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A b s t r a c t

Introduction: The study aimed to explore the underlying immunologic mech-
anisms and immune-related biomarkers associated with alopecia areata 
(AA) development.
Material and methods: Expression data from the GSE68801 dataset, concern-
ing 60 individuals with alopecia areata (28 patchy-type AA (AAP), 23 alopecia 
universalis (AU), 9 alopecia totalis (AT)), and 36 normal controls (NC), were an-
alyzed. The study investigated differentially expressed RNAs (DERs), immune 
infiltration, and immune-related modules. Functional enrichment analysis of 
overlapping DERs was conducted using DAVID. Additionally, overlapping path-
ways and genes identified in a co-expression network, along with data from 
the Comparative Toxicogenomics Database 2019 update, were screened.
Results: In total, 1708 lncRNAs and 17,326 mRNAs, along with 427 over-
lapping DERs among AAP, AU, AT, and NC, were identified. Subsequently,  
17 biological processes significantly associated with inflammatory and im-
mune responses, as well as 8 KEGG signaling pathways, including the chemo-
kine and cytokine-cytokine receptor interaction pathway, were enriched. No-
table differences in the infiltration of four T cell subtypes – activated CD8 
T cells, effector memory CD8 T cells, regulatory T cells, and plasmacytoid 
dendritic cells – were observed compared to NC. Two modules were found 
to be significantly linked to disease stage progression and various T cell 
types. Functional analysis revealed significant enrichment of cytokine-cyto-
kine receptor interaction and the T cell receptor signaling pathway among 
the genes involved in these modules. Furthermore, CXCL9 and CXCL10 were 
identified as key nodes associated with the disease.
Conclusions: Our study revealed that AA is an autoimmune disease associ-
ated with T cells, with CXCL9 and CXCL10 emerging as significant prognostic 
factors in its development. 
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Introduction

Alopecia areata (AA) is a prevalent autoimmune skin condition char-
acterized by distinct circular areas of hair loss. Current treatments for 
AA predominantly revolve around broad immune suppression or topical 
immunotherapy [1, 2]. Nevertheless, the efficacy of these treatments re-
mains debatable. A thorough comprehension of the disease’s underlying 
mechanisms is imperative for the advancement of innovative therapeu-
tic approaches.
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To date, the precise pathophysiology of AA 
has not been thoroughly investigated. Previous 
research has consistently suggested that the dis-
ease’s etiology is associated with an autoimmune 
response targeting hair follicles. Histopathological 
examination reveals a peribulbar lymphocytic in-
filtrate surrounding anagen follicles, predominant-
ly composed of CD4+ and CD8+ T-cells during acute 
and subacute stages [3]. 

Additionally, other immune cells such as macro-
phages, natural killer cells, and mast cells are also 
present [4]. AA typically manifests in three prima-
ry phenotypic variants: alopecia totalis (AT), alo-
pecia universalis (AU), and patchy-type AA (AAP). 
Recent studies have highlighted the involvement 
of novel molecular pathways and immune-related 
molecules in AA development. A  meta-analysis 
conducted by Betz et al. underscored the signifi-
cant association between human leukocyte anti-
gen-DR and T cells as the primary risk factor for 
AA [5]. Petukhova and colleagues identified genes 
related to natural killer cell receptor D ligands as 
potential influencers of AA susceptibility [6]. How-
ever, the distinct pathogenic mechanisms under-
lying these three disease variants remain elusive.

Hence, our study was devised to investigate 
the genetic and immunological underpinnings of 
AA. We screened for differentially expressed genes 
and investigated disease progression along with 
immune-related modules across AAP, AU, and AT. 
Furthermore, we analyzed the infiltration levels of 
immune cells in these groups. Our findings reveal 
a  significant association between AA develop-
ment and the infiltration of specific immune cell 
subtypes. Additionally, we substantiated the piv-
otal role of CXCL9 and CXCL10 in AA progression.

Material and methods

Data sources

In this study, the GSE68801 [7] dataset was 
downloaded from the NCBI GEO (https://www.
ncbi.nlm.nih.gov/) [8] database, which provides 
a comprehensive expression profile of scalp skin 
biopsies from individuals with various subtypes 
of alopecia areata (AA) and normal controls. This 
dataset was selected due to its extensive sample 
size and representation of different AA subtypes, 
enabling a robust comparative analysis. The detec-
tion platform for this expression profile data was 
GPL570 [HG-U133_Plus_2] Affymetrix Human Ge-
nome U133 Plus 2.0 Array. The dataset comprised 
122 scalp skin biopsies obtained from individuals 
with AA and normal healthy controls (NC). Specifi-
cally, there were 36 samples from healthy controls, 
and 86 samples from individuals with AA (com-
prising 28 lesional samples and 26 nonlesional 
samples from AAP, 23 lesional samples from AU, 

and 9 lesional samples from AT). For consistency 
in our analysis, we excluded gene expression pro-
filing data from 26 nonlesional samples from AAP.

Exploration of differentially expressed 
RNAs (DERs) 

We retrieved comprehensive annotation infor-
mation related to the platform from GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 
Plus 2.0 Array via the Ensembl genome browser 
96 database (http://asia.ensembl.org/index.html). 
This information encompassed probes, gene sym-
bols, RNA types, as well as other relevant details. 
Subsequently, we re-annotated the probes in the 
downloaded expression profile dataset to acquire 
the respective expression levels of both lncRNAs 
and mRNAs.

Selection criteria and relevance

We selected lncRNAs and mRNAs for our anal-
ysis because they play crucial roles in the regula-
tion of gene expression and are involved in various 
biological processes, including immune responses 
and inflammation. LncRNAs were chosen due 
to their ability to modulate immune responses 
through mechanisms such as acting as molecular 
scaffolds, decoys, or guides for chromatin-modify-
ing complexes, thereby influencing the transcrip-
tion of immune-related genes. mRNAs were select-
ed because they encode proteins that are directly 
involved in immune signaling pathways and cellu-
lar responses. Analyzing both lncRNAs and mRNAs 
allowed us to capture a comprehensive picture of 
the transcriptional changes associated with AA 
and identify potential biomarkers and therapeutic 
targets.

The samples were categorized into three com-
parison groups: AAP vs. NC, AU vs. NC, and AT vs. 
NC. Differential expression analyses were con-
ducted using the limma package Version 3.34 
in R3.6.1 [9]. We set the threshold at FDR < 0.05 
and |log2FC| > 0.263 to identify significantly dif-
ferentially expressed regions (DERs) between the 
groups. Subsequently, bi-directional hierarchi-
cal clustering [10, 11] was performed using the 
pheatmap package (Version 1.0.8) [12] in R3.6.1. 
This clustering utilized the expression values of 
DERs obtained from each group and was based on 
Euclidean distance. Finally, the clustering results 
were visualized using a heatmap.

We retained the overlapping differentially ex-
pressed regions (DERs) identified across the three 
comparison groups for further analysis. Gene On-
tology (GO) biological process and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) signaling 
pathway enrichment analyses were conducted us-
ing DAVID (version 6.8) [13]. A significance thresh-
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old of p<0.05 was applied to select the enriched 
terms.

Evaluation of immune cell subsets using 
the single sample Gene Set Enrichment 
Analysis (ssGSEA) algorithm

The microenvironment component primarily 
encompasses fibroblasts, the extracellular matrix, 
immune cells, diverse growth and inflammatory 
factors, and distinctive physical characteristics. 
These elements exert a  profound influence on 
disease diagnosis, survival outcomes, and clinical 
treatment sensitivity. Intricate and significant in-
teractions exist among different cell types, leading 
to robust patterns of cell infiltration.

To assess the subtype of immune infiltration 
in the combined sample, immunologic signature 
gene sets were obtained from the GSEA database 
[14]. Subsequently, the type of immune infiltra-
tion in the combined sample was evaluated us-
ing the gene set variation analysis for microarray 
and RNA-Seq data package (GSVA, Version 1.36.3) 
[15]. GSVA, a non-parametric unsupervised analy-
sis, was employed to determine whether various 
immune infiltrations were enriched in different 
samples based on the type of immune cell infiltra-
tion. Following this, the differences in the propor-
tion of individual immune cells between AA sam-
ples and normal controls were analyzed. 

Screening of disease progression and 
immune-related modules using weighted 
gene co-expression network analysis 
(WGCNA) 

WGCNA is a  bioinformatics algorithm utilized 
for constructing co-expression networks, facili-
tating the exploration of disease-related modules 
and the identification of potential therapeutic 
targets or pathogenic mechanisms [16]. We em-
ployed the WGCNA package (Version 1.61) [17] in 
the R3.6.1 language to identify modules signifi-
cantly linked to both the sample stage and im-
mune cells based on the expression levels of all 
RNAs detected in GSE68801. In this analysis, we 
set a threshold for the module size to contain at 
least 100 differentially expressed regions (DERs) 
(cutHeight = 0.995). Subsequently, we assessed 
the correlation between the identified modules, 
the stage of AA, and subsets of immune cells.

The shared differentially expressed regions 
(DERs) identified across the three comparison 
groups were assigned to each WGCNA module. 
Fold enrichment and p-values of the DERs within 
each module were computed using the hypergeo-
metric algorithm [18], expressed as f(k,N,M,n) = 
C(k,M)*C(n-k,N-M)/C(n,N) (where N represents all 
RNAs involved in WGCNA analysis, M represents 

the number of RNA factors in each module, n rep-
resents the number of significantly different RNAs 
screened in step 2, and k represents the count of 
DERs mapped to the respective module).

The criterion for selecting modules was estab-
lished as p < 0.05 and fold enrichment > 1. DERs 
exhibiting significant enrichment within the tar-
get module were selected for further analysis.

Construction of co-expression network

The Pearson correlation coefficient (PCC) was 
computed for significantly enriched genes and 
lncRNAs within the target module utilizing the 
cor function in the R3.6.1 language. The resulting 
co-expression network was visualized utilizing Cy-
toscape 3.6.1 [19]. Connection pairs with a signif-
icance p-value below 0.05 as well as a significant 
absolute PCC value exceeding 0.7 were retained. 
Subsequently, KEGG pathway analysis was con-
ducted using the DAVID tool [20].

Screen of key genes

To investigate KEGG pathways and disease-re-
lated genes associated with AA, we utilized the 
Comparative Toxicogenomics Database 2019 up-
date [21]. We employed “Alopecia Areata” as the 
keyword for our analysis. Additionally, we selected 
overlapping pathways and genes identified in the 
previously constructed co-expression network and 
the current results to construct pathways linked 
to AA. Furthermore, we screened for overlapping 
lncRNAs and DERs.

Results

DER selection

A total of 1708 lncRNAs and 17,326 mRNAs were 
collected. Based on the sample’s source stage, we 
divided them into three comparison groups: AAP 
vs. NC, AU vs. NC, and AT vs. NC. Subsequently, we 
identified 1076, 781, and 867 DERs in AAP vs. NC, 
AU vs. NC, and AT vs. NC, respectively. The volcano 
plot and hierarchical clustering heatmap are de-
picted in Figure 1. The clustering heatmap reveals 
that the expression values of the DERs identified 
in each comparison group could be distinguished 
according to different sample types. The distinct 
colors indicate that the DERs possess unique ex-
pression characteristics in each group. 

The overlapping differentially expressed regions 
(DERs) identified in the three comparison groups 
were analyzed, resulting in a total of 427 overlap-
ping genes, comprising 29 lncRNAs and 398 mRNAs.  
Functional enrichment analysis revealed that 
these DERs were significantly enriched in 17 re-
lated biological processes, including inflammatory 
response, adaptive immune response, and cell-cell 
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signaling, as well as 8 KEGG signaling pathways, 
such as the chemokine signaling pathway, hema-
topoietic cell lineage, and cytokine-cytokine recep-
tor interaction (Figure 2 and Table I).

Immune cell subsets in AA

Utilizing ssGSEA, we identified 28 immune cell 
types associated with the three forms of AA. Sub-
sequently, we compared the proportions of these 
immune cells across the three comparison groups. 
Significant differences in four immune cell types 
were observed compared to NC, including activat-
ed CD8 T cells, effector memory CD8 T cells, reg-
ulatory T cells, as well as plasmacytoid dendritic 
cells (Figure 3). Notably, three out of the four im-
mune cells were T cells, indicating that AA is a lym-
phocyte-mediated autoimmune disorder.

Disease progression and immune-related 
modules

We evaluated the weight parameter power of 
the adjacency matrix to ensure compliance with 
the requirements of a scale-free network distribu-
tion. As depicted in Figure 4 A, the power reached 

12 when the square value of the correlation coeffi-
cient initially reached 0.9. At this juncture, the aver-
age node connectivity of the co-expression network 
was 1, aligning perfectly with the characteristics of 
a small-world network. Subsequently, we comput-
ed the dissimilarity coefficient between nodes and 
generated the hierarchical clustering tree. We then 
established a minimum of 100 genes for each mod-
ule, with a pruning height (cutHeight) set to 0.995. 
As illustrated in Figure 4 B, a total of 9 modules were 
identified. Following this, we calculated the correla-
tion between the disease status of the samples, 
immune grouping, and the division of each module.

Additionally, 427 overlapping DERs were as-
signed to each WGCNA module, resulting in a total 
of 419 RNAs being allocated across the modules. 
As illustrated in Table II, DERs are notably enriched 
in the brown and red modules, encompassing 197 
and 118 DERs, respectively. Among these DERs 
are 12 lncRNAs and 303 mRNAs. Figure 4 C shows 
a  significant negative correlation between the 
brown module and disease progression as well 
as various T cell subsets, whereas the red module 
exhibits a significant positive correlation with dis-
ease progression and T cell subsets. 

Figure 1. Volcano map and heat map of differentially expressed RNAs (DERs) of patchy-type AA (AAP) vs. normal 
controls (NC) (A), alopecia universalis (AU) vs. NC (B), and alopecia totalis (AT) vs. NC (C). Above map: volcano map. 
Blue and orange dots indicate significantly down-regulated and up-regulated DERs, respectively. The horizontal 
dashed line indicates FDR < 0.05, and the vertical dashed line indicates |log2FC| > 0.263. Bottom map: two-way 
hierarchical clustering heat map based on the expression level of DERs
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A total of 583 co-expression pairs were identi-
fied, and subsequently the lncRNAs-mRNAs co-ex-
pression pair network was constructed (Figure 5).

The functional analysis revealed significant en-
richment of the genes within the co-expression 
network in ten KEGG pathways, including the 
T  cell receptor signaling pathway, cytokine-cyto-
kine receptor interaction, and primary immunode-
ficiency (Table III).

Important biomarkers related to AA

Using “Alopecia Areata” as a  keyword search 
in the CTD database, we identified 24 KEGG sig-
naling pathways and 10 genes directly linked to 
the disease. Among these, 8 pathways overlapped 

(marked with “*”) in Table III. Notably, CXCL9 and 
CXCL10 were found to be directly linked to the 
overlapping disease within the pathways. ROC 
analysis was conducted to assess the sensitivity 
and specificity of CXCL9 and CXCL10 in discrim-
inating AA patients from controls, resulting in 
notably high AUC values of 0.87 and 0.836, re-
spectively (Figure 6 A, B). Additionally, analysis of 
GSE80342 yielded similar results, demonstrating 
significantly elevated expression levels of CXCL9 
and CXCL10 in AA patients compared to controls 
(Figure 6 C). 

Figure 7 illustrates the involvement of CXCL9 
and CXCL10 in three KEGG pathways: the chemok-
ine signaling pathway, cytokine-cytokine receptor 
interaction, and Toll-like receptor signaling path-
way. Furthermore, the expression levels of CXCL9 
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Table I. Biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways significantly enriched 
by overlapping differentially expressed RNAs (DERs)

Category Term Count P‑value FDR

Biological 
process

GO:0006954 – inflammatory response 30 1.47E-10 2.38E-07

GO:0002250 – adaptive immune response 19 3.48E-10 2.82E-07

GO:0042633 – hair cycle 7 1.80E-07 9.75E-05

GO:0007267 – cell-cell signaling 20 3.44E-07 1.39E-04

GO:0070098 – chemokine-mediated signaling pathway 11 7.85E-07 2.55E-04

GO:0071346 – cellular response to interferon-gamma 10 1.05E-06 2.83E-04

GO:0002548 – monocyte chemotaxis 8 1.17E-05 2.72E-03

GO:0030593 – neutrophil chemotaxis 9 3.13E-05 6.35E-03

GO:0006955 – immune response 22 4.86E-05 8.75E-03

GO:0070374 – positive regulation of ERK1 and ERK2 cascade 13 1.19E-04 1.92E-02

GO:0050776 – regulation of immune response 13 1.39E-04 1.94E-02

GO:0048247 – lymphocyte chemotaxis 6 1.55E-04 1.94E-02

GO:0006968 – cellular defense response 8 1.55E-04 1.94E-02

GO:0030574 – collagen catabolic process 8 1.90E-04 2.20E-02

GO:0007568 – aging 12 2.89E-04 3.12E-02

GO:0071347 – cellular response to interleukin-1 8 3.64E-04 3.69E-02

GO:0016337 – single organismal cell-cell adhesion 9 6.26E-04 4.60E-02

KEGG pathway hsa04062: Chemokine signaling pathway 15 1.49E-05 2.99E-03

hsa04640: Hematopoietic cell lineage 10 4.64E-05 4.66E-03

hsa04060: Cytokine-cytokine receptor interaction 16 7.53E-05 5.04E-03

hsa05340: Primary immunodeficiency 6 4.76E-04 2.39E-02

hsa04660: T cell receptor signaling pathway 9 7.30E-04 2.45E-02

hsa04620: Toll-like receptor signaling pathway 8 4.66E-03 1.34E-02

hsa04974: Protein digestion and absorption 7 7.43E-03 1.87E-02

hsa05166: HTLV-I infection 12 1.10E-02 2.46E-02

and CXCL10 showed significant associations with 
lncRNAs, such as MIR155HG and TSPOAP1-AS1. 
Additionally, other important immune-related 
genes, namely CCL13 and IL-21R, were also found 
to be involved in the pathways associated with 
CXCL9 and CXCL10.

Discussion

Alopecia areata (AA) is a multifaceted T cell-me-
diated autoimmune ailment. Conventional treat-
ments for the condition exhibit only moderate 
efficacy, underscoring the urgent need for novel 
therapeutic approaches. Thus, our study was de-
signed to identify new biomarkers associated with 
AA progression. We analyzed a  comprehensive 
dataset comprising 1708 lncRNAs and 17,326 mR-
NAs, identifying 427 overlapping DERs across AAP, 
AU, AT, and NC. Notably, these DERs were markedly 
enriched in biological processes linked to inflam-
matory and adaptive immune responses, as well 
as in KEGG signaling pathways such as chemok-
ine and cytokine-cytokine receptor interaction.  
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Furthermore, our investigation revealed signif-
icant associations between AA and activated  
CD8 T cells, effector memory CD8 T cells, regulato-
ry T cells, as well as plasmacytoid dendritic cells. 
Lastly, we identified various genes – including 
CXCL9, CXCL10, MIR155HG, TSPOAP1-AS1, CCL13, 
and IL-21R – that exhibited significant correla-
tions with the disease.

Traditionally, AA has been attributed to cell-me-
diated immune responses [22]. Prior studies have 
explored various strategies for treating AA, such 
as stem cell educator therapy, though their pre-

cise roles in AA remain unclear [23]. Our findings 
indicated a  correlation between AA and the ac-
tivation of CD8 T cells, effector memory CD8 T 
cells, regulatory T cells, and plasmacytoid den-
dritic cells. Extensive research has elucidated the 
involvement of diverse T cell subsets in AA patho-
genesis. For instance, Czarnowicki et al. demon-
strated a  relationship between the activation of 
T-helper 2 cells and disease severity, with IFN-g 
levels impacting disease chronicity [24]. Similarly, 
Elela et al. identified Th17 cells as synergistically 
involved in AA pathogenesis [25]. Furthermore, 
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our analysis revealed significant enrichment of 
DERs in biological processes associated with in-
flammatory and adaptive immune responses, 
as well as in KEGG signaling pathways such as 
chemokine and cytokine-cytokine receptor inter-

action. Notably, elevated levels of IFN-γ, known to 
play a pivotal role in AA pathogenesis, have been 
observed in AA patients [26]. Consistent with our 
findings, prior evidence suggests that CD8+ T cell 
infiltration and associated cytokines are essential 

Table II. Statistical information of modules

ID Color Module size #DERs Enrichment information

Enrichment fold (95% CI) Phyper

module 1 black 209 10 0.614 (0.288–1.164) 1.43E-01

module 2 blue 950 1 0.0135 (0.000346–0.0759) 2.20E-16

module 3 brown 488 197 5.180 (4.247–6.308) 2.20E-16

module 4 green 258 3 0.149 (0.0305–0.444) 1.55E-05

module 5 grey 1852 40 0.277 (0.194–0.385) 2.20E-16

module 6 pink 138 5 0.465 (0.148–1.121) 9.88E-02

module 7 red 257 118 5.891 (4.593–7.527) 2.20E-16

module 8 turquoise 964 43 0.573 (0.405–0.791) 3.96E-04

module 9 yellow 263 2 0.0976 (0.0117–0.358) 1.47E-06

Figure 5. Co-expression network of lncRNAs-mRNAs. Squares and circles represent lncRNAs and mRNAs, and the 
color of the node edge represents the color module corresponding to WGCNA

Table III. Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways significantly related to genes in 
the co-expression network

Term Count P‑value

*hsa04060: Cytokine-cytokine receptor interaction 11 4.00E-05

*hsa04660: T cell receptor signaling pathway 7 2.15E-04

hsa05340: Primary immunodeficiency 4 3.12E-03

*hsa04062: Chemokine signaling pathway 7 5.37E-03

*hsa04640: Hematopoietic cell lineage 5 6.79E-03

hsa04380: Osteoclast differentiation 5 2.70E-02

*hsa04514: Cell adhesion molecules (CAMs) 5 3.48E-02

*hsa04630: Jak-STAT signaling pathway 5 3.72E-02

*hsa04620: Toll-like receptor signaling pathway 4 4.65E-02

*hsa04650: Natural killer cell mediated cytotoxicity 4 4.90E-02

*Indicates that the overlapping pathways are related to the disease.
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for AA induction [27]. In summary, our data sup-
port the characterization of AA as a T cell-mediat-
ed autoimmune disease.

The chemokines CXCL9 and CXCL10, known for 
their role as chemoattractants for lymphocytes, 
have been reported to exhibit significant elevation 
in the early stages of AA [28]. They have been iden-
tified as valuable biomarkers for both diagnosing 
and treating AA [29]. In our study, we found a sig-

nificant association between CXCL9 and CXCL10 
and AA, with elevated levels in lesional samples of 
AA patients. CXCL10, induced by IFN-γ, is known to 
amplify polarized Th1 responses, which are critical 
in the pathogenesis of AA [30]. The accumulation 
of lymphocytes around hair bulbs is widely recog-
nized as a hallmark pathological change in AA [2]. 
Our findings suggest that CXCL9 and CXCL10 con-
tribute to AA development through the chemokine 
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interaction pathway. Previous studies have shown 
that CXCL10 levels correlate with AA severity, sup-
porting our results [28]. Moreover, molecular inhi-
bition of CXCL9 and CXCL10 has been proposed 
as a potential therapeutic approach, which aligns 
with our findings [29]. These chemokines may 
serve as both biomarkers and therapeutic tar-
gets in AA, emphasizing their dual role in disease 
pathogenesis and management.

Recent studies have further elucidated the role 
of CXCL9 and CXCL10 in autoimmune conditions 
other than AA. For example, their involvement in 
the pathophysiology of diseases such as systemic 
lupus erythematosus and rheumatoid arthritis has 
been well documented, highlighting their broader 
significance in autoimmune disease mechanisms 
[31, 32]. This broader context underscores the 
importance of our findings and suggests poten-

tial cross-disease therapeutic strategies targeting 
these chemokines.

Additionally, our analysis highlighted two other 
lncRNAs, MIR155HG and TSPOAP1-AS1, along with 
two genes, CCL13 and IL21R, as significant factors 
in AA progression. Previous studies have indicat-
ed the involvement of numerous immune-related 
genes and various cell types, including cytotoxic 
lymphocytes, T cells, and myeloid dendritic cells, in 
the functions of CCL13 and IL21R, suggesting their 
significant roles in AA risk [33]. Notably, our find-
ings revealed associations between the expres-
sion levels of CXCL9 and CXCL10 and the lncRNAs 
MIR155HG and TSPOAP1-AS1. Although no direct 
evidence currently supports the involvement of 
MIR155HG and TSPOAP1-AS1 in AA development, 
our results suggest their potential implication in 
AA pathogenesis. 

Figure 7. Disease-related pathway network. Squares and circles represent lncRNAs and mRNAs; the color of the 
node represent the color module corresponding to WGCNA; the diamond represents the KEGG signal pathway
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Recent literature has also highlighted contrast-
ing findings regarding the role of lncRNAs in auto-
immune diseases. Some studies suggest that other 
lncRNAs may play a more significant role in disease 
mechanisms, indicating a need for further explo-
ration and validation of our findings in different 
cohorts and with additional biomarkers [34, 35].

Furthermore, recent research has provided 
more insights into the immune mechanisms in-
volved in AA. For instance, Kim et al. (2022) inves-
tigated the ex vivo treatment of peripheral blood 
mononuclear cells from AA patients with allogenic 
mesenchymal stem cells, targeting dysregulated 
T cells and promoting immunotolerance [36]. Sim-
ilarly, Waśkiel-Burnat et al. (2021) examined the 
role of serum Th1, Th2, and Th17 cytokines in AA 
patients, offering clinical implications for these cy-
tokine profiles in disease management [37].

However, it is essential to acknowledge certain 
limitations. Our assessment of these genes’ roles 
in AA was based on statistical analyses, and while 
this approach has been validated by numerous 
researchers, it is imperative to verify our bioinfor-
matics predictions through clinical experiments. 
Future studies should focus on longitudinal data 
and functional assays to confirm the clinical rele-
vance of these biomarkers in AA.

Our findings underscore the potential of 
identified biomarkers such as CXCL9, CXCL10, 
MIR155HG, TSPOAP1-AS1, CCL13, and IL-21R to 
serve not only as diagnostic indicators but also as 
therapeutic targets. Integrating these biomarkers 
into clinical practice could enhance the precision 
of AA diagnosis, facilitate personalized treatment 
approaches, and potentially lead to more effective 
management strategies for patients.

In conclusion, our study provides a comprehen-
sive analysis of immune-related biomarkers asso-
ciated with different AA subtypes. The inclusion 
of recent studies has further strengthened our 
findings, highlighting the importance of CXCL9, 
CXCL10, MIR155HG, TSPOAP1-AS1, CCL13, and  
IL-21R in AA pathogenesis. These biomarkers of-
fer promising targets for future therapeutic strat-
egies, potentially improving the management and 
treatment of AA. The integration of these bio-
markers into clinical practice could significantly 
enhance diagnostic accuracy and therapeutic ef-
ficacy, thereby improving patient outcomes in AA.

Future research should focus on validating 
these biomarkers in larger, independent cohorts 
to confirm their diagnostic and prognostic utili-
ty. Additionally, functional studies are needed to 
elucidate the precise mechanisms through which 
these biomarkers influence AA pathogenesis. In-
vestigating the potential of these biomarkers in 
guiding personalized treatment approaches and 
their role in other autoimmune diseases could 
provide valuable insights. Finally, clinical trials as-

sessing the efficacy of targeted therapies against 
these biomarkers will be crucial in translating our 
findings into clinical practice.
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