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A b s t r a c t

Introduction: Traumatic brain injury (TBI) lacks effective clinical treatment. 
Cellular therapy, which is the transfer of autologous or allogeneic cells or 
cellular material into the patient(s) for treatment or prevention of disease, 
has shown better outcomes in TBI in several clinical and preclinical studies. 
We performed a meta-analysis to synthesize and evaluate the current evi-
dence on cellular therapy for TBI in adult patients.
Material and methods: We performed a meta-analysis on published articles 
on the topic of cellular therapy for the treatment of TBI in adult patients. 
The literature search was conducted via PubMed, China National Knowledge 
Infrastructure (CNKI), Cochrane Library, Embase, Wan Fang Data and Goo-
gle Scholar, with no restrictions on publication year. Studies were included 
based on selection criteria and quality assessment. The following data were 
extracted from included articles: author names; publication year and place; 
type of study; number, sex and age of participants; type of cells used; and 
post-treatment follow-up. The required data related to the Fugl-Meyer Mo-
tor Scale (FMMS), the Disability Rating Scale  (DRS), and patients’ overall 
improvement were pooled and analyzed using RevMan (Ver. 5.4.1).
Results: Five studies that met the selection criteria and considered as high 
quality, containing 367 participants, with an average follow-up time of 7.58 
±6.93 months, were included in the meta-analysis. The results showed that 
cellular therapy significantly improved (OR = 0.26; 95% CI = 0.15 to 0.48; p = 
0.0001) the overall performance of the patients. While improvements in the 
FMMS (MD = 3.79; 95% CI = –2.53 to 10.10; p = 0.24) and DRS (MD = –0.16; 
95% CI = –1.51 to 1.19; p = 0.82) were not statistically significant, they may 
still be clinically significant. 
Conclusions: This meta-analysis suggests that cellular therapy improves the 
clinical condition of TBI patients. Larger, multicenter clinical trials are required 
to further confirm these findings and clarify the optimal use of stem cells in TBI. 

Key words: traumatic brain injury, stem cells, progenitor cells, 
transplantation, clinical trial.
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Introduction

Traumatic brain injury (TBI) is mainly caused 
by external physical insults to the brain, which 
may lead to alterations in consciousness, of the 
mental or physical state of the patient [1]. TBI re-
mains one of the principal causes of deaths and 
disabilities with almost 10 million victims world-
wide each year [2, 3]. Nearly 2.5 million Americans 
suffer from the tragic consequences of TBI. These 
patients live with impairment in sensory, motor, 
behavioral, or cognitive functions. The incidence 
rate for moderate and severe TBI in children has 
not improved in the last 10 years, with disappoint-
ing outcomes for those with severe injures [4–6]. 

The World Health Organization warns that along 
with the human loss, TBI is one of the top financial 
burdens on health-providing platforms [2, 7]. The 
damage that occurs during the primary impact is 
referred to as the “primary injury”, whereas the 
damage secondary to the initial insult via cellular, 
physiological, and biochemical events is referred to 
as “secondary injury” [8]. Brain edema followed by 
increased intracranial pressure (ICP) is the charac-
teristic of many neurosurgical diseases. An extreme 
ICP is believed to be the main cause of death in 
such patients. The drug of choice to decrease an 
acute ICP is mannitol or hypertonic saline [9, 10].

The current treatment options for TBI, such as 
hyperbaric oxygenation, rehabilitation and brain 
stimulation are only of supportive nature; there-
fore, it is necessary to seek an absolute thera-
peutic option [11, 12]. Considering the complex 
pathomechanism of TBI, a  treatment that could 
maintain or restore the function of injured neurons 
would be the best approach. Progenitor cells are of 
great importance in this regard due to their plas-
ticity, migration, and self-renewal capacity [13, 14]. 
Recently cellular therapy has gained a  particular 
interest in various diseases, such as cerebral palsy, 
TBI, stroke, spinal cord injury, and autism [15–17]. 

Several types of cells, such as bone marrow de-
rived stem cells, neural stem cells (NSCs), embryonic 
cells, pluripotent cells and umbilical cord blood cells, 
have improved TBI in different animal models [18–
21]. The way transplanted cells help to repair TBI 
might be via replacing the damaged cells through 
proliferation and differentiation, or by secreting 
trophic factors to cause endogenous repair [22]. 
As cell transplantation for TBI is not only studied in 
preclinical models, but also tried in various clinical 
trials, we decided to perform a meta-analysis on the 
effects of cellular therapy for TBI in adult patients.

Material and methods

This meta-analysis is compliant with PRISMA 
2020, and follows a previously described proto-
col [23].

Search strategy

A  systemic search was conducted on PubMed, 
China National Knowledge Infrastructure (CNKI), 
Cochrane Library, Embase, Wan Fang Data and Goo-
gle Scholar using the search terms “traumatic brain 
injury”, “cellular therapy”, and “clinical trial” for 
articles published in English language prior to May 
2024. Two researchers independently examined the 
titles and abstracts of all searched records and ex-
cluded those that did not meet eligibility criteria.

Inclusion criteria 

The studies were included if they met the fol-
lowing criteria: (1) the main focus of the study was 
on cellular therapy for TBI; (2) original, controlled 
clinical trial research article; (3) adult patients aged 
18 years or over; (4) full text article available.

Exclusion criteria 

The studies were excluded if they met one of 
the following criteria: (1) patients aged under  
18 years; (2) no full text accessible; (3) no con-
trol available; (4) case report; (5) letter to editor;  
(6) preclinical study; (7) review article; (8) study 
with no quantitative data; (9) meeting abstract; 
(10) book chapter; (11) low-quality study. 

Quality assessment

In order to assess the quality of a study, the New-
castle–Ottawa Scale (NOS) was used. In case-con-
trol trials, the NOS covers three areas – selection, 
exposure, and comparability – while in a  cohort 
study it covers selection, outcome, and compara-
bility [24]. A numbered item in exposure, outcome, 
or selection categories can be maximally awarded 
with one star, whereas a  maximum of two stars 
can be given to a numbered item in a comparabil-
ity category [25]. A  study can maximally receive  
9 stars, and a study was considered as high quality 
with 6+ stars, moderate quality with 4–5 stars, and 
low quality with less than 4 stars [26].

Data extraction

The following data were extracted from all in-
cluded articles: first authors’ names, publication 
year, country of research, type of study, (number, 
sex and age) of participants, type of cells used, and 
post-treatment follow-up. The extracted data were 
entered into a predesigned data collection sheet, 
and then tabulated onto a  spreadsheet (Table I). 
Moreover, outcomes such as Fugl-Meyer Motor 
Scale (FMMS), Disability Rating Scale (DRS), and 
overall improvement of the patients were extract-
ed and analyzed using RevMan (Ver.5.4.1). FMMS 
is a broadly accepted scale used in clinical practice 
to measure motor deficit of the affected limb(s) in 
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conditions such as stroke or TBI. It has a maximum 
score of 100, with a score of zero indicating hemi-
plegia, and 100 representing a  normal individual 
[27, 28]. The DRS measures general functional 
changes in TBI patients. Its scores range from zero 
to 29, with zero representing no disability and 29 
designating a profound vegetative state [27, 29].

Statistical analysis

The data were analyzed using RevMan 
(Ver.5.4.1) software. Heterogeneity among the 
studies was tested, and a  p-value  <  0.05 or 
I2 > 50% was considered to demonstrate signifi-
cant heterogeneity [10]. Dichotomous data such 
as in “overall improvement” were expressed as 
odds ratio (OR) with 95% confidence interval (CI). 
Continuous data such as in FMMS and DRS were 
expressed as mean difference (MD) with 95% CI. 
A p-value less than 0.05 was considered to be sta-
tistically significant.

Results

Characteristics and selection of individual 
studies

Initially, 2553 articles were identified through 
database searches and reference review. The re-
cords were checked for duplicates, and 2432 
articles were left after repetitive articles were re-
moved. Screening the titles and abstracts of the 

remaining articles, 2413 articles were removed, 19 
articles were selected to be relevant, and their full 
texts were accessed. The 19 full text articles were 
evaluated for eligibility; 6 articles had no control 
group, the participants of 2 articles were less than 
18 years old, 2 articles contained no extractable 
data, 1 article was a  conference abstract, and 3 
articles were of low literature quality. After apply-
ing the eligibility criteria, 5 controlled clinical trials 
(Table II) were finally included in the meta-analysis 
(Figure 1). The included articles contained 367 pa-
tients, with a sample size in the range of 24 to 166. 

Overall improvement of patients

Two studies [30, 31] provided data on overall 
improvement of the patients after cellular thera-
py comparing treatment and control groups. The 
fixed effect model was chosen based on statisti-
cally significant heterogeneity (I2 = 75%, p = 0.04) 
among the studies. The pooled mean difference 
(MD) of overall improvement in treatment groups 
versus control groups was 0.26 (95% CI: 0.15 to 
0.48, p = 0.0001) which indicates that the treat-
ment significantly improves overall condition of 
the patients (Figure 2 A).

Fugl-Meyer Motor Scale 

FMMS related information was obtained from 
two studies [27, 32], comparing treatment and 

Table I. Summarized characteristics of studies included in meta-analysis

Study Country Type of study Treatment 
(n)

Control
(n)

Sex
(M/F)

Age 
[years]

Type of cells 
used

Fol-
low-up

Masahito 
Kawabori  
2021

Japan Double-blind, 
randomized, controlled, 

phase 2 clinical trial

46 15 43/18 34.4 
±11.8

Allogeneic 
modified 

bone marrow-
derived MSCs 
(SB623 cells)

6 m

Charles S 
Cox Jr 
2017

USA Open label, non-
randomized, controlled, 
phase I/IIa clinical trial

15 9 18/6 32 ±3 Autologous 
bone marrow 
mononuclear 

cells (BMMNCs)

6 m

Sen 
Wang  
2013

China Randomized, single-
blind, controlled clinical 

trial 

20 20 32/8 28.07 
±9.78

Umbilical cord 
mesenchymal 

stem cells 
(UCMSCs)

6 m

Chunlei 
Tian  
2013

China Nonrandom, open-
labeled, controlled 

clinical trial

97 69 NA 29.5 
±7.91

Autologous 
bone marrow 
mesenchymal 

stem cells 
(BMMSCs)

14 d

Victor I. 
Seledtsov 
2005

Russia Randomized, 
controlled, clinical trial

38 38 56/20 37.70 
±11.51

Fetal brain 
neural 

& 
hematopoietic 

liver cells

(18–24) 
m

Total 216 151

NA – not available, y – year, m – month, d – day, M – male, F – female.



Mujahid Alizada, Shu Lin, Jinxiang Wu, Mirwais Alizada, James Reeves Mbori Ngwayi, Muhebullah Alizada, Hongzhi Gao

2470� Arch Med Sci 6, December / 2025

ing that cellular therapy does not significantly im-
prove disability in TBI patients (Figure 2 C).

Risk of bias

To estimate the risk of publication bias, funnel 
plots were obtained and visually assessed for all 
studies included in the meta-analysis. Based on 
the symmetric distribution of the studies’ effect 
sizes in the funnel plots, it was concluded that no 
publication bias was present (Figures 2 D–F).

Discussion

Our meta-analysis included five clinical trials 
covering overall outcome, motor activity and dis-
ability improvement of adult TBI patients after cell 
therapy. Pathophysiological events during TBI fall 
into two categories: primary and secondary. The 
biomechanical or physical insults that lead to the 
immediate events are followed by a flow of events 
such as, production of free radicals, excitotoxicity, 
hypoperfusion, ischemia, disturbance to cerebro-
vascular autoregulation, intracranial hypertension 
and metabolic dysfunction [34]. The flow of events 
that release various biological factors causes cellu-
lar death, which results in local or global cerebral 
atrophy [35]. Thyroid cancer stem cells (TCSCs) 
are interesting biomarkers and possible targets 
for clinical intervention since they are essential to 
the pathophysiology, metastasis, and therapeutic 
response of thyroid cancer. Numerous studies con-
ducted in the last few years have shown a strong 
correlation between cancer stem cells (CSCs) and 
the development and progression of tumors [36]. 
Research findings suggest that global injury occurs 
more commonly, which is mainly evidenced in the 
frontal lobe, hypothalamus, temporal lobe, basal 
ganglia, corpus callosum, fornices, hippocampus, 
and superior cerebral peduncles [37, 38]. Salidro-
side can reduce both the neurological impairment 
score and the infarct volume of the rat brain in the 
focal cerebral ischemia/reperfusion injury model in 
rats [39]. Injury to these structures initially causes 
mood disorders, psychiatric deficits, depression, 
and neurobehavioral alterations [40]. 

Various preclinical studies have shown the re-
generative ability of stem cells in animal TBI mod-
els [41–45]. Several preclinical TBI models have 

Table II. Quality assessment of trials included in meta-analysis using Newcastle–Ottawa Scale

Study Selection Comparability Outcome Total score

Masahito Kawabori 2021 **** ** *** 9/9

Charles S Cox Jr 2017 *** ** *** 8/9

Sen Wang 2013 *** ** ** 7/9

Chunlei Tian 2013 *** ** *** 8/9

Victor I. Seledtsov 2005 *** ** ** 7/9

Figure 1. Flow chart showing study identification 
and selection strategy

Full text articles 
reviewed for eligibility 

(n = 19) 

Full text articles excluded 
(n = 11) 

• No control group (n = 6) 
• �Patient age less than  

18 years (n = 2) 
• �Not containing data of 

interest (n = 2) 
• �Conference abstract 

without full text (n = 1) 

Studies after duplicates 
removed (n = 2432) 

Studies screened  
(n = 2432)

Studies included 
in quality 

assessment  
(n = 8) 

Studies included 
in meta-analysis 

(n = 5) 

Studies excluded 
(n = 2413) 

Studies 
considered as  

low quality  
(n = 3)

control groups. Heterogeneity (I2 = 0%, p = 0.55) 
across the studies was not significant based on 
the fixed effect model. The pooled MD of FMMS in 
the two groups was 3.79 (95% CI: –2.53 to 10.10, 
p = 0.24). Although the data show that the treat-
ment’s effect on improving motor activity is not 
statistically significant, it may still have clinical 
significance (Figure 2 B).

Disability Rating Scale 

DRS was reported by two studies [27, 33], com-
paring treatment and control groups. There was 
no heterogeneity among the studies (I2 = 0%, p = 
0.90) with the fixed effect model. The pooled MD 
was –0.16 (95% CI: –1.51 to 1.19, p = 0.82) show-

Studies obtained from 
database searches  

(n = 2486)

Studies obtained from 
reference review  

(n = 67) 
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A Overall improvement
Study or subgroup 	                 Treatment 	           Control 	 Weight  	 Odds ratio M-H, 	 Odds ratio M-H, 
	 Total 	 Events 	 Total 	 Events 	 (%)	 fixed, 95% CI	 fixed, 95% CI

Chunlei Tian 2013 	 59 	 97 	 55 	 69 	 55.8 	 0.40 [0.19, 0.81]�
Victor I. Seledtsov 2005 	 5 	 38 	 23 	 38 	 44.2 	 0.10 [0.03, 0.31]�

Total (95% CI) 		  135 		  107 	 100.0 	 0.26 [0.15, 0.48]�
Total events 	 64 		  78

Heterogeneity: c2 = 4.06, df = 1 (p = 0.04); I2= 75

Test for overall effect: Z = 4.39 (p < 0.0001) 

Figure 2. Forest and funnel plots of all studies 
included in meta-analysis. Forest plots of overall 
improvement (A), Fugl-Meyer Motor Scale (B), and 
Disability Rating Scale  (C) comparing treatment 
versus control groups. Funnel plots for observing 
any possible publication bias in overall improve-
ment (D), Fugl-Meyer Motor Scale (E), and Disabil-
ity Rating Scale (F)

	0.005	 0.1	 1	 10	 200

		  Favours treatment 	      Favours control 

B Fugl-Meyer Motor Scale (FMMS)
Study or subgroup 		  Treatment 			   Control 		  Weight  	 Mean difference IV, 	 Mean difference IV,
	 Mean 	 SD 	 Total 	 Mean 	 SD 	 Total	 (%)	 fixed, 95% CI	 fixed, 95% CI
Masahito Kawabori 2021 	 60.6 	 20.8 	 46 	 54.6 	 15 	 15 	 42.5 	 6.00 [–3.68, 15.68] 

Sen Wang 2013 	 33.05 	14.03 	 20 	 30.9 	 12.81 	 20 	 57.5 	 2.15 [–6.18, 10.48]

Total (95% CI) 			   66 			   35 	 100.0 	 3.79 [–2.53, 10.10] 
Heterogeneity: c2 = 0.35, df = 1 (p = 0.55); I2 = 0% 

Test for overall effect: Z = 1.18 (p = 0.24) 
	–100	 –50	 0	 50	 100

		  Favours treatment 	Favours control 

C Disability Rating Scale (DRS)
Study or subgroup 		  Treatment 			   Control 		  Weight  	 Mean difference IV, 	 Mean difference IV, 
	 Mean 	 SD 	 Total 	 Mean 	 SD 	 Total	 (%)	 fixed, 95% CI	 fixed, 95% CI

Charles S. Cox Jr 2017 	 4.923 	2.783 	 13 	 4.889 	4.285 	 9 	 17.9 	 0.03 [–3.15, 3.22] 
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demonstrated improvement in motor, behavioral 
and cognitive functions after neural, mesenchy-
mal, or progenitor stem cell therapy. These effects 
are most likely caused by production of neuro-
trophic factors, improvement of angiogenesis and 
downregulation of astrogliosis [18, 46, 47]. Treat-
ing unilateral limbal stem cell deficits has shown 
promise with autologous limbal epithelium trans-
plantation [48]. When existing treatment options 
and accepted medical standards are inadequate, 
transplantology is a branch of medicine that saves 
lives [49]. Ma et al. indicated that transplanted 
cells significantly decrease at the early stage of 
transplantation. The possible reason could be the 
post-traumatic inflammatory cascade in the recip-
ient brain that affects the survival of the cells [50, 
51]. Zhang et al. applied bone marrow derived au-
tologous mesenchymal stem cells in 7 TBI patients 
via intracranial and intravenous route. They found 
that it was safe and the patients showed signifi-
cant improvement in neurological functions [52]. 
Moreover, Cox et al. and Liao et al. also transplant-
ed bone marrow mononuclear cells to severe TBI 
patients through the intravenous route, and they 
too reported the treatment to be safe and clinical-
ly significant [53, 54]. Histopathological damage 
and the CNS inflammatory response progressively 
resolve and return. Consequently, microglia may 
be one of the key targets of thermal stimula-
tion-mediated central nervous system injury, and 
controlling their polarization by restricting M1 or 
encouraging M2 activation may develop into a vi-
able therapeutic approach for disorders that pro-
duce heat-induced brain damage [55]. The admin-
istration of autologous bone marrow mononuclear 
cells to chronic TBI patients by Sharma et al. also 
improved the condition of the patients without 
any major side effect [1]. 

Studies have shown that NSC therapy improved 
the neurological functions in preclinical models of 
TBI [56–58]. Several potential mechanisms have 
been proposed for obtaining these effects, such 
as immunomodulation and restoring neuronal cir-
cuits [59], production of neurotrophic factors [60], 
secretion of specific neurotransmitters [61], and 
neuronal cell replacement [62]. Research on spi-
nal cord injury (SCI) in animals has demonstrated 
that SCI causes two types of damage: mechanical 
damage; and secondary injury caused by neuro-
nal apoptosis in the central nervous system (CNS), 
which causes the damage to spread. According 
to our research, the rs531564 polymorphism may 
cause down-regulation of miR-124, which in turn 
may enhance the production of BIM. This could 
lead to death in cells and prolong the time re-
quired for patients to recover following SCI [63]. 
Together, necrosis and apoptosis result in death 
of neurons and glia during TBI. Some preclinical 

studies show that NSC transplantation reduces 
apoptosis around the ischemic spots, resulting in 
functional improvement [64]. Osteoblast progen-
itors found in bone marrow stem cells (MSCs) in 
blood clots can result in the production of bone 
on scaffolds in the presence of growth stimuli [65].

It is also possible that these transplanted cells 
enhance endogenous repair responses such as im-
proving synaptogenesis, neurogenesis, and angio-
genesis [66–69]. Some researchers also propose 
that the secretion of specific trophic factors such 
as BDNF, NGF, GDNF, and VEGF by transplanted 
cells could be a possible mechanism for neuronal 
regeneration and repair [70, 71]. As the capacity 
of the brain is very limited to regenerate neurons, 
it is challenging to repair a damaged structure in 
the brain. At present, no treatment exists to treat 
diffuse axonal injury and to divert the cascade of 
pathological events that leads to cellular death 
[1]. Even in preclinical TBI models, transplantation 
of NSCs leaves several questions unanswered, 
such as the ideal time of therapy, effective route of 
administration, and optimal dose for the cells [72]. 
Cellular therapy demonstrated potential to repair 
cerebral damage via neuroprotective and neurore-
storative mechanisms. It is believed that stem 
cells use their neurogenic ability to repair injured 
brain [41]. After all, stem cell therapy remains the 
only hope for the future of TBI patients.

In conclusion, this meta-analysis suggests 
that cellular therapy significantly improves (p = 
0.0001) the overall condition of adult TBI patients. 
Moreover, the pooled data for the Fugl-Meyer Mo-
tor Scale (p = 0.24) and Disability Rating Scale (p = 
0.82) show a non-statistically significant improve-
ment, which is still of great clinical importance.
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