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Abstract

Introduction: The aim of this study was to explore the immune-related com-
petitive endogenous RNA (ceRNA) network in osteoarthritis (OA), focusing
on identifying differentially expressed long non-coding RNAs (IncRNAs), con-
structing a classification model, and examining the associations between
these IncRNAs and immune cell subsets in OA.

Material and methods: Microarray data from the Gene Expression Omnibus
(GEO) database were used to identify differentially expressed genes (DEGs)
in synovial tissue of OA patients. A classification model was constructed us-
ing the Least Absolute Shrinkage and Selection Operator (LASSO) regression
with selected IncRNAs. Computational methods such as CIBERSORT were
employed to quantify immune cell infiltration patterns, and weighted gene
co-expression network analysis (WGCNA) was conducted to delineate co-ex-
pression modules. Finally, a ceRNA network was constructed to elucidate the
regulatory interactions among IncRNAs, miRNAs, and mRNAs.

Results: We identified 5927 DEGs, among which 47 were differentially
expressed long non-coding RNAs (DELs). Seven DELs (DGCR11, FAM215A,
HCGY9, PART1, FAM106A, NOP14-AS1, PRORY) formed the basis of a classifi-
cation model with an area under the receiver operating characteristic (ROC)
curve of 1. We also examined the infiltration patterns of immune cells in
OA tissues and found significant differences compared to healthy controls,
indicating a strong immunological component in OA pathogenesis. WGCNA
identified a turquoise module showing a strong correlation with OA traits.
Conclusions: The study highlights the importance of ceRNA networks in
understanding the complex pathogenesis of OA and offers a comprehen-
sive framework for future research into potential diagnostic biomarkers and
therapeutic targets.

Key words: osteoarthritis, long non-coding RNA, competitive endogenous
RNA, immune cell infiltration, biomarkers, therapeutic targets.

Introduction

Osteoarthritis (OA) is one of the most common joint diseases, pro-
foundly impacting the quality of life of millions of individuals worldwide.
It primarily arises from cartilage damage but eventually involves the
entire joint [1, 2]. The incidence of OA increases significantly with age,
making it a major public health concern in aging populations [3-5]. In
2021, it was estimated that more than 22% of adults over 40 years old
suffered from knee OA, impacting over 500 million individuals worldwide
and placing a substantial burden on healthcare systems [6].
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Various risk factors, including age, gender, obe-
sity, genetics, and joint injuries, have been asso-
ciated with OA progression [7-9]. Pathologically,
OA is characterized by joint cartilage degenera-
tion and secondary osteophyte formation, accom-
panied by primary symptoms such as joint pain,
swelling, and restricted mobility. These symptoms
not only limit daily activities but also contribute
to psychological distress, further exacerbating the
overall burden of the disease [7, 10-12].

Recent advances in OA research have high-
lighted the critical roles of various molecular
players, including cytokines, non-coding RNAs
(ncRNAs), signaling pathways, and metallopro-
teinases [13-16]. Inflammatory cells and their
associated mediators, including IL-6 and TNF-q,
have been implicated in OA pathogenesis, induc-
ing the expression of metalloproteinases (MMPs)
and contributing to disease progression. Addi-
tionally, dysfunction of macrophages plays a piv-
otal role in OA pathogenesis. Despite advances
in treatment, OA remains incurable due to gaps
in understanding the intricate pathogenic mech-
anisms underlying its onset and progression
[17, 18]. Therefore, elucidating the pathological
signaling pathways and key molecules involved
in OA pathogenesis is imperative for identifying
treatment targets and developing pharmaceutical
interventions.

Long non-coding RNA (IncRNA), characterized
by its sequence length exceeding 200 nucleotides,
has emerged as a pivotal player in diverse bio-
logical processes, including epigenetic regulation,
immune modulation, and signal transduction [19,
20]. In OA, several IncRNAs have been implicated
in disease pathogenesis, highlighting their diverse
roles in disease modulation [18, 21]. For instance,
the m6A-mediated upregulation of ACO08 has
been found to promote OA progression through
the miR-328-3p-AQP1/ANKH axis [22]. Conversely,
exosomes derived from bone marrow mesenchy-
mal stem cells, facilitated by the IncRNA LYRM4-
AS1-GRPR-miR-6515-5p pathway, exhibit a pro-
tective influence on OA [23]. Additionally, DANCR
and IncRNA KLF3-AS1 have been recognized as
molecular sponges for miRNAs, regulating the ex-
pression of their target genes and impacting OA
pathogenesis [24-26].

The concept of competitive endogenous RNA
(ceRNA) has further expanded our understanding
of the complex regulatory networks in OA. ceRNA
networks involve interactions among IncRNAs,
miRNAs, and mRNAs, which regulate gene ex-
pression and contribute to disease pathogenesis
[27, 28]. Investigating these networks offers novel
insights into the molecular underpinnings of OA,
potentially identifying new therapeutic targets and
diagnostic biomarkers.

In this study, we aimed to explore the im-
mune-related ceRNA network in OA through sys-
tematic analysis of transcriptome data from OA
tissues and healthy controls. We identified differ-
entially expressed IncRNAs and constructed a clas-
sification modelincorporating key IncRNA features
associated with OA. To further elucidate the func-
tional relevance of these IncRNAs, we performed
weighted gene co-expression network analysis
(WGCNA) and built a ceRNA network to eluci-
date the regulatory interactions among IncRNAs,
miRNAs, and mRNAs involved in OA pathogenesis.
By integrating multi-omics data and bioinformat-
ics analysis, our goal was to discover potential
diagnostic biomarkers and therapeutic targets for
OA, which could significantly impact the develop-
ment of personalized medical approaches for in-
dividual patients. In summary, our study provided
a comprehensive framework for understanding
the immune-related ceRNA network in OA, offer-
ing new insights into the molecular mechanisms
driving disease progression, and highlighting po-
tential avenues for therapeutic interventions.

Material and methods
Microarray data acquisition

Microarray data of synovial tissue in OA were
obtained from the GEO database. The train-
ing set included the GPL96 datasets GSE55584,
GSE55457, and GSE55235, with 26 OA samples
and 17 normal tissue samples. The testing set
comprised the GPL96 dataset GSE12021, with
8 OA samples and 10 normal tissue samples. For
the training set, data integration, background cor-
rection, and normalization were performed using
the “affy” package [29].

Classification model construction and
validation

The Least Absolute Shrinkage and Selection
Operator (LASSO) method was used as a regular-
ization technique to construct a refined model by
applying penalties. Based on the differentially ex-
pressed IncRNAs, we used the “glmnet” package
to perform LASSO regression and logistic regres-
sion analysis, followed by a 10-fold cross-valida-
tion model for building [30]. Principal component
analysis (PCA) was performed using the “pca-
Methods” package in R [31]. Test sets were used
to validate the above results.

Computational immune infiltration patterns

CIBERSORT, a robust deconvolution method,
was used to quantify the infiltration of immune
cell populations [32]. We calculated the propor-
tions of 22 immune cell subsets in the pooled
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samples. The comparison between normal tissue
and the OA group was tested using the Wilcoxon
test. The correlation between 24 InRNAs and im-
mune cell subsets was compared by Pearson cor-
relation analysis. P-values < 0.05 were considered
significant.

Construction of weighted gene
co-expression network and functional
enrichment analysis

All mRNAs in the training set were used to
construct a gene co expression network, which
was implemented using the R software “WGCNA”
package [33]. Subsequently, an appropriate soft
threshold of 16 was selected, and the Dynamic
Tree Cut method was used to generate modules,
with minModuleSize set to 100 and height cutoff
set to 0.2. For each module, Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were performed us-
ing the “clusterProfiler” package [34]. P < 0.05 was
considered significant.

Construction of ceRNA networks

According to the ceRNA theory, the steps for
constructing the IncRNA-miRNA-mRNA ceRNA
network were as follows: (1) Differential miRNAs
were screened from GSE143514, with the screen-
ing criteria set at |logFC| > 1 and p < 0.05; (2) in-
teractions between GUSBP11 and miRNAs were
predicted using miRcode (http://www.mircode.
org); (3) interactions between miRNAs and miR-
NAs were predicted using starBase (https://star-
base.sysu.edu.cn/) and miRDB (http://mirdb.org/);
(4) intersection genes between the hub genes
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and the predicted mRNA in the pink module were
selected, along with miRNAs interacting with
GUSBP11, to construct a ceRNA network. Networks
were visualized using Cytoscape software [35].

Results

Identification of differentially expressed
IncRNAs and construction of a classification
model

We selected the training set for analysis and
identification of differentially expressed genes
(DEGs). A total of 5927 DEGs were identified at
p.adj < 0.05 (Figure 1 A). Among them, 47 differ-
entially expressed IncRNAs (DELs) were identified
in OA samples compared to IncRNAs in normal
tissues, including 22 downregulated genes and
25 upregulated genes (Figure 1 B).

To further narrow down the varieties and
construct a classification model, we constructed
LASSO regression models using 47 DELs. The fi-
nal 7 IncRNAs (DGCR11, FAM215A, HCGY, PART1,
FAM106A, NOP14-AS1, PRORY) formed the clas-
sification model (Figures 2 A, B). The area under
the receiver operating characteristic (ROC) curve
for the training set was 1, which shows that the
model combining 7 IncRNAs was more reliable
than the classification of a single IncRNA (Fig-
ure 2 Q). A single IncRNA was used to predict the
classification model with the highest AUC value of
0.95 (DGCR11) (Supplementary Figure S1 A). We
validated the model on the test set, where the
combined AUC was 0.944 (Figure 2 D), while the
highest single IncRNA was 0.889 (FAM106A) (Sup-
plementary Figure S1 B). PCA analysis of the train-
ing and test sets showed that the normal samples
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Figure 1. Transcriptional expression profiles in control and osteoarthritis (OA) samples. A — Volcano plot showing
the differentially expressed genes between control and OA samples. B — Dendrogram showing the hierarchical
clustering of control and OA samples based on differentially expressed IncRNAs (DELs), respectively
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Figure 2. LASSO regression model analysis of the differentially expressed IncRNAs. A, B — LASSO results of IncRNA
in training set. ROC curve of LASSO of 7 differential IncRNAs in training set (C) and test set (D). PCA analyses of
normal and OA samples in the training (E) and test sets (F)
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had a completely different distribution pattern to  tion in OA tissues. Using the CIBERSORT algo-
the OA tissue (Figures 2 E, F). These results sug-  rithm, we assessed the infiltration of 22 immune
gested that the model can effectively discriminate  cell types in 26 OA tissue samples. The Wilcoxon
OA samples from healthy controls. rank test revealed that six immune cells showed
significant differences in infiltrating levels be-
tween normal and OA tissues (Figure 3 A). Com-
pared with normal tissues, OA tissues had higher

Next, we investigated the relationship between  proportions of memory B cells, M1 macrophages,
the 7 selected IncRNAs and immune cell infiltra- M2 macrophages, and resting mast cells (all p <

Associations between 7 selected IncRNAs
and immune cell subsets
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Figure 3. Association analysis between differential IncRNAs and immune infiltration. A — Expression of immune
cells in control and osteoarthritis tissues. B — Correlation heatmap between differential LncRNA and immune cells
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0.05), and lower levels of naive B cells, activated
dendritic cells, activated mast cells, CD4 memory
resting T cells, and CD8 T cells (all p < 0.05).

To explore the relationship and immune signa-
tures between seven selected IncRNAs, we per-
formed Spearman’s correlation analysis (Figure 3 B).
The heatmap showed that IncRNA PART1 was pos-
itively correlated with memory B cells, M1 macro-
phages, M2 macrophages, and resting mast cells
(R > 0.3; p < 0.05). LncRNA NOP14-AS1 was posi-
tively correlated with naive B cells, activated den-
dritic cells, activated mast cells, CD4 memory rest-
ing T cells, and CD8 T cells (R > 0.3; p < 0.05). These
results indicated a strong correlation between the
7 IncRNAs and immune cell infiltration in OA.

Construction of selected IncRNA-weighted
gene co-expression networks

To further explore the role of these IncRNAs, we
constructed WGCNA using a soft threshold of 12,

ensuring that the network adhered to a scale-free
distribution (Figure 4 A). This approach resulted
in the identification of 10 co-expression modules
(Figure 4 B), with the turquoise module showing
the highest correlation with OA traits (Figure 4 C).
Within the turquoise module, DGCR11, FAM215A,
HCG9, and PART1 showed significant positive
correlations (R > 0.3, p < 0.05), while FAM106A,
NOP14-AS1, and PRORY showed significant neg-
ative correlations (R < —0.3, p < 0.05) (Figure 4 D).

Further analysis using GO and KEGG pathway
enrichment was performed on the genes within
the turquoise module (Figure 5 A). To narrow the
scope of the target genes of the selected IncRNAs,
we performed a module membership—gene sig-
nificance correlation analysis on the modules in
the WGCNA network and selected the top 100
genes most strongly related to the immune sig-
nature module and OA (Figure 5 B). The Venn
diagram showed that all hub genes overlapped
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Figure 4. Screening of osteoarthritis (OA)-related modules. A — Soft thresholding (power=12) to construct net-
work graphs conforming to scale-free distributions. B — Dynamic tree cutting generates 10 co-expression modules.
C — Differential expression of eigengenes in OA and controls. D — Correlation heatmap between differential Ln-
cRNAs and OA-related modules. FDR-corrected. *P < 0.05, **p < 0.01, ***p < 0.001.
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with differentially expressed genes (Figure 5 C). peroxisome, and Toll-like receptor signaling path-
GO and KEGG analyses confirmed that these hub  ways (Figure 5 D). These findings underscored the
genes were primarily involved in immunity-relat-  central role of the turquoise module and its asso-
ed pathways such as endolysosome, necroptotic  ciated IncRNAs in the immune response related
process, glycosyltransferase activity, necroptosis, to OA.

A Turquoise module enrichment

B Module membership vs. gene significance cor = 0.6, C
p < 1e-200 DEGs Turquoise top 100
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Figure 5. Screening of osteoarthritis-related module hubs. A — GO and KEGG pathway enrichment in turquoise
module. B — The screening criteria were top-100 high gene significance and high membership genes in turquoise
module. C - Venn diagram of differential genes and modular hub genes
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Table I. Expression levels of 10 miRNAs between control and osteoarthritis group and correlation with IncRNA

DGCR11

Variable Log2FC Adj.p DGCR11.corr
hsa-miR-122-5p 6.55346363 0.02902733 —-0.0238095
hsa-miR-138-5p 2.86315418 0.03738568 -0.3809524
hsa-miR-1255a 432322149 0.0479425 -0.3809524
hsa-miR-363-3p —2.7264786 0.02902733 0.21428571
hsa-miR-96-5p -3.1071837 0.02902733 0.02380952
hsa-miR-20b-5p -3.3569607 0.02902733 -0.1428571
hsa-miR-106a-5p -3.2888914 0.02902733 0.21428571
hsa-miR-675-5p -3.4012809 0.02902733 0.5952381

hsa-miR-548f-5p -3.042625 0.03738568 0.44312172
hsa-miR-3944-5p —2.7537383 0.0479425 0.42171736

mRNAs differentially expressed in OA, and their
correlations with DGCR11 was explored. Spe-
cifically, hsa-miR-122-5p, hsa-miR-138-5p, and

Finally, we constructed an immune-related ceR-  hsa-miR-1255a were upregulated, while hsa-miR-
NA network focusing on DGCR11, which showed 363-3p, hsa-miR-96-5p, hsa-miR-20b-5p, hsa-miR-
the most significant positive correlation with  106a-5p, hsa-miR-675-5p, hsa-miR-548f-5p, and
the module (R = 0.79, p = 6 x 1011). Using the hsa-miR-3944-5p were downregulated (p.adj <
GSE143514 dataset, we identified miRNAs and  0.05). Spearman analysis was conducted to fur-

Construction of immune-related ceRNA
network
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ther examine the correlation between miRNAs
and IncRNAs, demonstrating that hsa-miR-138-5p,
hsa-miR-675-5p, hsa-miR-548f-5p, hsa-miR-3944-
5p, and hsa-miR-1255a had a more significant
correlation with IncRNA DGCR11 (JR[>0.3) (Table I).
In the ceRNA network, we identified these 5 miR-
NA nodes and 88 mRNA nodes associated with the
INncRNA DGCR11 (Figure 6 A). The Sankey diagram

A

@ g
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NFATC3
STRADA
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CDKN2A

displays the functional pathways corresponding
to the hub genes in the network. RAB7A was asso-
ciated with autophagy and mitophagy, SCP2 was
associated with fatty acid metabolism, and NPRL2
was associated with mTOR signaling pathway
(Figure 6 B). These results highlighted the pivotal
role of DGCR11 in the ceRNA network and its po-
tential impact on immune-related pathways in OA.
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Figure 6. Establishment of a ceRNA network. A — IncRNA-miRNA-mRNA network. Squares represent IncRNAs, tri-
angles represent miRNAs, and circles represent mRNAs. B — Significantly enriched mRNAs and biological processes

in which they were involved
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Discussion

ceRNA networks have opened new avenues
for understanding the complex pathogenesis
of OA. Our study explored the immune-related
ceRNA network in OA by leveraging a multi-om-
ics approach. We identified a panel of DELs and
constructed a classification model for OA with
promising discriminatory power. Notably, the 7 In-
cRNAs included in the model exhibited significant
correlations with immune cell infiltration patterns
in OA tissues. Furthermore, we employed WGCNA
to delineate co-expression modules and elucidate
the functional relevance of IncRNAs within these
modules. We identified a turquoise module with
a strong correlation with OA traits and performed
functional enrichment analysis on its associated
hub genes, revealing enrichment in immune-re-
lated pathways. Finally, we constructed a ceRNA
network centered around a key IncRNA DGCR11
within the turquoise module and identified poten-
tial miRNA and mRNA targets.

The associations between these seven IncRNAs
and immune cell subsets further underscored the
role of the immune system in OA pathogenesis.
Our results indicated significant differences in
the infiltration of various immune cells between
normal and OA tissues, suggesting that immune
responses play a crucial role in disease progres-
sion. The positive correlations between IncRNAs
and immune cell subsets, such as memory B cells
and macrophages, highlight the importance of im-
mune modulation in OA. The ceRNA network con-
structed from IncRNA DGCR11 implicated various
miRNAs and mRNAs, among which RAB7A and
NPRL2 were found to be linked to autophagy and
mTOR signaling, respectively.

The mTOR signaling pathway plays a pivot-
al role in cell growth, proliferation, and survival
[36]. It has been implicated in various diseases,
including cancer and metabolic disorders. In the
context of OA, mTOR signaling is crucial because
it regulates chondrocyte metabolism and cartilage
homeostasis. Elevated mTOR activity has been
observed in OA, leading to increased chondro-
cyte proliferation and reduced autophagic activity.
These changes can contribute to the degenera-
tion of cartilage and the formation of osteophytes,
which are hallmark features of OA [37]. The asso-
ciation of NPRL2 with mTOR signaling in our study
suggested that disruptions in this pathway could
play a role in OA development and progression.

Autophagy is a cellular process that involves
the degradation and recycling of cellular compo-
nents, maintaining cell homeostasis and respond-
ing to cellular stress [38, 39]. It plays a protective
role in chondrocytes by removing damaged or-
ganelles and misfolded proteins. In OA, decreased
autophagy has been observed, leading to an ac-

cumulation of damaged cellular components and
contributing to cartilage degradation [40]. RAB7A,
identified in our ceRNA network, is associated
with autophagy and mitophagy, which involves
the selective removal of damaged mitochondria.
STEAP3 interacts with Rab7A and RACK1, affect-
ing the development and progression of osteo-
arthritis by regulating the MAPK and JAK/STAT
signaling pathways [41]. The connection between
RAB7A and autophagy in OA suggested that a lack
of proper autophagic activity might contribute to
disease progression. The reduced autophagic re-
sponse in chondrocytes could lead to increased
oxidative stress and cellular damage, ultimately
affecting joint health.

The mTOR signaling pathway and autophagy
are intricately linked, with mTOR acting as a neg-
ative regulator of autophagy. Activation of mTOR
suppresses autophagy by inhibiting the phos-
phorylation of autophagy-related proteins (ATGs),
thereby blocking the autophagic process. Con-
versely, autophagy can modulate mTOR signaling
by reducing the levels of mTOR activators, such as
insulin growth factor (IGF-1) [36, 38, 39].

Understanding the relationship between mTOR
signaling, autophagy, and OA can offer potential
therapeutic targets. Modulating mTOR activity to
restore balance in chondrocyte metabolism might
slow disease progression, while promoting au-
tophagy could reduce cellular damage and carti-
lage degradation [6, 18, 42, 43]. Future research
in this area could focus on developing treatments
that modulate mTOR activity and enhance auto-
phagic responses in chondrocytes. This approach
could help preserve joint function and alleviate OA
symptoms, providing a targeted strategy to com-
bat this debilitating disease.

Despite these promising findings, this study
has several limitations that should be acknowl-
edged. First, our study is primarily bioinformat-
ics-based and lacks experimental validation. While
the identified IncRNAs and their associations with
immune cell subsets are promising, in vitro and
in vivo experiments are necessary to confirm these
findings and explore the underlying mechanisms.
In addition, the constructed ceRNA network and
the identified pathways, such as mTOR signaling
and autophagy, offer potential therapeutic tar-
gets; however, their clinical relevance and efficacy
in treating OA remain to be established through
further research and clinical trials.

Overall, our study underscored the complexity
of OA pathogenesis and emphasized the impor-
tance of ceRNA networks in understanding dis-
ease mechanisms. The integration of multi-om-
ics data and bioinformatics approaches allowed
us to uncover new insights into OA, highlighting
key molecules and pathways that could serve as

2792

Arch Med Sci 6, December / 2025



Unveiling the immune-related ceRNA network in osteoarthritis: key biomarkers and therapeutic targets

diagnostic biomarkers and therapeutic targets.
This research contributes to the growing body of
knowledge surrounding OA and paves the way
for developing personalized medical approaches
tailored to individual patients. Nevertheless, fur-
ther experimental validation and clinical trials are
essential to translate these findings into effective
treatment strategies for OA, and to fully realize
the potential of the identified ceRNA networks in
clinical practice.

In conclusion, this study elucidated the role of
immune-related ceRNA networks in osteoarthritis
pathogenesis, providing a comprehensive frame-
work for understanding the molecular mecha-
nisms driving disease progression. We identified
differentially expressed IncRNAs and constructed
a classification model with high discriminatory
power for OA, offering promising diagnostic and
therapeutic insights. The significant correlations
between [ncRNAs and immune cell infiltration
patterns suggested an immunological component
in OA progression. The ceRNA network centered
around DGCR11 revealed connections to autopha-
gy and mTOR signaling pathways, which play a piv-
otal role in cartilage homeostasis. Understanding
these molecular mechanisms opens new avenues
for developing targeted therapies for OA. Future
research should focus on experimental validation
and clinical trials to translate these findings into
effective treatment strategies that can alleviate
OA symptoms and improve joint function.
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