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A b s t r a c t

The gradual accumulation of varying detrimental alterations during the aging 
process within cells and tissues contributes to a progressive decline in their 
functionality, which may ultimately result in death. The licensed mammalian 
target of rapamycin (mTOR) inhibitor rapamycin, also known as sirolimus, 
has recently become a promising option for anti-aging applications. Through 
in vitro and in vivo assessments, numerous scientific reports have illustrated 
diverse biochemical and clinical aspects of rapamycin’s pharmacological ef-
fects in ameliorating aging-related changes and expanding longevity. Never-
theless, its clinical application has been impeded by severe adverse effects, 
which might be addressed by implementing an appropriate therapeutic reg-
imen. In this regard, integrating updated insights and uncovering essential 
benefits and drawbacks of rapamycin as a geroprotective drug are critical 
for conducting further preclinical research and well-organized clinical trials, 
and facilitating translation to clinical practice. The present review highlights 
the recent findings on the role of rapamycin in improving organ health and 
postponing aging-related processes.
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Introduction

Aging is a biological phenomenon marked by a gradual decline in cel-
lular and functional capabilities over time, eventually leading to a dimin-
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ished quality of life. Aging is also the paramount 
predisposing factor for the emergence of hard-to-
treat pathologies, e.g., cardiovascular diseases, ma-
lignancies, and neurodegenerative disorders; thus, 
it poses a  substantial worldwide socioeconomic 
burden and a  noteworthy healthcare obstacle [1, 
2]. Accordingly, it is of utmost importance to identi-
fy therapeutic interventions that facilitate “healthy 
aging” (i.e., maintaining functionality during old 
age, allowing elderly people to perform their daily 
activities) while restricting the promotion of vari-
ous age-related pathological conditions [3].

The mammalian target of rapamycin (mTOR) 
is an important regulator of cellular metabolism, 
integrating nutrition status with cellular mecha-
nisms that fuel cell growth and multiplication. Its 
dysregulation, therefore, contributes to various 
cellular senescence and aging-associated mecha-
nisms. Studies have demonstrated that inhibiting 
mTOR signaling can expand the lifespan of model 
organisms and provide defense against a range of 
age-related ailments [4, 5]. In this regard, rapamy-
cin, an mTOR complex1 (mTORC1) inhibitor, was 
demonstrated to prolong the lifespan in yeast, 
nematodes, fruit flies, and mice [6]. Rapamycin is 
licensed by the US Food and Drug Administration 
(FDA) for treating post-renal transplantation and 
lymphangioleiomyomatosis; nevertheless, due 
to compelling evidence regarding its anti-aging 
effects, it is now being considered a feasible ap-
proach to enhance lifespan [7, 8]. Multiple mech-
anisms have been suggested for the pro-longevity 
impact of rapamycin through affecting mTOR sig-
naling, e.g., tuning protein expression, regulating 
mitochondrial function, rescuing stem cell activ-
ity, ameliorating inflammaging and immunose-
nescence, and improving autophagic flux [9–12]. 
However, the limitations posed by rapamycin-me-
diated unfavorable adverse effects necessitate 
thorough scientific investigation to overcome 
these challenges for successful clinical reposi-
tioning [13]. The current investigation endeavors 
to offer a contemporary and comprehensive per-
spective on the anti-aging properties of rapamy-
cin, thereby illuminating forthcoming research 
objectives in this field. 

The impact of mTOR on cell longevity and 
growth

As a  threonine kinase belonging to the phos-
phoinositide 3-kinase (PI3K)-related kinase family, 
mTOR is situated at the intersection of multiple 
essential signaling pathways and performs a vital 
function in organizing cellular growth and lon-
gevity. To that end, it incorporates data regarding 
energy and food resources to regulate the produc-
tion or degradation of cellular components [14]. 
Induction of mTOR following stresses or growth 

signals regulates a wide range of cellular process-
es, e.g., growth and multiplication, protein synthe-
sis, mitochondria biogenesis, cytoskeleton estab-
lishment, immune reactions, and autophagy [15]. 
The mTOR renders two multiprotein complexes, 
mTORC1 and mTORC2, composed of distinct pro-
tein binding partners. mTORC1 is responsive to 
nutrition, while mTORC2 is controlled by PI3K and 
growth factor signaling [16]. The upstream regula-
tor and downstream effectors of mTOR complexes 
concerning cellular growth and longevity are dis-
cussed below. 

mTORC1

In order to respond to nutritional and energy 
fluctuations, growth factors, and cellular stresses, 
cells must switch on/off mTORC1 signaling. Owing 
to its participation in setting up anabolic regimens, 
mTORC1 should only be activated when growth el-
ements are abundant [17]. Rag and Rheb GTPases 
are two types of small G proteins that transduce 
the anabolic impulses to activate mTORC1. In nu-
trient-replete conditions, Rag brings the mTORC1 
from the cytoplasm to the lysosome, where Rheb 
activates the mTORC1 kinase to support sustained 
growth [18]. Rag and Rheb GTPases are fine-tuned 
by several mechanisms. Importantly, amino acids, 
mainly leucine and arginine, are indispensable 
for mTORC1 stimulation in mammalian cells via 
modulating Rag-GTPase action. Under depriva-
tion and a significant fall in amino acid contents, 
GTPase-activating protein (GAP) activity towards 
Rags 1 (GATOR1) disables Rag and blocks the 
mTORC1 cascade [19]. Mechanistically, sestrin2, 
a conserved protein implicated in the cellular re-
sponse to stress, detects the acute leucine short-
age and inhibits GATOR2, eliminating its blockage 
on GATOR1, thereby suppressing mTORC1 signal-
ing [20, 21]. Similarly, the cellular arginine sensor 
for mTORC1 (CASTOR1) represses GATOR2 under 
arginine deprivation and impedes mTORC1 activ-
ity [22]. SLC38A9 is another identified arginine 
sensor that collaborates with regulator in Rag acti-
vation following attachment to lysosomal arginine 
[23]. Furthermore, the folliculin-folliculin interact-
ing protein 2 (FLCN-FNIP2) complex was demon-
strated to activate Rag and maintain mTORC1 ac-
tivity in amino acid-replete conditions [24]. 

The function of Rheb in triggering mTORC1 sig-
naling is tuned by several upstream mechanisms. 
For example, the tuberous sclerosis complex (TSC), 
acting as a GAP, suppresses Rheb’s function in stim-
ulating mTORC1. Induction of PI3K/Akt signaling 
by insulin-like growth factor-1 (IGF-1) was demon-
strated to phosphorylate and detach TSC from the 
lysosome surface, permitting Rheb and mTORC1 
activation [25]. Insulin receptor substrate 1  
(IRS-1) is then phosphorylated by mTORC1-ac-
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tivated p70 S6 kinase 1 (S6K1), initiating a neg-
ative feedback loop and inhibiting additional in-
sulin-mediated PI3K/Akt pathway induction [26]. 
IGF-1, tumor necrosis factor (TNF), and Wnt sig-
naling, as well as extracellular signal-regulated 
kinase (ERK) and p90 ribosomal S6 kinase (RSK), 
have been shown to inhibit TSC and provoke 
mTORC1 signaling in nutrient-enriched conditions 
[27–30]. It is also noteworthy that growth factors 
may influence mTORC1 function independent-
ly of TSC via proline-rich Akt substrate 40 kDa 
(PRAS40), which is linked to the regulatory-asso-
ciated protein of mTOR (RAPTOR) and impedes 
Rheb-induced mTORC1 induction. Akt-mediated 
phosphorylation of PRAS40 in response to insulin 
signaling was shown to enhance mTORC1 kinase 
activity [31].

As expected, stress signals inhibit mTORC1 
activation and limit the anabolic pathways. Once 
ATP is depleted, the energy homeostasis enzyme 
AMP-activated protein kinase (AMPK) phosphor-
ylates Raptor or triggers TSC2 to hinder mTORC1 
and reconfigure the cell metabolism [32]. Thereby, 
AMPK decreases the stress imposed on mitochon-
drial respiration and mitigates the potential for 
cellular injury induced by reactive oxygen species 
(ROS) generation. Additionally, oxidative stress 
may directly inhibit mTORC1 by inducing the regu-
lated in development and DNA damage responses 1  
(REDD1) protein, which triggers TSC [33]. In re-
sponse to DNA damage, mTORC1 function is also 
subdued by p53 target genes (e.g., phosphatase 
and tensin homolog (PTEN) and AMPKβ), which 
help to diminish the proliferation pace and con-
serve genome stability [34]. Another scenario is 
the engagement of unfolded protein response 
(UPR) by the endoplasmic reticulum (ER) under 
starvation to upregulate sestrin proteins, damp-
ening mTORC1 activity and maintaining cell via-
bility [35]. As explained, diverse upstream mecha-
nisms mainly converge on Rag and Rheb GTPases 
to regulate mTORC1 function and cell metabolism 
regarding the nutritional status.

mTORC1 supports the provision of substances 
(e.g., proteins, lipids, and oligonucleotides) and 
energy necessary for cell growth [14]. Evidence 
shows that mTORC1 regulates protein synthesis in 
response to cellular demands by influencing the 
function of the initiation factor 4Ebinding protein 
(4EBP), a  critical regulator of the mRNA transla-
tion process. While inactivated, 4EBP excludes the 
eukaryotic translation initiation factor 4E (eIF4E) 
from the translation process; however, after be-
ing activated by mTORC1, it allows eIF4E to enter 
the mRNA translation process and enables protein 
synthesis [36]. Besides 4EBP, mTORC1 phosphory-
lates S6K1, activating the S6 protein as an essen-
tial element of the 40S ribosomal subunit. S6K1 

also incites eIF4B activity directly or indirectly by 
eliminating the eIF4A inhibitor programmed cell 
death 4 (PDCD4) [37]. Furthermore, SKAR, a trans-
lation regulatory factor deposited at the exon 
junction complex, was demonstrated to recruit 
S6K1 to improve the translation of spliced mRNAs 
[38]. Despite improving translation, S6K1 involves 
the biogenesis of new ribosomes through phos-
phorylating upstream binding factor (UBF), MAF1, 
and transcription initiation factor 1A (TIF1A) and 
resultant activation of RNA polymerases [39, 40]. 

During the growth phase, higher lipid synthesis 
is necessary for maintaining cell membrane bio-
genesis. Importantly, the stimulation of mTORC1 
has been proven to increase the S6K1-mediated 
nuclear trafficking of sterol regulatory element 
binding protein 1/2 (SREBP1/2) transcription fac-
tor to amplify lipid and cholesterol production 
[41]. To further enable SREBP1/2-mediated lipid 
synthesis, the activated mTORC1 phosphorylates 
and excludes the SREBP inhibitor lipin 1 from the 
nucleus [42]. It is also worth noting that mTORC1 
affects the action of proliferator-activated recep-
tor γ (PPARγ) in tuning the expression of lipid ho-
meostasis genes [43]. Besides lipids, increased 
nucleic acid synthesis is required to enable DNA 
multiplication and ribosomal RNA production 
during cell proliferation. Active mTORC1 promotes 
purine synthesis by enabling transcription factor 4  
(ATF4) and its downstream target mitochondri-
al tetrahydrofolate cycle enzyme methylenetet-
rahydrofolate dehydrogenase 2 (MTHFD2) [44]. 
Moreover, S6K1-mediated activation of carbam-
oyl-phosphate synthetase 2, aspartate transcar-
bamoylase, and dihydroorotase (CAD) by mTORC1 
leads to pyrimidine biosynthesis [45]. 

To further support growth, active mTORC1 con-
siderably alters glucose metabolism and increases 
cell metabolic efficiency. It prioritizes glycolysis 
over oxidative phosphorylation via activating the 
transcription factor hypoxia-inducible factor-1α 
(HIF-1α) and the consequent upsurge in glyco-
lytic enzyme expression [46]. Moreover, mTORC1 
enables the pentose phosphate pathway via ac-
tivating SREBPs to facilitate the supply of NADPH 
and carbon-rich molecules for lipid and nucleotide 
biogenesis [47]. It also enhances 4EBP1-mediated 
mitochondrial gene transcription and stimulates 
mitochondrial biogenesis by compelling the con-
struction of the PPARγ coactivator 1α (PGC1α) 
transcriptional complex to expand ATP production 
[48, 49].

mTORC1 inhibits catabolic autophagy to preclude 
a fruitless process in which newly generated cellular 
elements are prematurely dissociated. It deactivates 
unc51like autophagy activating kinase 1 (ULK1) 
and autophagy-related 13 (ATG13) to impede au-
tophagy initiation as well as autophagosome 
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generation [50]. Furthermore, mTORC1 interferes 
with autophagosome maturation and fusion with 
lysosomes by inhibiting the UV radiation resis-
tance-associated gene (UVRAG) to prevent the 
degradation and recycling of proteins and organ-
elles [51]. Conversely, starvation inhibits mTORC1 
signaling and redirects resources toward autoph-
agy. Blocking mTORC1 rescues autophagosome 
generation and activates genes for lysosomal bio-
genesis by stimulating the nuclear trafficking of 
transcription factor EB (TFEB) and the associated 
transcription factor E3 (TFE3). After a protracted 
deprivation period, the cytoplasmic pool of ami-
no acids is replenished due to protein lysosomal 
breakdown, reactivating mTORC1 [52, 53]. Notably, 
the link between nutritional status and autophagy 
is broken during mitosis, when cyclin-dependent 
kinase 1 (CDK1) suppresses both mTORC1 and au-
tophagosome formation to preserve the genome 
from destruction once the nuclear membrane 
dissolves [54]. In a nutshell, the nutrition-sensing 
machinery integrates with mTORC1 signaling to 

establish a customized growth regimen paradigm 
for cell longevity and growth (Figure 1).

mTORC2

It has been revealed that mTORC2 is mainly 
regulated by the PI3K/Akt pathway triggered by 
growth factors. As the unique PI3K effector and 
an obligate component of mTORC2, the mamma-
lian stress-activated protein kinase-interacting 
protein 1 (mSin1) represses the kinase function of 
mTORC2. In the presence of insulin, however, the 
phosphatidylinositol (3,4,5)-trisphosphate (PIP3) 
produced owing to the induction of PI3K abolishes 
the inhibitory action of mSin1 on mTORC2 [55]. 
Furthermore, Akt was shown to directly phosphor-
ylate mSin1 and promote mTORC2 function [56]. 
Of note, the function of mTORC2 is closely associ-
ated with its intracellular localization. According-
ly, PIP3 may attract mTORC2 and Akt to the cell 
membrane, where their mutual phosphorylation 
impacts their localization and function [57]. Small 
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Figure 1. Upstream regulators and downstream effectors of mTORC1 signaling
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GTPases (e.g., Rap1 and Ras) notably play an im-
portant regulatory role in the mentioned interac-
tion [58, 59]. Evidence from recent studies implies 
that mSin1 conscripts Ras to incite the kinase 
function of mTORC2 at the plasma membrane 
[58, 60]. mTORC2 is also activated by AMPK under 
starvation, which may encourage cellular adapta-
tion to oxygen/nutrient deprivation in malignant 
conditions [61].

It is well accepted that mTORC2 is essential for 
stimulating AGC kinase members such as Akt, PKC, 
and glucocorticoid-regulated kinase (SGK) [62]. 
Initial discoveries regarding the role of mTORC2 in 
cell biology highlighted its possible role in cell mo-
tility, since the first-identified mTORC2 substrate, 
protein kinase Cα (PKCα), plays critical roles in 
cytoskeletal regulation [63, 64]. This is consistent 
with the well-known function of mTORC2 in the 
migration and metastasis of malignant cells [65]. 
Furthermore, mTORC2 may work in concert with 
phosphoinositide-dependent kinase 1 (PDK1) to 
engage Akt, the major executioner in the PI3K 
cascade, and transduce the proliferation signals 
[66]. Akt likewise reshapes cell metabolism by 
affecting the forkhead-box O  1/3A (FOXO1/3A) 
transcription factor and NAD kinase and main-
tains the function of GSK-3β to decrease apopto-
sis to withstand stressful circumstances [67–69]. 
It is worth mentioning that the supporting feed-
back phosphorylation between mTORC2 and Akt 
regulates their localization and function; however, 
the phosphorylation of several substrates, such 
as TSC and GSK-3β, by Akt does not necessarily 
require mTORC2 function [57, 70]. Overall, SGK-1  
seems to be the most important effector of 
mTORC2, since it regulates FOXO proteins, whose 
phosphorylation by Akt requires mTORC2 activity 
[70]. Importantly, mTORC1 and mTORC2 are inter-
related. The activated mTORC1 potentially blocks 
the PI3K/Akt signaling-mediated mTORC2 activa-
tion by provoking S6K1-mediated IRS-1 degrada-
tion and activating Grb10, a negative regulator of 
the insulin or IGF-1 receptor [26, 71]. In return, the 

induction of Akt by mTORC2 inactivates TSC and 
promotes mTORC1 activity (Figure 2) [72]. 

Rapamycin and longevity

Regarding numerous reports, mTOR is a critical 
longevity regulator, and its dysregulation due to 
metabolic disorders, lethal neoplastic diseases, or 
age-related ailments disturbs cellular homeosta-
sis and limits lifespan [73]. Pharmacological inhi-
bition of mTOR by rapamycin has demonstrated 
intriguing anti-aging properties in multiple organs 
and extended the lifespan of diverse invertebrate 
(e.g., yeast, nematode, and fruit fly) and vertebrate 
(e.g., mouse) models [74]. This section provides 
an updated insight into the role of rapamycin in 
regulating longevity pathways, promoting healthy 
aging, and ameliorating age-related ailments. 
Furthermore, summarized preclinical evidence re-
garding the anti-aging mechanisms of rapamycin 
in several organs is presented in Table I. 

The impact of rapamycin on protein 
expression

Protein homeostasis, often known as proteo-
stasis, is the process by which proteins inside the 
cell are regulated to maintain the integrity of the 
cellular proteome and the viability of the organ-
ism. Recent research has demonstrated that the 
ability of multiple cells and organs to preserve pro-
teostasis under a  variety of situations diminish-
es with age, and predictably, proteostasis failure 
contributes to the pathogenesis of a wide range 
of human diseases associated with aging. Accord-
ingly, alterations in levels or mutations in trans-
lational machinery elements have a  substantial 
influence on longevity in many mammals [75, 76]. 
One of the most vital duties of mTORC1 is to gov-
ern mRNA translation under growth-promoting 
settings; however, it impairs translational fidelity 
[77]. Inhibiting processes that promote growth 
and proliferation, particularly mTORC1 signaling, 
may extend longevity in eukaryotes, since a gen-

Figure 2. Upstream regulators and downstream effectors of mTORC2 signaling
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eral decline in mRNA translation is advantageous 
during aging by enabling natural protein repair 
and degrading mechanisms to properly preserve 
protein homeostasis while protecting against tox-
ic protein aggregates and oxidative insults [78, 
79]. Indeed, elevating the translation accuracy 
as well as protein synthesis fidelity is among the 
most critical mechanisms of rapamycin in enhanc-
ing organismal health and longevity [80]. 

An investigation conducted by Martinez-Miguel 
et al. demonstrated that rapamycin enhanced 
translation fidelity in Drosophila S2R+ cells by 
lowering both stop codon readthrough and mis-
incorporation errors and extended the lifespan of 
wild-type flies [81]. mTORC1 signaling was shown 
to inhibit eukaryotic elongation factor 2 kinase 
(eEF2K), which phosphorylates and inactivates 
eEF2, resulting in the motion of ribosomes along 
mRNAs, and hastens the elongation stage of pro-
tein synthesis. In this regard, blocking mTORC1 
with rapamycin suppresses eEF2, reducing the 
pace of elongation, improving protein synthesis 
accuracy, and lowering misreading or termination 
readthrough errors. In supporting the mentioned 
hypothesis, deletion of eEF2K and impairing the 
translation fidelity were demonstrated to de-
crease the lifespan of Caenorhabditis elegans [82]. 
Another study on C. elegans showed that age and 
other factors that reduce longevity, such as high 
temperature, lead to the buildup of detergent-in-
soluble proteins. In the C. elegans strain harboring 
a  green fluorescent protein (GFP) transcriptional 
reporter under the control of a heat shock promot-
er, rapamycin treatment considerably suppressed 
mTOR signaling, delayed aberrant expression, 
slowed the buildup of these insoluble proteins, re-
duced proteostatic stress, and increased longevity. 
It has also been observed that suppressing S6K1 
downstream of mTORC1 exhibited comparable ef-
fects on the reduction of protein translation and 
the enhancement of lifespan [83]. 

In addition, rapamycin has been found to mod-
ify the scope and pace of protein translation. It 
inhibits the function of the ribosomal protein S6 
and the eukaryotic translation initiation compo-
nent 4EBP1, lowering canonical cap-dependent 
mRNA translation and indirectly enhancing cap-in-
dependent translation [84–86]. Evidence supports 
cap-independent translation as a  regulator of 
stress tolerance as well as maintaining metabolic 
functions and survival through preserving the syn-
thesis of critical proteins [87]. Certain elongation 
and initiation elements and proteins that identify 
sequences or changes in the 5′ untranslated re-
gion (UTR) sequence, such as 6-methyl-adenosine 
residues (m6A), are essential for cap-indepen-
dent translation processes. Notably, the ability of 
rapamycin to intercept cap-dependent translation 
may facilitate the translation of m6A-containing Sy
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mRNA, increasing protein levels without commen-
surate modifications in mRNA transcription [87, 
88]. As proof of concept, a study by Shen et al. re-
vealed that inhibiting mTORC1 by rapamycin ther-
apy may contribute to lifespan expansion in UM-
HET3 mice via preventing age-related decline in 
mitochondrial and stress proteins, e.g., O-6-meth-
yl guanidine-DNA methyltransferase (MGMT), 
N-myc downstream regulated gene-1 (NDRG1), 
mitochondrial transcriptional factor A  (TFAM), 
and heat shock protein 70 (Hsp70) as cap-inde-
pendent translation targets in the liver and kidney 
tissues [89]. 

In line with the mentioned findings, a  recent 
investigation revealed that rapamycin-mediated 
cap-dependent mRNA translation suppression in 
C. elegans evoked preferential ATF4 expression, in-
dependent of the integrated stress response (ISR), 
upregulating expression of the cystathionine 
gamma-lyase-2 (CTH2) transsulfuration enzyme 
as well as hydrogen sulfide (H2S) production. 
Such alterations promote stress resistance and 
longevity by ramping up protein persulfidation, 
a  protective adjustment of redox-reactive cys-
teines [90]. The ATF4 ortholog in Saccharomyces 
cerevisiae, Gcn4, a key transcriptional regulator of 
amino acid biosynthesis genes, was demonstrat-
ed to promote longevity. As a repressor of protein 
synthesis, Gcn4 has a vital function in the rapamy-
cin-mediated extension of yeast lifespan [91]. The 
abovementioned discoveries illustrate promising 
novel strategies for enhancing longevity via rapa-
mycin-mediated enhancement of protein expres-
sion scope and fidelity.

In addition, rapamycin may be capable of al-
leviating late-life malignancies by selective in-
hibition of the pro-tumorigenic senescence-as-
sociated secretory phenotype (SASP). Despite 
the fact that cellular senescence inhibits cancer 
cell growth, the buildup of senescent cells with 
age develops the SASP, which can destabilize tis-
sues and contribute to age-associated diseases 
such as cancer. In senescent human fibroblasts 
subjected to oncogenic RAS or radiation, active 
mTOR signaling was demonstrated to enhance 
the translation of several SASP factors, includ-
ing interleukin (IL)-1 and mitogen-activated pro-
tein kinase (MAPK)-activated protein kinase 2  
(MK2) [92, 93]. In this regard, rapamycin was 
shown to repress the transcriptional function of 
nuclear factor kB (NF-κB), critical for producing 
SASP proteins. Practically, the growth-stimulat-
ing action of senescent fibroblasts on prostate 
tumors in mice was inhibited by rapamycin [92]. 
Furthermore, rapamycin has been shown to re-
duce the expression of signal transducer and 
activator of transcription 3 (STAT3) in cancerous 
tissue, acting as a crucial downstream mediator 
of SASP signaling [94, 95]. 

The impact of rapamycin on autophagy

In eukaryotes, autophagy is a powerful break-
down mechanism for starvation-induced amino 
acid recycling and removing defective organelles 
and macromolecules from the cytoplasm [96]. It 
is an internal mTORC1-tuned mechanism that has 
been retained through evolution and is necessary 
to maintain cellular homeostasis in response to 
the stresses that trigger cellular senescence [97]. 
Intriguing investigations in yeasts, worms, flies, 
and mice have established considerable involve-
ment of autophagy-associated genes in lifespan 
expansion in various longevity scenarios. Partic-
ular tissues may need or profit from autophagy 
engagement, since it precisely targets defective 
cellular elements and prevents their buildup. Even 
in a non-cell autonomous manner, autophagy may 
affect organismal health and aging; therefore, pro-
moting autophagy in certain tissues may prolong 
longevity [98]. There is mounting evidence that 
autophagic breakdown slows with aging, contrib-
uting to the buildup of harmed proteins and dys-
functional mitochondria that underpins age-relat-
ed cellular failure [99, 100]. Inhibiting mTORC1, 
and hence stimulating autophagy, is thought to 
preserve cellular activity throughout aging by ex-
pediting the breakdown of damaged or obsolete 
cellular components. As proof of concept, lifespan 
prolongation in response to food restriction or 
rapamycin has been shown to entail mTORC1-me-
diated autophagy activation in diverse species, 
reversing senescence and restoring regenerative 
functions [101–103]. 

Direct suppression of mTORC1 via administra-
tion of rapamycin was shown to increase lifespan 
by promoting autophagy and inhibiting the ad-
verse impacts of aging on the heart. It has been 
revealed that the buildup of lipofuscin, i.e., pig-
ment granules made of lipid-containing lysosomal 
digesting residues, as well as reduced autophagy 
levels, is associated with aging and the senes-
cence of cardiomyocytes. Interestingly, increasing 
autophagy flux by 6 months of rapamycin feeding 
has been proven to decrease lipofuscinogenesis, 
increase lipofuscin breakdown, and improve car-
diomyocyte senescence in aged rats [104]. Fur-
thermore, rapamycin demonstrated cardioprotec-
tive effects in heart-related pathologies such as 
ischemic heart disease via regulating the balance 
between cardiomyocyte apoptosis and autophagy. 
Rapamycin was demonstrated to improve cardiac 
function, inhibit cardiac remodeling, and prevent 
apoptosis by regulating the crosstalk between the 
mTOR and ER stress pathways and promoting au-
tophagy [105, 106]. 

Even though the abovementioned evidence 
underlines that the reduced cardiac autophag-
ic capacity is implicated in cardiovascular aging 
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and deterioration, several studies have indicated 
that morbidities accelerating cardiovascular ag-
ing, such as glucotoxicity and lipotoxicity, actually 
boost autophagy in cardiac tissue and result in 
cardiotoxicity [98, 107]. For instance, diabetes-me-
diated chronic cardiomyopathy is accompanied 
by excessive autophagy induction in the cardiac 
tissue, as demonstrated by elevated autopha-
gy indices (e.g., light chain (LC)B-II and beclin-1) 
[108]. It has been hypothesized that an autopha-
gy-induced increase in amino acid availability may 
contribute to protein synthesis for SASP-mediated 
cardiomyocyte senescence [109]. Also, the litera-
ture shows the controversial effect of autophagy 
on ischemia-reperfusion injury (IRI). Increased au-
tophagy during ischemia-reperfusion has been re-
vealed to promote cardiomyocyte death and heart 
failure [110, 111]. During the reperfusion stage, 
oxidative stress leads to a rise in ROS generation, 
the primary cause of autophagy activation; how-
ever, the autophagosome clearance is impaired, 
resulting in accelerated autophagy and cardio-
myocyte death [112, 113]. Likewise, suppressing 
autophagy was demonstrated to improve cardiac 
function and myocardial infarct size in a myocardi-
al ischemia-reperfusion injury murine model [114].

Accordingly, rapamycin may exert paradoxical 
effects on longevity owing to various heart com-
plications. Furthermore, as adaptive responses to 
rapamycin treatment, the precise progression of 
autophagy in cardiac tissue is extensively con-
trolled by post-transcriptional processes. Rapamy-
cin therapy was demonstrated to provoke auto-
phagy in the cardiac tissue, which in turn triggers 
an autophagy-suppressing miRNA network either 
as a  protective mechanism to stop aberrant au-
tophagy that causes cardiomyopathy and heart 
failure or as a harmful process that halts autoph-
agy advancement and accelerates cardiac senes-
cence [107]. As a result, a crucial step in identify-
ing whether the rapamycin-mediated autophagy 
induction is proceeding adequately to preserve 
the heart tissue is to invent novel non-invasive 
imaging methods carefully monitoring changes in 
cardiac function and autophagic flux.

Brain aging is a complex and natural phenom-
enon primarily defined by oxidative stress, the 
buildup of oxidatively injured macromolecules, 
and changes in the architecture and longevity of 
neurons, all of which raise the risk for neurologi-
cal illnesses [115]. The mTOR signaling and auto-
phagy have vital actions in preserving the proper 
functioning of the central nervous system; howev-
er, defective autophagy associated with aging has 
been linked to the development and frequency of 
neurological disorders [116]. By maintaining cel-
lular homeostasis, as well as the structural and 
functional integrity of neurons, autophagy plays 

a principal function in postponing brain aging. In 
this regard, rapamycin-stimulated autophagy has 
been shown to confer considerable protection to 
the aging rat brain by lowering age-induced oxida-
tive stress, apoptotic cell extinction, and neurode-
generation [117]. It is also believed that adult neu-
rogenesis, i.e., the continual process of producing 
functioning neurons in the human brain from 
neural progenitor cells, slows down with aging 
and contributes to the deterioration of brain func-
tionality [118]. A recent study discovered a strong 
correlation between deteriorating adult neuroge-
netic function and reduced autophagy. In subven-
tricular/subgranular zone homogenates acquired 
from the brain of middle-adult rats, the expression 
of autophagy-related genes and autophagic func-
tion were drastically diminished. Furthermore, 
suppressing autophagy by small interfering RNA 
(siRNA)-based RNAi gene therapy repressed pro-
liferation and differentiation of neural progenitor 
cells. Strikingly, rapamycin-stimulated autophagy 
promoted neurogenesis in the subventricular/
subgranular zone and restored the survival of neu-
ral progenitor cells while enhancing the olfactory 
sensitivity and cognitive abilities of middle-aged 
rats [119]. 

In addition, including rapamycin in preventing 
and alleviating neurodegenerative alterations is 
a true-to-life opportunity owing to its capacity to 
revive the dysregulated mTOR signaling identi-
fied in the etiology of such disorders [120]. Sig-
nificantly, faulty protein processing contributes 
to the emergence of various neurodegenerative 
disorders, as reflected by the buildup of misfold-
ed and hazardous proteins within particular brain 
structures. Growing data suggest that faults in the 
autophagic breakdown process are to blame for 
these protein changes [121]. Consequently, rapa-
mycin-induced autophagy may be advantageous 
by avoiding or attenuating harmful protein aggre-
gation [122]. It has been discovered that the neu-
roprotective impact of fibroblast growth factor 21  
(FGF21) gene delivery in the Aβ42-induced rat  
Alzheimer’s disease model is improved by rapa-
mycin treatment. FGF21 cross-talks with auto-
phagy; thus, adding rapamycin to the treatment 
potentiated the impact of FGF21 in autophagic 
clearance of toxic protein aggregates, as revealed 
with increased expression of central autopha-
gy proteins, reduced protein levels of Aβ42 and 
phosphorylated tau, alleviated oxidative stress, 
and renovated neuronal density [123]. Similar-
ly, rapamycin has been shown to strengthen the 
impact of trehalose, a bioactive natural disaccha-
ride [124–129], in promoting autophagy as well 
as the removal of toxic proteins and structures 
in the brain of a rat model of Parkinson’s disease 
[130]. Another recent investigation demonstrated 
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that rapamycin diminished the loss of dopaminer-
gic neurons and improved behavioral symptoms 
in a  mouse model of Parkinson’s disease by re-
pressing ferroptosis through activating autophagy 
[131]. While autophagy initiation impairment is 
responsible for harmful protein aggregations, the 
defective autophagy-lysosome pathway (i.e., the 
fusion of autophagosomes with lysosomes) also 
has a significant role in developing protein aggre-
gates throughout the pathologic aging process, 
driven by upregulation of autophagy and accu-
mulation of autophagosomes [121]. It seems that 
neuronal autophagy primarily has a  pro-survival 
role before gradually transitioning to a pro-death 
function. As a result, adopting rapamycin to pro-
mote autophagy and lengthen longevity may have 
contradictory effects given the brain’s pathologic 
situation [132]. 

The impact of rapamycin on mitochondrial 
function

Mitochondrial activity and homeostasis are 
fundamental in the proper functioning of signaling 
pathways that govern longevity among species. 
Mitochondrial dysfunction is, therefore, a  crucial 
contributor to the emergence of age-associated 
ailments such as neurological and cardiovascu-
lar disorders [11]. There are studies underlying 
the importance of tuning mitochondrial function 
in the mechanism of rapamycin in prolonging 
longevity; however, such effects are complicated 
and include multiple processes [133]. Aging and 
age-related disorders are linked to a  mismatch 
in the energy supply and demand, which may be 
ameliorated by several therapies, including medi-
cations (e.g., rapamycin) [11, 134]. In this regard, 
preserving the nicotinamide adenine dinucleotide 
(NAD) redox balance was demonstrated to be an 
important mechanism of rapamycin to maintain 
energy balance as well as cellular health compro-
mised during the aging process [135, 136]. The 
drop in nuclear NAD+ and resultant impaired ox-
idative phosphorylation (OXPHOS) system in mi-
tochondria occurs during the aging process and 
is attributed to the emergence of cellular pseu-
do-hypoxia under normoxic conditions represent-
ed by the accumulation of HIF-1α and increased 
lactic acid production [137]. In this regard, the in-
vestigation by Zhang et al. on myoblasts showed 
that rapamycin favored a  more oxidized NAD+/
NADH ratio in aged muscle and probably amelio-
rated OXPHOS through affecting the function of 
NAD+-dependent enzymes. The mentioned effect 
is likely conducted through the rapamycin-mediat-
ed reduction in energetic demand [138]. There is 
also evidence that mitochondrial dysfunction may 
be secondary to hyperactive mTOR-driven pseu-
do-hypoxia. Interestingly, rapamycin has been 

shown to rescue pseudo-hypoxia, demonstrated 
by downregulating HIF-1α and lactate production 
through suppressing mTOR signaling and inde-
pendent of mitochondrial respiration [135].

Improving mitochondrial biogenesis is one of 
the most important roles of rapamycin in main-
taining the functionality of critical organs and ex-
panding longevity. It has been revealed that rapa-
mycin enhances diastolic function in aged rats, 
beginning between 2 and 4 weeks of therapy and 
continuing throughout 10 weeks of treatment. 
Rapamycin prompted temporary upregulation of 
autophagy, as indicated by ULK phosphorylation, 
and mitochondrial biogenesis, as evidenced by 
PGC1α and TFAM upregulation, while canonical 
mTORC1 signaling through S6 phosphorylation 
was hindered throughout rapamycin treatment. 
These findings imply that freshly generated mi-
tochondria replace defective ones to renew mito-
chondrial homeostasis. This remodeling is demon-
strated to swiftly invert the age-associated decline 
in fatty acid oxidation to modify the myocardial 
metabolism and reinstate fresh substrates and 
suitable energetic status in elderly isolated per-
fused hearts [139]. In brown adipocytes, which 
contain many mitochondria and govern energy 
consumption via thermogenesis, inhibiting mTOR 
signaling with rapamycin has also been demon-
strated to enhance the expression of mitochondri-
al biogenesis, dynamics, and mitophagy-relevant 
proteins and strengthen mitochondrial quality 
control [140].

In addition, rapamycin treatment was suggest-
ed to improve mitochondrial DNA (mtDNA) quality 
in aging mice. Cell death and tissue deterioration 
may originate from age-related mutations in the 
mtDNA. With this in mind, Bielas et al. showed that 
long-term administration of rapamycin (42 ppm) 
causes a remarkable decrease in mtDNA deletion 
frequency and electron transport chain deficient 
fibers in mouse quadriceps muscle [141]. The 
mentioned effect is probably due to the alleviation 
of mitochondrial ROS generation and oxidative 
damage, which is among the well-documented 
mechanisms of interventions expanding longevity. 
In this regard, seven-week treatment with rapa-
mycin at doses known to improve the longevity of 
mice (14 mg/kg) was found to reverse mitochon-
drial ROS generation, oxidative damage, buildup 
of mtDNA fragments, and mitochondrial protein 
lipoxidation in middle-aged mice [142]. Of note, 
there are also several mechanisms for ameliorat-
ing the negative consequences of mtDNA injuries. 
For example, low-dose oral rapamycin was shown 
to enhance the longevity of the murine model of 
mtDNA depletion syndrome with no detectable 
improvement in mitochondrial dysfunction or ca-
nonical pathways. This effect is thought to be driv-
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en by rapamycin-induced metabolic changes that 
allow mice to utilize alternative energy resources 
(e.g., amino acids and lipids) and induce indirect 
signaling that modify mortality via developmental 
reprogramming [143]. Besides age-related condi-
tions, oxidative damage is associated with certain 
pathologies restricting lifespan. It has been es-
tablished that mitochondrial oxidative stress con-
tributes to the development of anti-phospholipid 
antibodies (aPL) in systemic lupus erythematosus 
(SLE) patients and subsequent chronic inflamma-
tion, playing a role in the emergence of liver dis-
ease progressing from cirrhosis to hepatocellular 
carcinoma. In this regard, rapamycin may atten-
uate aPL production and resultant inflammation, 
thereby attenuating liver disorders and prolonging 
patients’ survival by inhibiting mTOR, known as 
a regulator of oxidative stress [144–146].

It is worth mentioning that the impact of rapa-
mycin on mitochondrial function is dose-depen-
dent. Rapamycin exhibits biphasic effects on cells 
at high and low doses, known as hormesis. Rapa-
mycin’s hormetic property enables modification 
of the mTOR-mitochondrial cross-talk, which sup-
ports anti-aging actions in cells. While rapamycin is 
lethal to cells at high doses, it can improve lifespan 
at low levels. This may be explained by the hypoth-
esis that rapamycin causes partial inhibition of 
mTOR activity at low concentrations, as opposed 
to total mTOR suppression at high doses. Rapamy-
cin at low doses was shown to alleviate mitochon-
drial oxidative injury, metabolic dysregulation, and 
membrane depolarization [147]. Moreover, rapa-
mycin is not a feasible treatment option for every 
type of mitochondrial dysfunction since the prima-
ry therapeutic mechanism is unknown, the least 
effective dose must be identified, and whether this 
therapy can be employed in general is still being 
determined. Therefore, it is important to at least 
consider the unique facets of each mitochondrial 
condition when rapamycin treatment is introduced 
to extend the patient’s lifespan [148, 149].

The impact of rapamycin on inflammation 
and immune function

Dysregulation of immune function is a pheno-
type associated with aging. Innate and adaptive 
immunity can be negatively impacted by immu-
nosenescence owing to the malfunction of im-
mune cells as well as higher levels of inflamma-
tion [150, 151]. Of note, dismal immune responses 
and inflammation in diverse organs during the ag-
ing process may be regulated by manipulating the 
mTOR signaling pathway [152]. A recent preprint 
published by Zhang et al. revealed that suppressing 
TORC1/S6K in Drosophila ameliorates inflammag-
ing and immunosenescence and thereby extends 
longevity [153]. Immunosenescence is assumed 

to underlie many age-related diseases, including 
cancer, autoimmune conditions, infections, and 
the inefficient removal of senescent cells; thus, it 
offers a tempting explanation for aging as well as 
possible treatment pathways [154, 155]. Rapamy-
cin has been demonstrated to inactivate hyperac-
tive lymphocytes by decreasing their reaction to 
cytokine receptor-associated signaling; thereby, it 
is effective in prolonging lifespan through amelio-
rating autoimmune disease (e.g., systemic lupus 
erythematosus and rheumatoid arthritis) and pre-
venting organ rejection after transplantation [156, 
157]. For example, rapamycin has shown promis-
ing results in ameliorating orbitopathy in a  pre-
clinical model of Graves’ disease via downregu-
lating CD4+ cytotoxic T lymphocytes [158]. T-cell 
dysfunction has also been reported in patients 
with SLE in association with mTOR hyperactiva-
tion and chronic inflammation. Assessments in 
SLE patients demonstrated that one-year rapamy-
cin treatment suppressed pro-inflammatory T-cell 
lineage specification and IL-4 and IL-17 production 
via expanding CD4+CD25+FoxP3+ regulatory T-cells 
depleted in these patients [159]. Unfortunately, 
inhibition of mTORC1 in fibroblasts by rapamycin 
was shown to inhibit the wound healing process, 
explaining the emergence of non-healing oral ul-
cers in SLE patients following prolonged rapamy-
cin therapy [159–161]. The effect of rapamycin on 
the immunological response, however, appears 
to be dose-dependent. When looking at patterns 
across diverse organism models studying the im-
munologic impacts of rapamycin, greater dosages 
are often linked with immunosuppression, where-
as lower doses produce excitement. The immuno-
stimulatory properties of rapamycin, which pre-
sumably contribute to its anti-neoplastic actions, 
may be explained in this way [162].

Inflammation has a  fundamental contribution 
to many age-related diseases. Chronic renal fail-
ure, atherosclerosis, and lung infections are only 
some of the many inflammatory conditions linked 
to mTOR hyperactivation, and rapamycin was 
demonstrated to pose anti-inflammatory actions 
in these conditions. Thereby, one of the most ap-
pealing mechanisms through which mTORC1 sup-
pression might delay numerous age-associated 
diseases, extend longevity, and improve health 
span is a drop in chronic, age-related inflamma-
tion [163–165]. As proof of concept, rapamycin 
administration to aged mice has been shown to 
extend their lifespan and downregulate the acute 
phase response proteins incorporated in inflam-
mation [166]. Likewise, a  recent investigation by 
Zwaans et al. revealed that rapamycin repressed 
inflammation in aortic vascular smooth muscle 
cells. Hyperactive mTOR-mediated tumor necrosis 
factor-α (TNF-α) induction causes matrix metallo-
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proteinase overstimulation in these cells, which 
then facilitates the destruction of collagen fibers. 
Rapamycin treatment rescued these vascular 
changes by targeting mTOR and repressing TNF-α 
production [167]. 

As noted, rapamycin increases longevity and 
health span by preventing inflammaging, i.e., 
chronic, low-grade inflammation, mainly reliant on 
NF-κB signaling. It has been revealed that rapamy-
cin inhibits the NF-κB nuclear translocation by im-
proving the interaction between p65 and the inhib-
itor of κBα (IκBα) [168]. Rapamycin, for instance, 
suppresses high glucose-induced inflammation in 
THP-1-derived macrophages by suppressing mTOR 
and reducing NF-κB phosphorylation, inhibiting 
activation of the NLRP3 inflammasome – an essen-
tial element of the innate immune system that me-
diates the secretion of proinflammatory cytokines 
[169]. In an experimental model of inflammatory 
lung injury, rapamycin consistently suppressed 
inflammation by repressing NF-κB, leading to de-
creased IL-1β and IL-18 release and diminished 
leukocyte infiltration into lung tissue and bron-
choalveolar lavage fluid [170]. Nonetheless, there 
is evidence that inhibiting NF-κB-mediated aging 
phenotypes and promoting healthspan is not nec-
essarily associated with lowering inflammation. In 
a murine model of genetically induced NF-κB ac-
tivity associated with expedited aging, rapamycin 
mitigated indicators of cellular senescence, low-
ered weakness, and promoted long-term memory, 
neuromuscular integration, and tissue structure, 
despite having no positive impacts on lifespan or 
inflammaging [171]. 

The immunomodulation brought on by rapa-
mycin medication has also been shown to help 
survive infectious diseases [172]. Interestingly, 
a  connection has been established between in-
flammaging and the vulnerability of older indi-
viduals to community-acquired pneumonia (CAP), 
supported by a  positive correlation between in-
creased levels of serum TNF-α and IL-6 and a high-
er occurrence of CAP in otherwise healthy seniors 
aged 70 to 79 years [173]. In addition, age-associ-
ated cell senescence is a major contributor to the 
pro-inflammatory lung exacerbation associated 
with chronic obstructive pulmonary disease, a ma-
jor risk factor for pneumococcal pneumonia [174, 
175]. Regarding the preventive impact of rapamy-
cin on inflammaging and cell senescence, it may 
attenuate the predisposition to pneumonia. There 
is likewise evidence underlying the negative im-
pact of chronic inflammation on HIV-1 infection. 
Mu et al. reported that rapamycin therapy in 
HIV-1-infected humanized mice markedly atten-
uated persistent interferon (IFN)-I-mediated in-
flammation and enhanced antiviral T-cell respons-
es. Indeed, chronic inflammation causes loss of 

CD4+ T-cells and exhaustion of antiviral immunity. 
Autophagy induction by rapamycin was shown 
to repress IFN-I-mediated inflammation, thus 
improving antiviral T-cell responses [176]. These 
findings suggest that rapamycin may reduce the 
risk of emergence and progression of infectious 
diseases during chronic inflammatory situations; 
however, there are reports warning about the risk 
of late-onset pneumocystis pneumonia after solid 
organ transplantation, underscoring the impor-
tance of targeted prophylactic therapies in such 
conditions [177, 178]. 

In addition, rapamycin has been suggested 
to enhance the efficacy of various types of vac-
cines. It has been established that rapamycin 
stimulates the production of memory CD8+ T‑cells, 
which have a pivotal role in the adaptive immune 
response against pathogens, being faster and 
stronger than a primary immune response [179]. 
Intriguingly, rapamycin was shown to enhance 
the effect of memory CD8+ T-cells induced by 
immunization with amastigote surface protein-2 
(ASP2) of Trypanosoma cruzi [180]. Likewise, stim-
ulation of dendritic cells harboring the Bacille 
Calmette-Guerin (BCG) vaccine using rapamycin 
resulted in improved efficacy of dendritic cell vac-
cines in inducing immunity against tuberculosis in 
mice [181]. Indeed, rapamycin-mediated autopha-
gy enhances the antigen presentation by dendrit-
ic cells and subsequent activation of CD8+ naïve 
T-cells [182]. Accordingly, combining vaccination 
with rapamycin may open up new possibilities for 
the emergence of novel vaccine design approach-
es against infectious diseases. 

This approach might also potentially help im-
prove the effectiveness of cancer vaccinations. Of 
note, a  brief period of high-dose rapamycin ad-
ministration was shown to inhibit the activity of 
mTOR in CD8+ T-cells following viral vaccination, 
promoting the persistence of CD8+ T-cells and en-
hancing their ability to recall antigen responses 
rather than promoting their maturation into type 1  
effector cells. However, extended administration 
of high-dose rapamycin suppresses memory re-
sponses [183]. In a similar vein, short-term expo-
sure to mTOR inhibitors in dendritic cells while 
they are responding to toll-like receptor (TLR) ag-
onists was shown to enhance their ability to ac-
tivate naïve CD8+ T-cells, thereby enhancing the 
control of B16 melanoma in a therapeutic autol-
ogous vaccination mouse model and extended 
lifespan [184]. It is critical to consider short-term 
inhibition of mTORC1 to enhance cancer vaccine 
therapy since long-term rapamycin may lead to 
the development of autoimmunity due to the re-
liance of effector regulatory T-cells on mTORC1 
signaling [185]. Short-term rapamycin’s effect on 
cancer vaccination, however, is also debatable. It 
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was reported that short-term and long-term rapa-
mycin can eliminate CD8+ T-cell recruitment to the 
tumor site and inhibit the antitumor immune re-
sponse when combined with the human papillo-
mavirus E7 peptide vaccine in a mouse model of 
cervical cancer [186]. This is probably attributed to 
the cell- and context-dependent nature of mTOR 
signaling. Furthermore, regulatory T-cell expan-
sion has the potential to suppress effector T-cells 
and promote immune suppressive environments, 
which might confer protection against different 
types of cancers [186]. Therefore, it is critical not 
only to thoroughly investigate the effect of mTOR 
inhibitors on antitumor immunity in both animal 
and human subjects but also to identify the opti-
mal mTORC1 activity level for memory formation 
without jeopardizing effector T-cell function or ex-
panding regulatory T-cells [187].

The impact of rapamycin on stem cells 

Defective tissue regeneration is partly a conse-
quence of the decline in adult stem cell activity. In 
this regard, stem cell dysfunction may participate 
in developing age-related diseases in mammals. 
There is growing evidence that mTORC1 is a crit-
ical player in this process and that blocking the 
mTORC1 pathway can protect and even restore 
stem-cell activity in different organs [188, 189]. 
For example, upregulated mTORC1 signaling is as-
sociated with faulty multiplication and differenti-
ation of muscle-derived stem cells, obtained from 
mice deficient in zinc metalloproteinase STE2, 
in culture and during tissue regeneration. These 
mice exhibit early age-related-like musculoskele-
tal pathologies. Intriguingly, rapamycin repression 
of mTORC1 increased myogenic and chondro-
genic differentiation while decreasing apoptosis 
and senescence of these stem cells [190]. Bone 
marrow-derived mesenchymal stem cells were 
the subject of another recent study in Klotho-de-
ficient mice, a  murine model of human aging 
with multiple bone defects. The results revealed 
that the stem cells have hyperactive proliferation 
but diminished functionality owing to enhanced 
mTORC1 signaling. Intraperitoneal rapamycin 
administration restored stem cell quiescence, 
improved bone phenotype, and prolonged the 
longevity of model mice [189]. Rapamycin has 
also been demonstrated to reestablish the pro-
angiogenic function of senescent mesenchymal 
stem cells, which is important in the management 
of ischemic conditions. Cao et al. observed that 
rapamycin reversed the senescent phenotype and 
considerably improved the proangiogenic function 
of human umbilical cord mesenchymal stem cells  
in vitro. Furthermore, intramuscular administra-
tion of rapamycin-primed senescent stem cells 
into the ischemic limb dramatically improved 

neovascularization and ischemic limb salvage in 
a murine model of hindlimb ischemia [191]. 

Evidence shows that autophagy activation 
may be among the mechanisms by which rapa-
mycin improves the viability and differentiation 
of stem cells. Autophagy modulation is an intrigu-
ing strategy that may change mesenchymal stem 
cells’ characteristics and affect their regenerative 
therapeutic effects. Furthermore, it was postulat-
ed that the capacity of mesenchymal stem cells 
to influence the autophagy of cells in damaged 
tissues/organs plays a  role in their regeneration 
[192–194]. Specifically, mesenchymal stem cells 
can influence autophagy in immune cells involved 
in injury-induced inflammation, regulating im-
mune cell viability, multiplication, and activity and 
promoting the resolution of inflammation [195, 
196]. Moreover, mesenchymal stem cells can influ-
ence autophagy in native adult or progenitor cells, 
boosting their survival, multiplication, and differ-
entiation to assist in tissue repair and functional 
reconstitution [194, 197]. 

In light of these findings, rapamycin-mediat-
ed elevated autophagic activities and lysosome 
production in rat bone marrow-derived stem cells 
significantly improved survival and resistance 
to apoptosis under hypoxia and serum depriva-
tion. Furthermore, intracardial transplantation 
of rapamycin-pretreated stem cells dramatically 
enhanced cardiomyogenesis and angiogenesis in 
the infarcted myocardium due to augmented ex-
pression of growth factors (e.g., IGF-1 and VEGF), 
decreased expression of inflammation mediators 
(e.g., IL-1β and TNF-α), and differentiation of stem 
cells into cardiomyocytes or endothelial cells [198]. 
It has also been demonstrated that rapamycin 
induces the proliferation of myeloid cells by pro-
voking the expression of G-CSF in mesenchymal 
stem cells. G-CSF is the primary driver of stem cell 
hematopoiesis, reinforcing their differentiation 
into common myeloid or granulocyte/macrophage 
progenitor cells [199, 200]. Another recent inves-
tigation by Xing et al. demonstrated that baseline 
autophagy in bone marrow mesenchymal stem 
cells declines gradually throughout osteogenic 
differentiation, and rapamycin promotes their 
osteogenic differentiation by activating autoph-
agy [201]. Furthermore, rapamycin-triggered au-
tophagy has been shown to enhance Nrf2/Keap1 
signaling in cartilage endplate stem cells, enabling 
the expression of antioxidant proteins, thereby 
eradicating ROS, ameliorating cell senescence, 
lowering osteogenic differentiation of stem cells, 
and eventually rescuing cartilage endplate from 
chronic inflammation-mediated degeneration [9]. 
These findings support rapamycin-mediated stem 
cell revitalization and preservation of the homeo-
stasis of the adult stem cell pool as a therapeutic 
approach for healthy aging [202–220].
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Major challenges facing the use of rapamycin 
in anti-aging therapies

The emergence of diverse and serious adverse 
effects precluded the clinical utilization of rapa-
mycin as a  longevity drug. Even though rapamy-
cin does not directly impact mTORC2, prolonged 
therapy may sequestrate mTOR from mTORC2, 
thereby impeding mTORC2 assembly, which is be-
lieved to be a contributing factor to the metabolic 
issues with rapamycin therapy, such as abnormal 
lipid profiles, glucose intolerance, and insulin re-
sistance [13]. Despite the extensive research con-
ducted on the advantageous impacts of rapamy-
cin in age-associated ailments and geroprotection, 
limited studies have been conducted to determine 
the optimal dose and duration of administration 
and prevent the negative adverse effects of rapa-
mycin. It has been suggested that intermittent 
administration could serve as a  prospective ap-
proach to mitigate certain adverse effects asso-
ciated with rapamycin. Administrating rapamy-
cin at a dosage of 2 mg/kg on a single occasion 
every 5 days was the most commonly employed 
therapeutic regimen that did not adversely affect 
glucose homeostasis in mice. Additionally, this 
particular dosing schedule exhibited a diminished 
effect on the immune system while still effective-
ly suppressing mTORC1 in numerous tissues and 
increasing lifespan [221]. Moreover, several stud-
ies have demonstrated the beneficial impacts of 
rapamycin on longevity following short-term ad-
ministration at different periods of life. An inves-
tigation by Bitto et al. suggested that administer-
ing rapamycin for a brief period during the later 
stages of life can yield long-lasting outcomes that 
effectively postpone the aging process, impact the 
incidence of cancer, and regulate the microbiome. 
Three-month rapamycin (8 mg/kg) administration 
caused a  significant increase in the lifespan of 
middle-aged mice by up to 60% and an enhance-
ment in health span indicators [222]. There is, 
however, mounting evidence that rapamycin ad-
ministered during development or early adulthood 
results in durable impacts on longevity. A  recent 
study revealed interesting findings indicating that 
the geroprotective benefits of prolonged rapamy-
cin treatment can be acquired through short-term 
administration of the drug during the early stages 
of adulthood in female Drosophila and mice. The 
administration of rapamycin to adult Drosophila, 
either briefly or throughout their lifespan, was 
found to extend their longevity and mitigate 
age-associated deterioration in the intestine to 
a  comparable extent. The enduring recollection 
of prior therapy was mediated by heightened au-
tophagy in enterocytes of the intestinal tract. In-
deed, transient upregulation of autophagy during 
early adulthood resulted in a sustained enhance-

ment of autophagic activity. The early admin-
istration of rapamycin to mice for a  duration of  
3 months likewise produced a memory effect and 
gastrointestinal geroprotection, even 6 months 
after rapamycin withdrawal [10]. Another recent 
investigation by Shindyapina et al. revealed that 
administering rapamycin (42 ppm) to genetically 
diverse UMHET3 mice during the initial 45 days 
of their life resulted in slower growth and delayed 
reproductive age whilst not affecting offspring 
numbers. Such a  treatment protocol increased 
the median lifespan of the mice while also con-
tributing to preserving their health as determined 
by assessments of frailty index scores, gait speed, 
and glucose and insulin tolerance tests [223]. The 
abovementioned findings provide novel insights 
into the importance of the treatment protocol in 
achieving optimum pro-longevity impacts with 
minimum adverse effects. However, further pre-
clinical investigations, as well as clinical trials, are 
required to provide satisfactory data for approv-
ing rapamycin as a suitable anti-aging drug in hu-
mans. 

An additional obstacle in the integration of rapa-
mycin into anti-aging interventions pertains to the 
unclear differences in its impact on different gen-
ders. Numerous investigations demonstrate the 
sex-specific variations in the pro-longevity impact 
of rapamycin. For example, the sexual identity of 
enterocytes has been shown to control autophagy 
and determine the impact of rapamycin on intes-
tinal health and lifespan; accordingly, rapamycin 
was shown to prolong the longevity of female 
Drosophila but not males. Evaluation in mice also 
revealed the sex differences in autophagy and re-
sponse to rapamycin (42 mg/kg, 6 months) in the 
intestine, brown adipose tissue, and muscle tis-
sue. Accordingly, sex is a significant determinant 
in regulation of metabolic processes by mTOR and 
the effectiveness of mTOR-targeted pharmacolog-
ical interventions for anti-aging purposes [224]. 
There are several explanations for such sex-spe-
cific differences. It has been hypothesized that 
Rictor, a crucial constituent of mTORC2, has a vital 
contribution to the viability of male mice; however, 
the absence of Rictor does not seem to affect the 
lifespan of female mice. Therefore, suppressing 
mTORC2 signaling via rapamycin and its adverse 
impact on males could potentially account for the 
sexually dimorphic advantage [225]. Furthermore, 
there is a natural elevation in mTORC1 signaling 
in several organs of juvenile female mice in com-
parison to male mice of the same age; hence, fe-
males may experience more benefits from the ad-
ministration of rapamycin [226]. Moreover, it has 
been proposed that the fitness cost of prolonging 
lifespan is sex-specific, and the smaller sex likely 
incurs a lower cost while experiencing a compara-
tively greater lifespan extension. Given that males 
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have larger body sizes than females across many 
mammalian species, interventions targeting the 
mTOR signaling pathway may have a more signifi-
cant positive impact on females than males [227]. 
In contrast to the previously mentioned data, an 
investigation by Strong et al. revealed that ad-
ministrating three-month rapamycin (42 ppm) 
through diet had a greater prolongevity effect on 
middle-aged male mice compared to female mice 
[228]. Furthermore, short-term rapamycin treat-
ment (42 ppm) during the developmental phase 
of UMHET3 mouse growth had a greater effect on 
the lifespan of males compared to females [223]. 
In summary, the existing data are not sufficient to 
provide an in-depth definition of the gender-spe-
cific effects of rapamycin, necessitating further 
investigation. Incorporating findings on the rapa-
mycin treatment protocol (dose and duration) and 
sex-specific effects into comprehensive studies 
will help move faster toward clinical application. 

Rapamycin in clinical trials: optimal doses 
and safety concerns

Given the multifaceted involvement of mTOR in 
various vital biological processes, e.g., nucleotide, 
protein, and lipid synthesis, legitimate concerns 
arise regarding the prudent utilization of rapa-
mycin within anti-aging programs. Oral mucositis, 
gastrointestinal illnesses, metabolic disorders, ar-
thralgia, thrombocytopenia, anemia, renal toxicity, 
rash/eczema, and delayed wound healing have 
been associated with rapamycin administration 
as an immunosuppressor in organ transplanta-
tion [229]. However, these adverse effects may be 
prevented or alleviated by incorporating proper 
doses and courses of rapamycin administration 
[230]. Ten years of extensive research on the use 
of rapamycin in cardiac transplant recipients has 
indicated that there is an association between 
rapamycin blood levels and unfavorable events, 
implying that maintaining rapamycin concentra-
tions within the lower range of its therapeutic 
window may enhance tolerability; however, it 
should be borne in mind that any improvement in 
tolerability must be weighed against the potential 
for reduced efficacy [231].

Taking the safety data from rapamycin clinical 
trials in healthy or diseased subjects into account 
would greatly aid in assessing potential adverse 
effects, both in terms of their nature and severity, 
regarding the rapamycin dose and course of treat-
ment. Notably, prolonged periods of rapamycin ad-
ministration at higher doses have been associated 
with greater adverse effects in various clinical trials. 
For instance, 12-month rapamycin therapy (2 mg/
day) in individuals with lymphangioleiomyomato-
sis was associated with significant adverse effects, 
including mucositis, diarrhea, nausea, hypercholes-

terolemia, acneiform rash, and swelling in the lower 
extremities [232]. Another clinical trial in patients 
with TSC demonstrated oral aphthous ulcers, hy-
pertriglyceridemia, microcytosis, and hypochromia 
as frequently observed adverse events following 
one-year rapamycin (1 mg/day) treatment [233]. 
In addition, prolonged administration of rapamy-
cin (1 mg/kg) was attributed to the emergence 
of respiratory tract infections and stomatitis in 
TSC patients [234]. Long-term rapamycin therapy  
(1.6 mg/m2/day) in patients with complicated vas-
cular anomalies also caused blood/bone marrow 
toxicity in 27% of patients, as well as gastroin-
testinal and metabolic toxicity in 3% [235]. How-
ever, administrating the mentioned dose even for  
2 weeks was likewise reported to cause mouth 
sores in these patients [236]. Interestingly, a mod-
est dosage (0.5 mg/day) of rapamycin for 24-week 
therapy in individuals with active rheumatoid ar-
thritis was proven to be well tolerated and exhib-
ited no evaluable side effects [237]. Accordingly, 
most adverse events of rapamycin are likely dose- 
and time-dependent; therefore, it is essential to 
carefully monitor therapeutic effects, lower the 
rapamycin trough concentrations as much as pos-
sible, and determine a rational course of treatment 
[238]. It is also important to consider that certain 
risk factors may contribute to the occurrence of 
adverse effects associated with rapamycin. There-
fore, it is advisable to avoid or delay rapamycin ad-
ministration in patients at high risk while also ad-
dressing any modifiable risk factors. This approach 
should be taken as the initial step in mitigating the 
undesired effects of rapamycin [238]. 

Strikingly, multiple clinical trials are currently 
assessing the safety and effectiveness of rapa-
mycin in diminishing clinical aging indicators, as 
well as biochemical and physiological endpoints 
linked to deteriorating health and aging in healthy 
or diseased adults/older adults of both genders 
(Table II). Consistent with the abovementioned 
data, these trials used low doses of rapamycin 
(< 1 mg/day) for long-term and higher doses of 
rapamycin (up to 2 mg/day) for short-term treat-
ments. A phase II randomized controlled trial was 
executed by Kraig et al. to establish the feasibility 
and safety of 8-week rapamycin therapy (1 mg/
kg) in an older human cohort. The participants 
were administered 1 mg of rapamycin over eight 
weeks. Five of the 11 subjects who completed the 
trial reported experiencing facial rash, stomatitis, 
and gastrointestinal issues. Blood indicators, e.g., 
hemoglobin, hematocrit, and red blood cell count, 
were decreased considerably; however, none of 
these alterations displayed clinically relevant con-
sequences during the short-term rapamycin ad-
ministration. Furthermore, no significant cognitive, 
immune, insulin-related, physical performance, or 
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Rapamycin

Protein synthesis

Mitochondrial 
function

Immune system

Stem cells

Autophagy

Improves protein synthesis pace, fidelity, and scope

Improves mtDNA quality and mitochondrial function

Attenuates immunosenescence and suppresses 
inflammaging

Revitalizes stem cells and preserves the homeostasis 
of the adult stem cell pool

Improves autophagi flux and facilitates the removal  
of damaged proteins and organelles

Table II. Clinical trials assessing the anti-aging impacts of rapamycin in adults and older adults

Rapamycin dose Phase Subjects Assessment Year Status Trial number

0.5 mg/day, 1 year II Adults and 
older adult

Functional biomarkers 
of aging

2023 Not yet 
recruiting

NCT05237687

5 mg/week, 1 year II Adults and 
older adult

Long-term safety and 
efficacy

2022 Active, not 
recruiting

NCT04488601

1 mg/day, 8 weeks II Older adults Cardiac function 2022 Recruiting NCT04742777

2 mg/day for 5–7 days II Adults and 
older adults 
with breast 

cancer

Malignant markers and 
aged mammary stem/
progenitor cell number

2022 Active, not 
recruiting

NCT02642094

Topical (8%, daily) I Older adults Epigenetic and 
inflammatory markers 

in the skin

2022 Active, not 
recruiting

NCT04608448

1 mg/day, 8 weeks II Older adults Immune, cognitive, and 
physical function

2018 Completed NCT02874924

0.5, 1, or 2 mg/day,  
12 weeks

I Adults and 
older adults 

with coronary 
artery disease

Safety, feasibility, SASP, 
and frailty

2016 Completed NCT01649960

SASP – senescence-associated secretory phenotype.

self-perceived health alterations were observed 
in healthy older individuals, confirming the safety 
of short-term rapamycin usage [239]. In terms of 
efficacy, administrating a  low dose of rapamycin 
(0.5 mg/day) for 12 weeks in a  phase I  clinical 
trial was observed to reduce SASP generation in 
elderly patients undergoing cardiac rehabilitation 
but failed to alleviate frailty [240]. Furthermore, 
a phase II clinical trial is going to evaluate the im-

pact of short-term rapamycin (1 mg/kg) treatment 
on the cardiac function of healthy older adults 
(NCT04742777). Another phase II clinical trial is 
also underway to investigate the short-term im-
pact of 2 mg/day rapamycin on the number of 
aged mammary stem/progenitor cells as well as 
malignant markers in adults and older adults with 
breast cancer (NCT02642094). In addition, a  few 
clinical investigations are assessing the long-term 

Figure 3. Rapamycin’s major actions in promoting healthy aging
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safety and efficacy of low-dose rapamycin (e.g., 
0.5 mg/day or 5 mg/week) in fighting aging phe-
nomena (NCT05237687 and NCT04488601). The 
results of these trials will pave the way to provide 
more accurate insights into the therapeutic use-
fulness of rapamycin as a pro‑longevity medicine.

Conclusions

Pursuing an approach to prolong the human 
lifespan has been a long and challenging endeav-
or [241–244]. Despite the lack of certainty, there 
is hope that the mTOR inhibitor rapamycin might 
achieve this objective. The rapid and intriguing ad-
vancements in this field suggest that the future 
of rapamycin anti-aging therapy holds promise 
[245]. A substantial amount of preclinical research 
supports the potential pro-longevity effects of 
rapamycin in diverse species, which is mediat-
ed through mTORC1 inhibition (Figure 3). In this 
light, several clinical trials are underway, trans-
lating these effects. The findings of these clinical 
assessments, along with further preclinical stud-
ies, will aid in addressing issues related to the ad-
verse effects and gender-specific impacts, as well 
as identifying appropriate doses and therapeutic 
regimens. Hopefully, this will finally facilitate the 
clinical application and repositioning of rapamycin 
as an anti-aging medication.
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