Efficacy and safety of proton pump inhibitors for diabetes mellitus in patients with gastroesophageal reflux disease: a meta-analysis

Na Lv¹, Ning Li², Cai-Hui Qi^{1*}

¹Department of Endocrinology, Dongying People's Hospital, Dongying, Shandong, China ²Department of Pharmacy, Dongying People's Hospital, Dongying, Shandong, China

Submitted: 22 May 2024; **Accepted:** 5 August 2024 **Online publication:** 7 September 2024

Arch Med Sci DOI: https://doi.org/10.5114/aoms/192052 Copyright © 2024 Termedia & Banach

Abstract

Introduction: Gastroesophageal reflux disease (GERD) is prevalent in patients with type 2 diabetes mellitus (T2DM). The use of proton pump inhibitors (PPIs) is recognized as an effective method to reduce gastric acid secretion in patients with GERD. Nevertheless, whether PPIs are effective or safe for the treatment of T2DM complicated by GERD remains unknown. Material and methods: To assess the efficacy and safety of PPIs in the management of T2DM complicated with GERD, databases including Web of Science, Cochrane Library, PubMed, and Embase were comprehensively searched for randomized controlled trials (RCTs) focusing on the treatment of T2DM complicated with GERD published before December 2023. Following data extraction and quality assessment, outcomes, including endoscopic efficiency, fasting blood glucose (FBG), symptom relief rates, levels of glycosylated hemoglobin A_{1c} (HbA_{1c}), and the incidence of adverse reactions, were analyzed using RevMan 5.4.

Results: The results suggest that the PPI group exhibited a higher efficacy rate compared to the control group in endoscopic efficiency (69.32% vs. 5.45%, OR = 40.50, 95% CI: 18.77–87.39) and symptom relief rates (92.94% vs. 54.65%, OR = 6.45, 95% CI: 3.41–12.20). Furthermore, PPI treatment was associated with a significant reduction in HbA_{1c} levels (weighted mean difference [WMD] = -0.41, 95% CI: -0.68 to -0.14) and FBG levels (WMD = -10.15 mg/dl, 95% CI: -19.64 to -0.66) in patients with T2DM complicated with GERD. In terms of safety, the incidence of adverse reactions was not significantly different between the two groups (PPI group: 10.78% vs. control group: 11.88%, p > 0.05).

Conclusions: PPIs can effectively improve the glycemic control of patients with T2DM complicated with GERD.

Key words: gastroesophageal reflux disease, diabetes mellitus, effectiveness, safety, meta-analysis.

Introduction

Gastroesophageal reflux disease (GERD) is a prevalent digestive system disease that refers to the reflux of duodenal and stomach contents into the esophagus [1], causing clinical signs and symptoms such as heartburn, acid reflux, and chest pain [2]. This long-term abnormal reflux can lead to severe damage to the tissues adjacent to the esophagus, such as the mouth, pharynx, and trachea, resulting in extraesophageal

*Corresponding author: Cai-Hui Qi, MM Department of Endocrinology Dongying People's Hospital Dongying, Shandong 257091, China

yexenew@outlook.com

E-mail:

symptoms such as bronchial asthma, chronic cough, idiopathic pulmonary fibrosis, hoarseness, and throat inflammation [3]. It may also increase the risk of esophageal stenosis, Barrett's esophagus, and esophageal adenocarcinoma [4]. GERD can be caused by reduced esophageal clearance, abnormal esophageal mucosal barrier function, gastric emptying disorders, and other pathological factors such as diabetes [5].

Approximately 100 million Chinese patients have type 2 diabetes mellitus (T2DM), making China the country with the largest population of individuals with diabetes in the world [6]. Metabolic syndrome, decreased immunity, and microvascular, macrovascular, and autonomic neuropathy caused by diabetes affect gastroesophageal motility [7]. Clinically, approximately 75% of patients with diabetes have abnormal gastrointestinal peristaltic function, acid reflux, heartburn, and other GERD-related symptoms [8, 9]. This was significantly higher than in the general population. Compared with GERD alone, due to the influence of nervous system complications of diabetes, patients with diabetes and GERD exhibit weaker pain and lack obvious clinical symptoms [10]. This leads to delayed diagnosis and treatment of the disease, and eventually results in serious GERD [11].

The primary pathophysiological mechanisms linking T2DM and GERD are multifaceted. Firstly, central obesity is a common characteristic among many T2DM patients, leading to increased intra-abdominal pressure that exacerbates the reflux of gastric contents into the esophagus. The accumulation of visceral fat not only promotes insulin resistance but also contributes to lower esophageal sphincter dysfunction, facilitating the occurrence of gastroesophageal reflux [12]. Secondly, autonomic nervous system dysregulation can impair esophageal motility and reduce esophageal sphincter tone, resulting in decreased acid clearance and increased susceptibility to reflux [13]. Additionally, chronic hyperglycemia observed in diabetes can trigger systemic and localized inflammation, potentially worsening reflux symptoms[14]. Moreover, certain pharmacological treatments for T2DM, such as metformin, have been shown to affect esophageal motility and may lead to GERD symptoms in susceptible patients [15]. Conversely, the use of proton pump inhibitors (PPIs), primarily aimed at controlling reflux symptoms, may have beneficial effects on glycemic control due to their potential role in improving insulin sensitivity and reducing inflammation. These bidirectional interactions highlight the complexity of managing patients with both conditions. emphasizing the need for an integrated treatment approach. In summary, the relationship between T2DM and GERD is complex, involving factors such as obesity, autonomic neuropathy, inflammation, medication effects, and alterations in gut microbiota. Understanding these intricate interactions is essential for optimizing management strategies for patients with both disorders. The exploration of PPIs as a therapeutic option presents a unique opportunity to address these interconnected diseases, potentially improving patient outcomes by alleviating GERD symptoms while also considering the broader implications for glycemic control.

The clinical treatment for patients with gastroesophageal reflux is mainly based on the inhibition of gastric acid and promotion of gastrointestinal motility [16]. Acid-suppressive drugs can reduce the secretion of gastric acid, quickly relieve the symptoms of acid reflux, and reduce further damage to the esophageal mucosa caused by reflux. Among these, PPIs are recommended as the first-line therapy for GERD [17]. However, the efficacy and safety of PPI in patients with T2DM and GERD remain unclear. This study aimed to systematically evaluate the effectiveness and safety of PPI in patients with T2DM combined with GERD to provide references for clinical use.

Material and methods

Literature retrieval strategy

The Web of Science, Cochrane Library, PubMed, Medline, and Embase databases were searched for articles available in English from their inception until December 2023. The following retrieval strategies were used: proton pump inhibitor, diabetes mellitus, type 2DM, DM, T2DM, diabetes, gastroesophageal reflux disease, gastroesophageal reflux, PPI, randomized control, PPIs, GERD, rabeprazole, omeprazole. pantoprazole, dexlansoprazole, lansoprazole, ilaprazole, or esomeprazole. Reviews and references of the included articles were searched extensively.

Inclusion and exclusion criteria

The inclusion criteria [18]: (1) The subjects included were type 2 diabetes patients with GERD symptoms (including acid reflux, heartburn, chest pain, dysphagia, or extraesophageal symptoms); (2) randomized controlled trials; (3) the observation group was a combination of conventional treatment for diabetes PPI, and there was no restriction on the type of PPI; the control group was conventional diabetes treatment alone or combined with placebo treatment. Routine diabetes treatment includes a low-salt and low-fat diet and blood sugar control medications.

The exclusion criteria were as follows: (1) reviews, animal experiments, conference papers, graduation theses, and case reports; (2) duplicate documents; and (3) documents that did not pro-

vide original data or had missing data and could not be obtained by contacting the original author.

Extraction of data and assessment of its quality

The following data were extracted individually according to the designed table: the name of the paper, first author, time of publication, method of experimental design, number of subjects, age and sex of subjects, clinical effect, duration of treatment, name and dose of therapeutic drugs, and safety. The inclusion and exclusion of literature, quality evaluation, and data extraction were completed independently by two researchers. Discrepancies were resolved through discussion with a third researcher.

Statistical analysis

Analyses were conducted using RevMan 5.4 software provided by the Cochrane Collaboration. Odds ratios (OR) were used as effect analysis statistics for dichotomous variables; in the case of continuous data, the mean difference (MD) was used. Forest plots were constructed, and heterogeneity and publication bias tests were performed. The heterogeneity test between studies was performed using the Q test and I^2 value. The study results did not show heterogeneity between them when p > 0.10 and $F \le 50\%$; otherwise, random effects were used. Statistical significance was determined using a p-value < 0.05.

Risk of bias and certainty of evidence

The Risk of Bias Tool 2 (RoB2) and GRADE approaches were used to assess the quality of the articles and our research. The RoB2 tool assessed five key areas: (i) the randomization process, (ii) discrepancies from the planned interventions, (iii) absence of outcome data, (iv) outcome measurement, and (v) the choice of the reported results. Disagreements were resolved through discussion until consensus was reached.

Results

Literature retrieval results

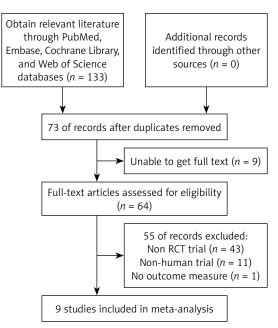
Figure 1 illustrates a flow diagram of the study. We obtained 133 articles through preliminary searches and screenings, and after review and evaluation, 73 duplicate articles were excluded. After excluding nine articles whose full text could not be obtained, 64 articles were obtained, and 55 articles whose systematic evaluations, meta-analyses, review articles, animal experiments, and results could not be extracted were further excluded. Finally, nine articles with 950 patients

were included, including 445 patients in the basic diabetes treatment combined with PPI group and 505 patients in the control group with basic diabetes treatment alone.

Study characteristics

Table I shows the characteristics of the nine studies included.

Included studies' methodological quality


Nine studies were included in this analysis. A summary of the bias in included studies is provided in Figures 2 and 3.

Endoscopic efficiency

Six studies analyzed the endoscopic response rate after 8 weeks of treatment. Heterogeneity test results showed that the studies were not statistically heterogeneous (p=0.86, $l^2=0\%$). The meta-analysis study showed that in the PPI group, the endoscopic effective rate was 69.32% (113 cases/163 cases), while in the control group, it was 5.45% (9 cases /163 cases), OR = 40.50 (95% CI: 18.77–87.39, p < 0.001), and the two groups differed significantly (Figure 4).

Symptom relief rates

Symptom remission rates were analyzed in seven studies. According to the heterogeneity test results, no statistical heterogeneity existed among the studies (p = 0.83, $l^2 = 0\%$). The meta-analysis

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for studies included in and excluded from the meta-analysis

Table I. Basic characteristics of 9 studies

First author	Study	Region	Total	No. of	No. of	Intervention	(PPI)	Control	Treatment
	design		cases	cases (PPI)	cases (control)	PPI name	Usage and dosage		duration
Singh 2012 [27]	RCT	India	31	16	15	Pantoprazole	40 mg BID	Placebo	12 weeks
Hove KD 2013 [28]	RCT	Denmark	41	20	21	Esomeprazole	40 mg QD	Placebo	12 weeks
Takebayashi K 2014 [29]	RCT	Japan	89	46	43	lansoprazole	15 mg QD	None	12 weeks
González-Ortiz M 2015 [30]	RCT	Mexico	14	7	7	Pantoprazole	40 mg QD	Placebo	45 days
Agrawal PK 2018 [31]	RCT	India	60	30	30	Pantoprazole	40 mg QD	Placebo	24 weeks
Rajput MA 2020 [15]	RCT	Pakistan	75	35	40	Omeprazole	20mg BID	None	12 weeks
Bozkuş Y 2020 [32]	RCT	Turkey	32	16	16	Esomeprazole	40 mg QD	None	12 weeks
Al-Bachaji IN 2019 [33]	RCT	Iraq	60	30	30	Omeprazole, pantoprazole and lansoprazole	/	/	3 months
Barchetta I 2015 [25]	RCT	Italy	548	245	303	Omeprazole, esomeprazole, pantoprazole and lansoprazole	/	/	/

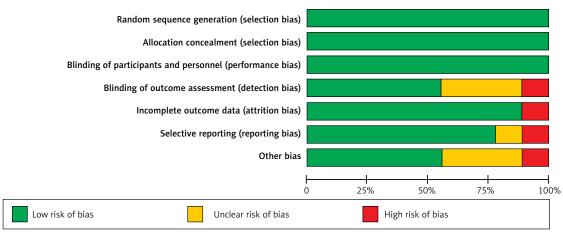


Figure 2. Risk of bias graph

showed that the symptom relief rate of patients in the PPI group was 92.94% (158 cases /170 cases), and in the control group it was 54.65% (94 cases/172 cases). OR = 6.45 (95% CI: 3.41-12.20, p < 0.001), and both groups differed significantly (Figure 5).

$\mathsf{HbA}_{\mathsf{1c}}$

Changes in HbA_{1c} levels were observed in all nine studies. Both groups showed high heterogeneity (p < 0.001, $l^2 = 96\%$). Overall, the PPI group

showed an additional 0.41% reduction in HbA_{1c} compared with the control group (WMD = -0.41; 95% CI: -0.68 to -0.14, p=0.003) (Figure 6). The difference between the two groups was statistically significant.

Fasting blood glucose

Changes in FBG levels were analyzed in all nine studies. Both groups showed high heterogeneity (p < 0.001; $l^2 = 89\%$). Overall, the PPI group showed an additional 10.15 mg/dl reduction in FBG com-

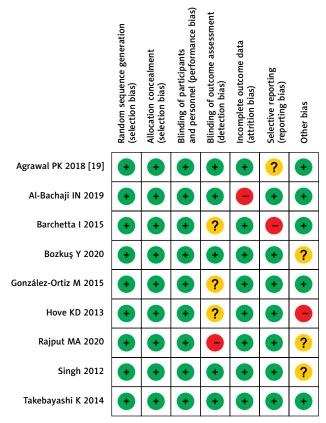


Figure 3. Risk of bias summary

Study or subgroup	Р	PI	Con	trol	Weight	Odds ratio MH,		Odds ra	itio MH,		
	Events Total		Events Total		(%)	fixed, 95% CI		fixed, 95% CI			
Agrawal PK 2018	26	46	2	43	33.9	26.65 [5.75, 123.61]					
Bozkus Y 2020	12	16	1	15	9.7	42.00 [4.12, 428.66]					
Hove KD 2013	21	35	2	40	28.2	28.50 [5.90, 137.61]					
Rajput MA 2020	16	20	2	21	14.7	38.00 [6.14, 235.24]					
Singh 2012	13	16	1	16	7.1	65.00 [6.00, 703.67]				-	
Takebayashi K 2014	25	30	1	30	6.3	145.00 [15.86, 1325.30)]				
Total (95% CI)		163		165	100.0	40.50 [18.77, 87.39]					
Total events	113		9								
Heterogeneity: χ^2 =	1.91, d <i>f</i>	= 5 (p	= 0.86)	$I^2 = 0\%$, o	_	+				
Test for overall effect	t: Z = 9.	43 (p	< 0.0000)1)		0.	.002	0.1	1 10	500	
							Favours [e	xperimental]	Favours [con	trol]	

Figure 4. Forest plot of endoscopic efficiency in PPI and control group

Study or subgroup Experimental Events Total E		Con	Control Weigl Events Total (%)		Odds ratio MH,	Odds r	ratio MH,	
		Events			fixed, 95% CI	fixed,	, 95% CI	
Agrawal PK 2018	33	30	13	30		Not estimable		
Bozkus Y 2020	14	16	12	16	17.9	2.33 [0.36, 15.05]		-
Gonzalez-Ortiz M 20	015 5	7	3	7	10.2	3.33 [0.36, 30.70]		-
Hove KD 2013	18	20	12	21	14.0	6.75 [1.24, 36.85]		
Rajput MA 2020	33	35	23	40	14.7	12.20 [2.57, 57.97]		
Singh 2012	14	16	8	15	12.3	6.13 [1.02, 36.89]		
Takebayashi K 2014	41	46	23	43	30.9	7.13 [2.36, 21.53]		
Total (95% CI)		170		172	100.0	6.45 [3.41, 12.20]		•
Total events	158		94					
Heterogeneity: χ² =	2.16, df	= 5 (p	= 0.83)	$; I^2 = 0\%$, 0	⊢		+ + + + + + + + + + + + + + + + + + + +
Test for overall effect	ct: Z = 5	.72 (p ·	< 0.0000	01)		0.01	0.1	1 10 100
		•					Favours [experimental]	Favours [control]

Figure 5. Forest plot of symptom relief rates in PPI and control group

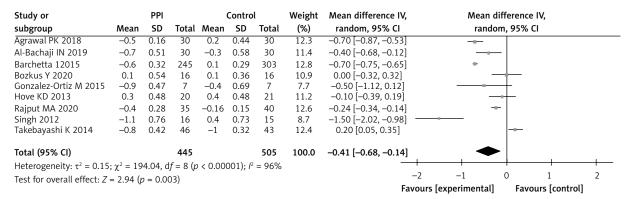


Figure 6. Forest plot of mean difference in HbA₁, level in PPI and control groups

Study or	Exp	erime	ntal		Contro	l	Weight	Mean difference IV,	Mean diff	ference IV,	
subgroup	Mean	SD	Total	Mean	SD	Total	(%)	random, 95% CI	random	, 95% CI	
Takebayashi K 2014	-24.7	21.4	46	-3.6	31.3	303	12.7	-21.10 [-28.22, -13.98]			
Singh 2012	-17.1	7.8	16	11.1	8	30	13.2	-28.20 [-32.98, -23.42]			
Rajput MA 2020	-32	9	35	-16	10.9	21	13.0	-16.00 [-21.53, -10.47]			
Hove KD 2013	10.9	23	20	3.6	31.3	30	10.1	7.30 [-7.77, 22.37]	_		
Gonzalez-Ortiz M 2015	-9	17.2	7	14.4	19.9	16	9.8	-23.40 [-39.44, -7.36]			
Bozkus Y 2020	3	26.7	16	-1	12.4	40	10.6	4.00 [-9.64, 17.64]	_	-	
Barchetta I 2015	11	21	245	-5.2	38.3	43	11.3	16.20 [4.45, 27.95]			
Al-Bachaji IN 2019	-15	13.6	30	-5.7	42.6	15	7.8	-9.30 [-31.40, 12.80]			
Agrawal PK 2018	-12.5	12.5	30	1.9	14	7	11.4	-14.40 [-25.69, -3.11]			
Total (95% CI)			445			505	100.0	-10.15 [-19.64, -0.66]	•		
Heterogeneity: $\tau^2 = 172$.	11; $\chi^2 =$	73.47,	df = 8	p < 0.00	0001);	l ² = 89%	6	_	 	+ + +	
Test for overall effect: $Z = 2.10 \ (p = 0.04)$									0 25 50		
1656 101 Overall effect. 2 = 2.120 (p = 0.04)								Fav	Favours [experimental] Favours [contr		

Figure 7. Forest plot of mean difference in FBG level in PPI and control groups

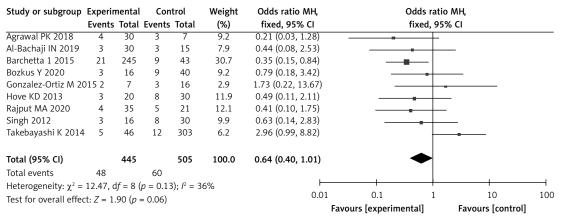
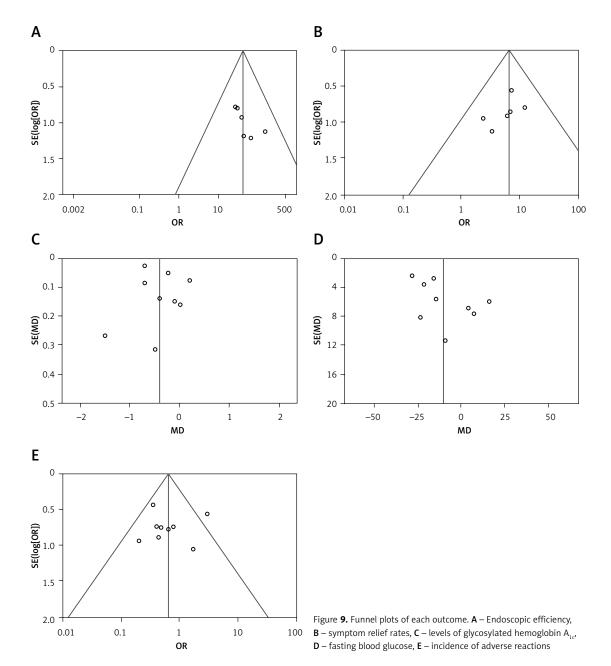


Figure 8. Forest plot of incidence of adverse reactions in PPI and control groups

pared with the control group (WMD = -10.15 mg/dl; 95% CI: -19.64–-0.66; p = 0.04), and the two groups differed significantly (Figure 7).


Incidence of adverse reactions

The incidence of adverse reactions was analyzed in nine studies. According to the heterogeneity test results, no statistical heterogeneity existed among the studies ($l^2 = 36\%$, p = 0.13). The meta-analysis showed that the incidence of adverse reactions in patients in the PPI group was 10.78% (48 cases/445 cases) and that in the control group was 11.88% (60 cases/505 cases). According to

Figure 8, there was no statistical significance; OR = 0.64, 95% CI (0.40, 1.01), p = 0.06. Figure 9.

Discussion

Patients with T2DM often have gastric and esophageal motor dysfunctions, and the incidence of GERD in patients with diabetes is significantly higher than that in the general population [19]. The pathogenesis of diabetes combined with GERD mainly includes the following [20, 21]: diabetic autonomic neuropathy causes primary esophageal peristaltic dysfunction, delayed esophageal emptying, and

reduced esophageal clearance; gastric acid, pepsin, and bile are the direct damaging factors that cause inflammation, erosion, and ulcers of the esophageal mucosa. Proton pump inhibitors can selectively inhibit the activity of H+/K+-AT-Pase in gastric parietal cells, block the excretion of H⁺ outside the parietal cells, and reduce the secretion of H+, thereby alleviating the direct damage caused by gastric acid to the esophagus. The meta-analysis showed that the endoscopic efficacy and symptom remission rates in the PPI group after 8 weeks were 69.32% and 92.94%, respectively, which were significantly higher than 5.45% and 54.65% in the control group without PPI, p < 0.001. At the same time, the incidence of adverse reactions of patients

in the PPI group was 10.78%, while that in the control group was 11.88% (not significant, p = 0.06), further indicating that PPIs are effective and safe in the treatment of type 2 diabetes mellitus with diabetic nephropathy in T2DM combined with GERD. These results are consistent with those of previous studies [22].

In addition, diabetic microangiopathy causes ischemia, neurotrophic disorders, and degeneration of smooth muscle cells, and affects the normal contraction and relaxation function of smooth muscle [23]. Chronic hyperglycemia causes dyssecretion of gastrointestinal hormones, including substance P (SP), vasoactive intestinal peptide (VIP), motilin (MTL), gastrin (GAS), somatostatin (SS), and cholecystokinin

(CCK), resulting in lower esophageal sphincter relaxation and gastrointestinal motor dysfunction [24]. The results showed that after 8 weeks of treatment, HbA_{1c} and FBG levels in the PPI group decreased by 0.41% and 10.15 mg/dl, respectively, compared to those in the control group without the addition of PPI, and statistically significant differences were found (p < 0.05). This confirms the results of previous studies [25, 26]. The reasons may be as follows: First, PPIs are effective drugs that block stomach acid secretion, thereby reducing the stimulation and damage of gastric acid on the esophageal mucosa and improving the symptoms of GERD; by using PPI, patients are able to reduce their pain and discomfort, and may improve their diet and nutrition intake, indirectly affecting the levels of HbA, and FBG. Second, improved insulin sensitivity and reduced insulin resistance may lower blood sugar levels with PPIs. Third, PPIs may help reduce inflammation by inhibiting gastric acid secretion, thereby improving blood sugar levels in patients.

In conclusion, the findings of this study offer significant insights that could reshape clinical approaches to managing patients with concurrent GERD and metabolic disorders. The implications for patient care are substantial, emphasizing the need for continued investigation into the therapeutic roles of PPIs beyond their traditional use in acid-related disorders. This could ultimately lead to improved overall patient outcomes and pave the way for innovative treatment paradigms in gastroenterology and endocrinology.

There are also some limitations to this study, such as clinical heterogeneity, which may have resulted from differences in patient characteristics, patient care, and treatment in different studies. Although this study controlled for bias, some residual bias may remain, which could affect the conclusions of the meta-analysis. Alternatively, to extract relevant data from various studies, different data sources and the limitations of the data extraction methods must be considered. In addition, the study only included patients with type 2 diabetes mellitus complicated with gastroesophageal reflux disease, and was restricted to articles published in English, so the included literature may not be sufficiently comprehensive, which may lead to inaccurate and incomplete data. The results of this study may have been influenced by these factors. Therefore, these limitations should be considered and the findings interpreted according to the specific context. Future research should address these limitations by including larger, more homogeneous patient populations and standardized treatment protocols.

In conclusion, for patients with diabetes combined with GERD, compared with the control

group, additional PPI treatment was significantly more effective and showed a greater rate of symptom remission; however, adverse effects did not increase. In addition, PPI can significantly reduce HbA_{1c} and FBG levels in patients with diabetes mellitus and GERD, which is worthy of clinical promotion and application.

Acknowledgments

Na Lv and Ning Li contributed equally to this work.

Funding

No external funding.

Ethical approval

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. Clarrett DM, Hachem C. Gastroesophageal reflux disease (GERD). Mo Med 2018; 115: 214-8.
- Săraru ER, Enciu V, Peagu R, Fierbințeanu-Braticevici C. Advances in the diagnosis of GERD. Rom J Intern Med 2021: 59: 3-9.
- 3. Dağlı Ü, Kalkan İ H. The role of lifestyle changes in gastroesophageal reflux diseases treatment. Turk J Gastroenterol 2017; 28 (Suppl 1): S33-7.
- Sethi S, Richter JE. Diet and gastroesophageal reflux disease: role in pathogenesis and management. Curr Opin Gastroenterol 2017; 33: 107-11.
- 5. Taraszewska A. Risk factors for gastroesophageal reflux disease symptoms related to lifestyle and diet. Rocz Panstw Zakl Hig 2021; 72: 21-8.
- Yan Y, Wu T, Zhang M, Li C, Liu Q. Li F. Prevalence, awareness and control of type 2 diabetes mellitus and risk factors in Chinese elderly population. BMC Public Health 2022: 22: 1382.
- 7. Punjabi P, Hira A, Prasad S, Wang X, Chokhavatia S. Review of gastroesophageal reflux disease (GERD) in the diabetic patient. J Diabetes 2015; 7: 599-609.
- 8. Maev IV, Iurenev GL, Kakhramanova DA. [Peculiarities of gastroesophageal reflux disease in patients with type 2 diabetes mellitus]. Klin Med (Mosk) 2012; 90: 53-6.
- 9. AlTassan FM, Al-Khowaiter SS, Alsubki HE, Alhamoud WA, Niazi AK, AlJarallah BM. Prevalence of gastro-esophageal reflux in diabetic patients at a tertiary hospital in Central Saudi Arabia. Saudi Med J 2020; 41: 151-6.
- Yuan S, Larsson SC. Adiposity, diabetes, lifestyle factors and risk of gastroesophageal reflux disease: a Mendelian randomization study. Eur J Epidemiol 2022; 37: 747-54.
- 11. Chen J, Yuan S, Fu T, et al. Gastrointestinal consequences of type 2 diabetes mellitus and impaired glycemic homeostasis: a mendelian randomization study. Diabetes Care 2023; 46: 828-35.
- 12. Mitrovic B, Gluvic ZM, Obradovic M, et al. Non-alcoholic fatty liver disease, metabolic syndrome, and type 2 diabetes mellitus: where do we stand today? Arch Med Sci 2023; 19: 884-94.

- 13. Ruan X, Chen J, Sun Y, et al. Depression and 24 gastrointestinal diseases: a Mendelian randomization study. Transl Psychiatry 2023; 13: 146.
- 14. Negovan A, Banescu C, Pantea M, Simona B, Mocan S, Iancu M. Factors associated with gastro-duodenal ulcer in compensated type 2 diabetic patients: a Romanian single-center study. Arch Med Sci 2022; 18: 45-51.
- 15. Rajput MA, Ali F, Zehra T, Zafar S, Kumar G. The effect of proton pump inhibitors on glycaemic control in diabetic patients. J Taibah Univ Med Sci 2020; 15: 218-23.
- 16. Maret-Ouda J, Markar SR, Lagergren J. Gastroesophageal reflux disease: a review. JAMA 2020; 324: 2536-47.
- 17. Yadlapati R, DeLay K. Proton pump inhibitor-refractory gastroesophageal reflux disease. Med Clin North Am 2019: 103: 15-27
- 18. Monreal-Robles R, Remes-Troche JM. Diabetes and the esophagus. Curr Treat Options Gastroenterol 2017; 15: 475-89.
- Careyva B, Stello B. Diabetes mellitus: management of gastrointestinal complications. Am Fam Physician 2016; 94: 980-6.
- Boland BS, Edelman SV, Wolosin JD. Gastrointestinal complications of diabetes. Endocrinol Metab Clin North Am 2013; 42: 809-32.
- 21. Okdahl T, Bertoli D, Brock B, et al. Study protocol for a multicentre, randomised, parallel group, sham-controlled clinical trial investigating the effect of transcutaneous vagal nerve stimulation on gastrointestinal symptoms in people with diabetes complicated with diabetic autonomic neuropathy: the DAN-VNS Study. BMJ Open 2021; 11: e038677.
- 22. Schnoll-Sussman F, Niec R, Katz PO. Proton pump inhibitors: the good, bad, and ugly. Gastrointest Endosc Clin N Am 2020; 30: 239-51.
- 23. Villegas K, Meier JL, Long M, Lopez J, Swislocki A. The effect of proton pump inhibitors on glycemic control in patients with type 2 diabetes. Metab Syndr Relat Disord 2019; 17: 192-6.
- 24. Han N, Oh M, Park SM, et al. The effect of proton pump inhibitors on glycated hemoglobin levels in patients with type 2 diabetes mellitus. Can J Diabetes 2015; 39: 24-8
- 25. Barchetta I, Guglielmi C, Bertoccini L, et al. Therapy with proton pump inhibitors in patients with type 2 diabetes is independently associated with improved glycometabolic control. Acta Diabetol 2015; 52: 873-80.
- Crouch MA, Mefford IN, Wade EU. Proton pump inhibitor therapy associated with lower glycosylated hemoglobin levels in type 2 diabetes. J Am Board Fam Med 2012; 25: 50-4.
- 27. Singh PK, Hota D, Dutta P, et al. Pantoprazole improves glycemic control in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab 2012; 97: E2105-8.
- 28. Hove KD, Brøns C, Færch K, et al. Effects of 12 weeks' treatment with a proton pump inhibitor on insulin secretion, glucose metabolism and markers of cardio-vascular risk in patients with type 2 diabetes: a randomised double-blind prospective placebo-controlled study. Diabetologia 2013; 56: 22-30.
- Takebayashi K, Sakurai S, Suzuki T, et al. Effect of combination therapy with alogliptin and lansoprazole on glycemic control in patients with type 2 diabetes. Endocr J 2014; 61: 1031-9.
- 30. González-Ortiz M, Martínez-Abundis E, Mercado-Sesma AR, Álvarez-Carrillo R. Effect of pantoprazole on insulin secretion in drug-naïve patients with type 2 diabetes. Diabetes Res Clin Pract 2015; 108: e11-3.

- 31. Agrawal PK, Chandra S, Jaiswal AK, Gautam A, Maheshwari PK. Study of the effect of pantoprazole on glycemic control of type-2 diabetes mellitus in tertiary care center and hospital in North India. J Med Tropics 2018; 20: 1-5.
- 32. Bozkuş Y, Mousa U, İyidir Ö T, et al. Short-term effect of hypergastrinemia following esomeprazole treatment on well-controlled type 2 diabetes mellitus: a prospective study. Endocr Metab Immune Disord Drug Targets 2020; 20: 1090-6.
- 33. Al-Bachaji IN, Al-Buhadiliy AK, Al-Kuraishy HM, Al-Gareeb Al. Proton pump inhibitors regulate metabolic profile and glycaemic indices in patients with type 2 diabetes mellitus: a rising dawn of a new therapeutic concept. J Pak Med Assoc 2019; 69 (Suppl 3): S31-5.