor cells, identifying a subset under hypoxia displaying remarkably high invasive potential. By constructing gene regulatory networks
specific to cell conditions, we pinpointed several controllers that respond hypoxic microenvironment such as Ras-mediated pathway, Calmodulin and calcium mediated signaling etc. Finally, we validated that reducing the expression of two pivotal controllers, CEBPD and FOSL1, diminished the invasive capacity of GBM cells during hypoxia [34]. Recent research aimed to identify potential therapeutic targets to support cell survival in the mouse brain penumbra, employing not only single-cell sequencing but also a combinatorial approach with bulk RNA-seq analysis [35]. Through single-cell sequencing of the mouse cortex at 12 h and 24 h post-transient middle cerebral artery occlusion (tMCAO), authors unveiled dynamic changes in astrocytes during acute ischemic stroke. Furthermore, they identified three major astrocyte subtypes at each time point, revealing significant differences in gene expression and metabolic pathways, particularly highlighting a major shift in energy metabolism [36]. Our study represents an advancement in understanding the neuronal response and heterogeneity of cell-level gene expression during acute hypoxia, addressing temporal differences in expression and cellular profiles in the cortex regions of the brain. Employing single-cell genomics and Uniform Manifold Approximation and Projection (UMAP) for cluster analysis, we identified 12 distinct subpopulations, primarily neurons, alongside oligodendrocytes, astrocytes, microglia, and fibroblasts, under 60 minutes of hypoxic conditions. The unique ability of the N6 population to show resilience towards ischemia was noteworthy and remains a subject of further exploration. To investigate the underlying mechanisms, microenvironment cell-interaction analysis revealed enhanced interactions post 30-minute ischemia, particularly fibroblast-neuron interactions, potentially linked to disease progression. Trajectory analysis reconstructed cell paths, showing varied cellular relationships and heterogeneity, especially in N5. Differential dot plots highlighted distinct gene expressions in different neuronal populations, suggesting potential mechanistic insights into the N5 trajectory. Additionally, principal component analysis illustrated expression pattern differences across
populations, particularly emphasizing the heterogeneity of N5 inclined towards a specific component. Notably, certain genes showed pronounced expression changes in specific neuronal populations, indicating potential involvement in the trajectory of N5 cells. Furthermore, the unique feature of the study was the application of gene ontology to unravel the underlying mechanisms impacting various physiological aspects, focusing primarily on differentially expressed microRNAs and coding RNAs in neuronal cells. We deciphered unique pathways associated with 30-minute and 60-minute hypoxia, establishing the contrast and shift in the metabolic cascades.

To delineate gene expression differences across experimental groups, three pairwise comparisons were conducted. In the first comparison between the control and 30-minute ischemia groups (T_30), we identified 281 differentially expressed transcripts. Subsequent gene ontology analysis highlighted significant correlations with biological processes related to learning & memory, cell projection organization regulation, and cognition. Additionally, cellular components implicated axons and growth cones, with GTPase binding as a key affected cellular function during the 30-minute ischemia period. The second comparison, comparing the control and 60-minute ischemia cortex (T_60), identified 472 differentially expressed transcripts. Remarkably, the biological processes affected in T_30 were retained, with the addition of locomotory behavior impact. Network analysis uncovered distinct interaction patterns among RNA-mapped proteins, again grouped into three clusters, suggesting potential post-translational crosstalk. In the third comparison between T_30 and T_60, 177 differentially expressed transcripts were identified. Notably, cognitive processes persisted, with the synaptic vesicle cycle and vesicle-mediated transport emerging as significant biological processes in this prolonged ischemia context. Molecular function analysis highlighted the involvement of calmodulin and calcium-mediated signaling. Network analysis again delineated three distinct hubs of interacting proteins, hinting at potential post-translational regulatory pathways.
Notably, T_30 and T_60 samples, which varied in their hypoxic exposure, exhibited distinct sets of regulatory mechanisms. In T_30, hypoxia-responsive genes primarily included Tek, Fit4, Tie1, Angtg2, Kdr, Cdhs5, Fit1, Cd93, Clec149, Robo4, Rhoi, Fgf2, and Apin. The expression of these genes in hypoxia aligns with previous findings, suggesting the transformation of a subset of glioblastoma stem-like cells (GSCs) expressing the endothelial cell marker CDH5, leading to their ability to transdifferentiate into endothelial cells and form blood vessels [37]. Additionally, it is established that hypoxia-induced FGF2 plays a role in both negative and positive feedback interactions with HIF-1alpha at the translational level [38], indicating the activation of a conventional hypoxia-induced feedback loop in a cell-type-specific manner. In contrast, T_60 exhibited a different response, showing the upregulation of a distinct set of hypoxia-responsive genes, which clustered together during our analysis. These genes included Adgra, Rgs5, Esam, Pfprb, Eng, Pgf, and Adgrl4. Previous studies have emphasized that the survival of deep-layer neurons and the formation of the cortex are influenced by hypoxia signaling dependent on Hif1α, and our study provided new evidence on the temporal segregation of cell-type-specific modulation of Hif-induced activation [39].

In this study, we were unable to precisely elucidate the reason behind this observed shift. Additionally, the angiogenic markers identified in T_30-specific neuronal populations—Cyr61, Egfr, Kit6, Rhob, Soc3, Mci1, Pygm, Adsmts4, Ppplr15a, Gck, Thps1, Jun, Atf3, Gem—remained distinctly clustered compared to the T_60 subset of neuronal populations, suggesting the activation of a different cascade in prolonged hypoxia in contrast to the acute response.

Among the proliferation-specific genes that were upregulated included, Ube2c, Foxm1, Hist1h1d, Mcm2, Mcm4, and Nucks1. While the role of the Mcm family of proteins in hypoxia response is unclear, studies suggest that MCM2, MCM4, and MCM6 markers serve multiple purposes, such as distinguishing between luminal A and luminal B subtypes in breast cancer,
exploring their heightened expression in triple-negative breast cancer, and evaluating their prognostic significance in predicting relapse-free survival [40]. Therefore, we propose further exploration of this gene family as a potential hallmark of hypoxic changes in the cortex, emphasizing the need to distinguish between cancer-related pathways and hypoxia-induced pathways.

The outcomes of these comparisons reveal the dynamic shifts in gene expression patterns during various phases of cerebral ischemia. The persistence of cognitive processes across comparisons and the emergence of additional processes, such as locomotory behavior and synaptic vesicle cycling, underscore the progressive impact of ischemia on neuronal function.

The identified protein clusters and interaction patterns suggest potential post-translational regulatory mechanisms underpinning these changes. These findings pave the way for further exploration into specific molecular pathways contributing to neuronal responses during ischemia, potentially uncovering novel therapeutic targets or intervention strategies to alleviate ischemic damage in the brain. The study's strength lies in its comprehensive examination of cellular changes in response to cerebral ischemia using cutting-edge single-cell genomic techniques, highlighting the dynamics of specific neuronal subpopulations and interactions between different cell types.

Despite its insightful findings, the study has notable limitations. The ischemic model may not fully replicate human ischemia due to species differences and simplified hypoxic conditions, potentially limiting translational relevance. The study's temporal resolution, examining only two time points, may overlook crucial intermediate responses. Additionally, the technical variability and dropout events inherent in single-cell RNA sequencing can introduce biases, affecting the accuracy and reproducibility of gene expression data. These factors highlight the necessity for further research to address these limitations and enhance our understanding of
ischemic mechanisms for developing targeted therapies. Moreover, the model that we used in our study, also have limitations regarding stroke attack stability, predictability, infarct sizes, and locations, complicating the translation of findings to clinical applications. The study was also unable to identify some recently explored aspects of molecular insight of ischemia, such as involvement of miRNAs, which is also an active area of ischemia research [41,42]. Nevertheless, while our study strongly provides novel conclusions on the temporal and spatial heterogeneity of cortical cells in mice model of ischemia, which might be implicated to human health in future. Yet, the direct extrapolation of these findings to humans and primate models is not quite straightforward and remains a complicated research question, which needs to be answered by conducting clinical studies and corroborating with present findings. The primary effectors which might make disagreement and affect extrapolation to humans include, the lifestyle, diet, genetic heterogeneity in human population as compared to almost homogeneous mice models used in the present study.

Conclusion

The present study provides insights into spatio-temporal heterogeneity of the neuronal cells in controlled acute ischemia in mice models. It is quite interesting that neuronal cells under ischemia can be broadly segregated into 12 different profiles. Further, dissection of expression profiles and network analysis showed the learning, memory and cell projection organization as most affected biological process in 30 minutes of ischemia, while impact on cognition and locomotory behavior was observed in 60 minutes of ischemia. Furthermore, our study was also able to delineate the calmodulin and calcium mediate molecular process as key switch during the transition from 30 minute to 60-minute ischemia. Nevertheless, additional validation and functional studies are necessary to affirm the implications of these observed cellular changes and interactions in the context of cerebral ischemia.
Declarations

Acknowledgments
We are thankful to Dr. Jinping Zhang, for critically editing the current manuscript.

Consent for publication
Not applicable.

Data availability statement
The data used to support the findings of this study are available from the corresponding author upon request.

Conflict of interest
The authors declared no conflict of interest.

Funding information
None.

Author Contributions
The authors contributed equally.

Ethical Approval
This study was approved by the Ethical Committee of Affiliated Hospital of Shandong University of Traditional Chinese Medicine (Approval No. AHSU-2023-082).
Fig 1. General outline and illustrated methodology of single cell sequencing based analysis of samples. Mouse Model of hypoxia was developed using thread-plug method, a group of control (dark black), and T_30 (grey) with 30 min hypoxia and T_60 (light grey) was used as experimental groups. The nuclear isolation from excised cerebral cortex and library construction preceded the spatio-temporal analysis of cortical cells. Multi-facet data analysis involved DEG analysis, Trajectory analysis, Analysis of gene regulatory networks and hallmark analysis.
Fig 2. Mice brain heterogenicity and differential populations as shown by cluster analysis using Manifold Approximation and Projection (UMAP) approach. a. Identification of 12 different sub-populations among which predominant cell types were neurons. b. Clustering of population types as per their origin. c. Relative proportion of cells of various cell types in each experimental group. d. Comparative histograms of fractions of each cell-type across three experimental groups.
Fig 3. Gene expression profiles (heatmaps) and gene ontology analysis reveals the key networks which differ across experimental conditions. a. T_30 vs control group. b. T_60 vs control group. c. T_30 vs T_60. Gene Clusters in T_30 vs control: Cluster 1 included genes
such as Abcb10, Akap8l, C77080, Cetn3, Cmss1, E4f1, Fus, Gm20388, Htra1, Mef2c, Mnat1, Mt1, Phactr1, Pnisr, R3hd1, Sltm, Srsf5, Tcf20, Tmeff1, Trim46, Trpm3, Vxn, Zfp950, Zscan26, mt-Co1, mt-Nd5; Cluster 2 contained genes like Adam2, Apod, Atp2b1, Calm1, Camk1d, Chn1, Cx3cl1, Cxcr5, Dyncl1, Ensa, Fgfr2, Fnbp11, Golgb1, Gpcpd1, Kazn, Rere, Slc39a10, Slc7a4, Sorl1, and Stk10; and Cluster 3 included genes such as Arhgap12, Atp2b2, Dock10, Frrs1l, Gphn, Gpm6b, Grin2a, Grin2b, Grm3, Hsph1, Nell2, Plcb1, Snhg11, Syt1, mt-Nd2. **Gene Clusters in T_60 vs control group:** Cluster 1 (Gnl3, Pnisr, Sltm, Snhg11, Srsf5, Ttc14 – highlighted in red); Cluster 2 (Amph, Cacna1c, Cacnb2, Camk1d, Cdk8, Cmss1, Cx3cl1, Dgki, Dock10, Ensa, Gm20388, Gphn, Grin1, Grin2a, Mt1, Otud7a, Slc39a10, Snap25, Trim2, Zfp950, mt-Nd2 – highlighted in green); and Cluster 3 (1810046K07Rik, Dyncl1, Golgb1, Herc1, Hspa8, Psme4, Slc7a4). **Gene Clusters in T_30 vs T_60 Group:** Cluster 1 (Apod, Mbp, Plp1 - highlighted in red) and Cluster 2 (Hspa8, Pi4ka, Pitpna, Slc7a4, and Synj1), suggesting a possible post-translational cross-talk.
Fig 4. Trajectory analysis of various neuronal populations. a. Heatmap showing global expression changes in various populations and change in pattern across T_30 and T_60 groups. b. principal component analysis of gene expression profiles with respect to cell trajectory. c. analysis of gene expression profiles of selected genes across various neuronal populations (N1 through N8).
Fig 5. Hallmark analysis and overview of the hallmarks. a. Heatmap indicating key processes.

PANCREAS_BETA CELLS
OXIDATIVE PHOSPHORYLATION
PEROXISOME
BILE ACID METABOLISM
DNA REPAIR
FATTY ACID METABOLISM
REACTIVE OXYGEN SPECIES PATHWAY
ADIPOGENESIS
APICAL SURFACE
NOTCH SIGNALING
MITOTIC SPINDLE
ESTROGEN_RESPONSE_LATE
E2F TARGETS
ESTROGEN_RESPONSE_EARLY
ANDROGEN_RESPONSE
MYOGENESIS
UV_RESPONSE_DN
HEDGEHOG_SIGNALING
INFLAMMATORY_RESPONSE
INTERFERON_ALPHA_RESPONSE
PROTEINSECRETION
COMPLEMENT
HEME METABOLISM
GLYCOLYSIS
APICAL_JUNCTION
KRAS_SIGNALING_UP
PI3K_AKT_MTOR_SIGNALING
UV_RESPONSE_UP
KRAS_SIGNALING_DN
CHOLESTEROL_HOMOSTASIS
TNF_SIGNALING_VIA_NFkB
G2M_CHECKPOINT
P53 PATHWAY
ANGIOGENESIS
COMLEUGATION
INTERFERON_GAMMA_RESPONSE
EPITHELIAL_MESenchymal_TRANSITION
IL6_JAK_STAT3_SIGNALING
IL2_STATS_SIGNALING
XENOBIOTIC_METABOLISM
MYC_TARGETS_V2
MYC_TARGETS_V3
MTRC1_SIGNALING
UNCOUPLED_PROTEIN_RESPONSE
MYC_TARGETS_V3
ALLOGRAFT_REJECTION
MYC_DICTA_GATENIN_SIGNALING
APOPTOSIS
SPERMATOGENESIS
TGF_BETA_SIGNALING
HYPOXIA

Fig 5. Hallmark analysis and overview of the hallmarks. a. Heatmap indicating key processes.
identified cross experimental groups based on hierarchical clustering. b. Elaborated heat maps of hypoxia, angiogenesis and proliferation specific genes differentially expressed across three experimental groups.

References

