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Unveiling the immune-related ceRNA network in 
osteoarthritis: key biomarkers and therapeutic targets
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A b s t r a c t

Introduction: The aim of this study was to explore the immune-related com-
petitive endogenous RNA (ceRNA) network in osteoarthritis (OA), focusing 
on identifying differentially expressed long non-coding RNAs (lncRNAs), con-
structing a  classification model, and examining the associations between 
these lncRNAs and immune cell subsets in OA.
Material and methods: Microarray data from the Gene Expression Omnibus 
(GEO) database were used to identify differentially expressed genes (DEGs) 
in synovial tissue of OA patients. A classification model was constructed us-
ing the Least Absolute Shrinkage and Selection Operator (LASSO) regression 
with selected lncRNAs. Computational methods such as CIBERSORT were 
employed to quantify immune cell infiltration patterns, and weighted gene 
co-expression network analysis (WGCNA) was conducted to delineate co-ex-
pression modules. Finally, a ceRNA network was constructed to elucidate the 
regulatory interactions among lncRNAs, miRNAs, and mRNAs.
Results: We identified 5927 DEGs, among which 47 were differentially 
expressed long non-coding RNAs (DELs). Seven DELs (DGCR11, FAM215A, 
HCG9, PART1, FAM106A, NOP14-AS1, PRORY) formed the basis of a classifi-
cation model with an area under the receiver operating characteristic (ROC) 
curve of 1. We also examined the infiltration patterns of immune cells in 
OA tissues and found significant differences compared to healthy controls, 
indicating a strong immunological component in OA pathogenesis. WGCNA 
identified a turquoise module showing a strong correlation with OA traits. 
Conclusions: The study highlights the importance of ceRNA networks in 
understanding the complex pathogenesis of OA and offers a  comprehen-
sive framework for future research into potential diagnostic biomarkers and 
therapeutic targets. 

Key words: osteoarthritis, long non-coding RNA, competitive endogenous 
RNA, immune cell infiltration, biomarkers, therapeutic targets.

Introduction

Osteoarthritis (OA) is one of the most common joint diseases, pro-
foundly impacting the quality of life of millions of individuals worldwide. 
It primarily arises from cartilage damage but eventually involves the 
entire joint [1, 2]. The incidence of OA increases significantly with age, 
making it a major public health concern in aging populations [3–5]. In 
2021, it was estimated that more than 22% of adults over 40 years old 
suffered from knee OA, impacting over 500 million individuals worldwide 
and placing a substantial burden on healthcare systems [6].
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Various risk factors, including age, gender, obe-
sity, genetics, and joint injuries, have been asso-
ciated with OA progression [7–9]. Pathologically, 
OA is characterized by joint cartilage degenera-
tion and secondary osteophyte formation, accom-
panied by primary symptoms such as joint pain, 
swelling, and restricted mobility. These symptoms 
not only limit daily activities but also contribute 
to psychological distress, further exacerbating the 
overall burden of the disease [7, 10–12].

Recent advances in OA research have high-
lighted the critical roles of various molecular 
players, including cytokines, non-coding RNAs 
(ncRNAs), signaling pathways, and metallopro-
teinases [13–16]. Inflammatory cells and their 
associated mediators, including IL-6 and TNF-α, 
have been implicated in OA pathogenesis, induc-
ing the expression of metalloproteinases (MMPs) 
and contributing to disease progression. Addi-
tionally, dysfunction of macrophages plays a piv-
otal role in OA pathogenesis. Despite advances 
in treatment, OA remains incurable due to gaps 
in understanding the intricate pathogenic mech-
anisms underlying its onset and progression 
[17, 18]. Therefore, elucidating the pathological 
signaling pathways and key molecules involved 
in OA pathogenesis is imperative for identifying 
treatment targets and developing pharmaceutical 
interventions. 

Long non-coding RNA (lncRNA), characterized 
by its sequence length exceeding 200 nucleotides, 
has emerged as a  pivotal player in diverse bio-
logical processes, including epigenetic regulation, 
immune modulation, and signal transduction [19, 
20]. In OA, several lncRNAs have been implicated 
in disease pathogenesis, highlighting their diverse 
roles in disease modulation [18, 21]. For instance, 
the m6A-mediated upregulation of AC008 has 
been found to promote OA progression through 
the miR-328-3p-AQP1/ANKH axis [22]. Conversely, 
exosomes derived from bone marrow mesenchy-
mal stem cells, facilitated by the lncRNA LYRM4-
AS1-GRPR-miR-6515-5p pathway, exhibit a  pro-
tective influence on OA [23]. Additionally, DANCR 
and lncRNA KLF3-AS1 have been recognized as 
molecular sponges for miRNAs, regulating the ex-
pression of their target genes and impacting OA 
pathogenesis [24–26].

The concept of competitive endogenous RNA 
(ceRNA) has further expanded our understanding 
of the complex regulatory networks in OA. ceRNA 
networks involve interactions among lncRNAs, 
miRNAs, and mRNAs, which regulate gene ex-
pression and contribute to disease pathogenesis 
[27, 28]. Investigating these networks offers novel 
insights into the molecular underpinnings of OA, 
potentially identifying new therapeutic targets and 
diagnostic biomarkers.

In this study, we aimed to explore the im-
mune-related ceRNA network in OA through sys-
tematic analysis of transcriptome data from OA 
tissues and healthy controls. We identified differ-
entially expressed lncRNAs and constructed a clas-
sification model incorporating key lncRNA features 
associated with OA. To further elucidate the func-
tional relevance of these lncRNAs, we performed 
weighted gene co-expression network analysis 
(WGCNA) and built a  ceRNA network to eluci-
date the regulatory interactions among lncRNAs,  
miRNAs, and mRNAs involved in OA pathogenesis. 
By integrating multi-omics data and bioinformat-
ics analysis, our goal was to discover potential 
diagnostic biomarkers and therapeutic targets for 
OA, which could significantly impact the develop-
ment of personalized medical approaches for in-
dividual patients. In summary, our study provided 
a  comprehensive framework for understanding 
the immune-related ceRNA network in OA, offer-
ing new insights into the molecular mechanisms 
driving disease progression, and highlighting po-
tential avenues for therapeutic interventions.

Material and methods

Microarray data acquisition

Microarray data of synovial tissue in OA were 
obtained from the GEO database. The train-
ing set included the GPL96 datasets GSE55584, 
GSE55457, and GSE55235, with 26 OA samples 
and 17 normal tissue samples. The testing set 
comprised the GPL96 dataset GSE12021, with  
8 OA samples and 10 normal tissue samples. For 
the training set, data integration, background cor-
rection, and normalization were performed using 
the “affy” package [29].

Classification model construction and 
validation

The Least Absolute Shrinkage and Selection 
Operator (LASSO) method was used as a regular-
ization technique to construct a refined model by 
applying penalties. Based on the differentially ex-
pressed lncRNAs, we used the “glmnet” package 
to perform LASSO regression and logistic regres-
sion analysis, followed by a 10-fold cross-valida-
tion model for building [30]. Principal component 
analysis (PCA) was performed using the “pca-
Methods” package in R [31]. Test sets were used 
to validate the above results.

Computational immune infiltration patterns

CIBERSORT, a  robust deconvolution method, 
was used to quantify the infiltration of immune 
cell populations [32]. We calculated the propor-
tions of 22 immune cell subsets in the pooled 
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samples. The comparison between normal tissue 
and the OA group was tested using the Wilcoxon 
test. The correlation between 24 lnRNAs and im-
mune cell subsets was compared by Pearson cor-
relation analysis. P-values < 0.05 were considered 
significant.

Construction of weighted gene  
co-expression network and functional 
enrichment analysis

All mRNAs in the training set were used to 
construct a  gene co expression network, which 
was implemented using the R software “WGCNA” 
package [33]. Subsequently, an appropriate soft 
threshold of 16 was selected, and the Dynamic 
Tree Cut method was used to generate modules, 
with minModuleSize set to 100 and height cutoff 
set to 0.2. For each module, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were performed us-
ing the “clusterProfiler” package [34]. P < 0.05 was 
considered significant.

Construction of ceRNA networks

According to the ceRNA theory, the steps for 
constructing the lncRNA-miRNA-mRNA ceRNA 
network were as follows: (1) Differential miRNAs 
were screened from GSE143514, with the screen-
ing criteria set at |logFC| > 1 and p < 0.05; (2) in-
teractions between GUSBP11 and miRNAs were 
predicted using miRcode (http://www.mircode.
org); (3) interactions between miRNAs and miR-
NAs were predicted using starBase (https://star-
base.sysu.edu.cn/) and miRDB (http://mirdb.org/);  
(4) intersection genes between the hub genes 

and the predicted mRNA in the pink module were 
selected, along with miRNAs interacting with 
GUSBP11, to construct a ceRNA network. Networks 
were visualized using Cytoscape software [35].

Results

Identification of differentially expressed 
lncRNAs and construction of a classification 
model

We selected the training set for analysis and 
identification of differentially expressed genes 
(DEGs). A  total of 5927 DEGs were identified at 
p.adj < 0.05 (Figure 1 A). Among them, 47 differ-
entially expressed lncRNAs (DELs) were identified 
in OA samples compared to lncRNAs in normal  
tissues, including 22 downregulated genes and  
25 upregulated genes (Figure 1 B). 

To further narrow down the varieties and 
construct a  classification model, we constructed 
LASSO regression models using 47 DELs. The fi-
nal 7 lncRNAs (DGCR11, FAM215A, HCG9, PART1, 
FAM106A, NOP14-AS1, PRORY) formed the clas-
sification model (Figures 2 A, B). The area under 
the receiver operating characteristic (ROC) curve 
for the training set was 1, which shows that the 
model combining 7 lncRNAs was more reliable 
than the classification of a  single lncRNA (Fig- 
ure 2 C). A single lncRNA was used to predict the 
classification model with the highest AUC value of 
0.95 (DGCR11) (Supplementary Figure S1 A). We 
validated the model on the test set, where the 
combined AUC was 0.944 (Figure 2 D), while the 
highest single lncRNA was 0.889 (FAM106A) (Sup-
plementary Figure S1 B). PCA analysis of the train-
ing and test sets showed that the normal samples 
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Figure 1. Transcriptional expression profiles in control and osteoarthritis (OA) samples. A – Volcano plot showing 
the differentially expressed genes between control and OA samples. B – Dendrogram showing the hierarchical 
clustering of control and OA samples based on differentially expressed lncRNAs (DELs), respectively
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Figure 2. LASSO regression model analysis of the differentially expressed lncRNAs. A, B – LASSO results of lncRNA 
in training set. ROC curve of LASSO of 7 differential lncRNAs in training set (C) and test set (D). PCA analyses of 
normal and OA samples in the training (E) and test sets (F)
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had a completely different distribution pattern to 
the OA tissue (Figures 2 E, F). These results sug-
gested that the model can effectively discriminate 
OA samples from healthy controls.

Associations between 7 selected lncRNAs 
and immune cell subsets

Next, we investigated the relationship between 
the 7 selected lncRNAs and immune cell infiltra-

tion in OA tissues. Using the CIBERSORT algo-
rithm, we assessed the infiltration of 22 immune 
cell types in 26 OA tissue samples. The Wilcoxon 
rank test revealed that six immune cells showed 
significant differences in infiltrating levels be-
tween normal and OA tissues (Figure 3 A). Com-
pared with normal tissues, OA tissues had higher 
proportions of memory B cells, M1 macrophages, 
M2 macrophages, and resting mast cells (all p < 

Co
m

po
si

ti
on

0.6

0.4

0.2

0

A

B

B.cells_naive 
B.cells.memory 
Plasma cells 
T.cells.CD8 
T.cells.CD4.memory.resting 
T.cells.CD4.memory.activated 
T.cells.follicular.helper 
T.cells.regulatory.Tregs 
T.cells.gamma.delta 
NK.cells.resting 
NK.cells.activated 
Monocytes 
Macrophages.M0 
Macrophages.M1 
Macrophages.M2 
Dendritic.cells.resting 
Dendritic.cells.activated 
Mast.cells.resting 
Mast.cells.activated 
Neutrophils 

Figure 3. Association analysis between differential lncRNAs and immune infiltration. A – Expression of immune 
cells in control and osteoarthritis tissues. B – Correlation heatmap between differential LncRNA and immune cells
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0.05), and lower levels of naïve B cells, activated 
dendritic cells, activated mast cells, CD4 memory 
resting T cells, and CD8 T cells (all p < 0.05). 

To explore the relationship and immune signa-
tures between seven selected lncRNAs, we per-
formed Spearman’s correlation analysis (Figure 3 B).  
The heatmap showed that lncRNA PART1 was pos-
itively correlated with memory B cells, M1 macro-
phages, M2 macrophages, and resting mast cells  
(R > 0.3; p < 0.05). LncRNA NOP14-AS1 was posi-
tively correlated with naïve B cells, activated den-
dritic cells, activated mast cells, CD4 memory rest-
ing T cells, and CD8 T cells (R > 0.3; p < 0.05). These 
results indicated a strong correlation between the 
7 lncRNAs and immune cell infiltration in OA.

Construction of selected lncRNA-weighted 
gene co-expression networks

To further explore the role of these lncRNAs, we 
constructed WGCNA using a soft threshold of 12, 

ensuring that the network adhered to a scale-free 
distribution (Figure 4 A). This approach resulted 
in the identification of 10 co-expression modules 
(Figure 4 B), with the turquoise module showing 
the highest correlation with OA traits (Figure 4 C). 
Within the turquoise module, DGCR11, FAM215A, 
HCG9, and PART1 showed significant positive 
correlations (R > 0.3, p < 0.05), while FAM106A, 
NOP14-AS1, and PRORY showed significant neg-
ative correlations (R < –0.3, p < 0.05) (Figure 4 D).

Further analysis using GO and KEGG pathway 
enrichment was performed on the genes within 
the turquoise module (Figure 5 A). To narrow the 
scope of the target genes of the selected lncRNAs, 
we performed a  module membership–gene sig-
nificance correlation analysis on the modules in 
the WGCNA network and selected the top 100 
genes most strongly related to the immune sig-
nature module and OA (Figure 5 B). The Venn 
diagram showed that all hub genes overlapped 
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with differentially expressed genes (Figure 5 C). 
GO and KEGG analyses confirmed that these hub 
genes were primarily involved in immunity-relat-
ed pathways such as endolysosome, necroptotic 
process, glycosyltransferase activity, necroptosis, 

peroxisome, and Toll-like receptor signaling path-
ways (Figure 5 D). These findings underscored the 
central role of the turquoise module and its asso-
ciated lncRNAs in the immune response related 
to OA.
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Table I. Expression levels of 10 miRNAs between control and osteoarthritis group and correlation with lncRNA 
DGCR11

Variable Log2FC Adj.p DGCR11.corr

hsa-miR-122-5p 6.55346363 0.02902733 –0.0238095

hsa-miR-138-5p 2.86315418 0.03738568 –0.3809524

hsa-miR-1255a 4.32322149 0.0479425 –0.3809524

hsa-miR-363-3p –2.7264786 0.02902733 0.21428571

hsa-miR-96-5p –3.1071837 0.02902733 0.02380952

hsa-miR-20b-5p –3.3569607 0.02902733 –0.1428571

hsa-miR-106a-5p –3.2888914 0.02902733 0.21428571

hsa-miR-675-5p –3.4012809 0.02902733 0.5952381

hsa-miR-548f-5p –3.042625 0.03738568 0.44312172

hsa-miR-3944-5p –2.7537383 0.0479425 0.42171736

Figure 5. Cont. D – GO and KEGG pathway enrichment in top-100 high gene
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Construction of immune-related ceRNA 
network

Finally, we constructed an immune-related ceR-
NA network focusing on DGCR11, which showed 
the most significant positive correlation with 
the module (R = 0.79, p = 6  ×  10–¹¹). Using the 
GSE143514 dataset, we identified miRNAs and 

mRNAs differentially expressed in OA, and their 
correlations with DGCR11 was explored. Spe-
cifically, hsa-miR-122-5p, hsa-miR-138-5p, and 
hsa-miR-1255a were upregulated, while hsa-miR-
363-3p, hsa-miR-96-5p, hsa-miR-20b-5p, hsa-miR-
106a-5p, hsa-miR-675-5p, hsa-miR-548f-5p, and 
hsa-miR-3944-5p were downregulated (p.adj < 
0.05). Spearman analysis was conducted to fur-
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ther examine the correlation between miRNAs 
and lncRNAs, demonstrating that hsa-miR-138-5p, 
hsa-miR-675-5p, hsa-miR-548f-5p, hsa-miR-3944-
5p, and hsa-miR-1255a had a  more significant 
correlation with lncRNA DGCR11 (|R|>0.3) (Table I).  
In the ceRNA network, we identified these 5 miR-
NA nodes and 88 mRNA nodes associated with the 
lncRNA DGCR11 (Figure 6 A). The Sankey diagram 

displays the functional pathways corresponding 
to the hub genes in the network. RAB7A was asso-
ciated with autophagy and mitophagy, SCP2 was 
associated with fatty acid metabolism, and NPRL2 
was associated with mTOR signaling pathway 
(Figure 6 B). These results highlighted the pivotal 
role of DGCR11 in the ceRNA network and its po-
tential impact on immune-related pathways in OA.
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Discussion

ceRNA networks have opened new avenues 
for understanding the complex pathogenesis 
of OA. Our study explored the immune-related 
ceRNA network in OA by leveraging a  multi-om-
ics approach. We identified a panel of DELs and 
constructed a  classification model for OA with 
promising discriminatory power. Notably, the 7 ln-
cRNAs included in the model exhibited significant 
correlations with immune cell infiltration patterns 
in OA tissues. Furthermore, we employed WGCNA 
to delineate co-expression modules and elucidate 
the functional relevance of lncRNAs within these 
modules. We identified a  turquoise module with 
a strong correlation with OA traits and performed 
functional enrichment analysis on its associated 
hub genes, revealing enrichment in immune-re-
lated pathways. Finally, we constructed a  ceRNA 
network centered around a  key lncRNA DGCR11 
within the turquoise module and identified poten-
tial miRNA and mRNA targets.

The associations between these seven lncRNAs 
and immune cell subsets further underscored the 
role of the immune system in OA pathogenesis. 
Our results indicated significant differences in 
the infiltration of various immune cells between 
normal and OA tissues, suggesting that immune 
responses play a  crucial role in disease progres-
sion. The positive correlations between lncRNAs 
and immune cell subsets, such as memory B cells 
and macrophages, highlight the importance of im-
mune modulation in OA. The ceRNA network con-
structed from lncRNA DGCR11 implicated various 
miRNAs and mRNAs, among which RAB7A and 
NPRL2 were found to be linked to autophagy and 
mTOR signaling, respectively.

The mTOR signaling pathway plays a  pivot-
al role in cell growth, proliferation, and survival 
[36]. It has been implicated in various diseases, 
including cancer and metabolic disorders. In the 
context of OA, mTOR signaling is crucial because 
it regulates chondrocyte metabolism and cartilage 
homeostasis. Elevated mTOR activity has been 
observed in OA, leading to increased chondro-
cyte proliferation and reduced autophagic activity. 
These changes can contribute to the degenera-
tion of cartilage and the formation of osteophytes, 
which are hallmark features of OA [37]. The asso-
ciation of NPRL2 with mTOR signaling in our study 
suggested that disruptions in this pathway could 
play a role in OA development and progression.

Autophagy is a  cellular process that involves 
the degradation and recycling of cellular compo-
nents, maintaining cell homeostasis and respond-
ing to cellular stress [38, 39]. It plays a protective 
role in chondrocytes by removing damaged or-
ganelles and misfolded proteins. In OA, decreased 
autophagy has been observed, leading to an ac-

cumulation of damaged cellular components and 
contributing to cartilage degradation [40]. RAB7A, 
identified in our ceRNA network, is associated 
with autophagy and mitophagy, which involves 
the selective removal of damaged mitochondria. 
STEAP3 interacts with Rab7A and RACK1, affect-
ing the development and progression of osteo-
arthritis by regulating the MAPK and JAK/STAT 
signaling pathways [41]. The connection between 
RAB7A and autophagy in OA suggested that a lack 
of proper autophagic activity might contribute to 
disease progression. The reduced autophagic re-
sponse in chondrocytes could lead to increased 
oxidative stress and cellular damage, ultimately 
affecting joint health.

The mTOR signaling pathway and autophagy 
are intricately linked, with mTOR acting as a neg-
ative regulator of autophagy. Activation of mTOR 
suppresses autophagy by inhibiting the phos-
phorylation of autophagy-related proteins (ATGs), 
thereby blocking the autophagic process. Con-
versely, autophagy can modulate mTOR signaling 
by reducing the levels of mTOR activators, such as 
insulin growth factor (IGF-1) [36, 38, 39]. 

Understanding the relationship between mTOR 
signaling, autophagy, and OA can offer potential 
therapeutic targets. Modulating mTOR activity to 
restore balance in chondrocyte metabolism might 
slow disease progression, while promoting au-
tophagy could reduce cellular damage and carti-
lage degradation [6, 18, 42, 43]. Future research 
in this area could focus on developing treatments 
that modulate mTOR activity and enhance auto-
phagic responses in chondrocytes. This approach 
could help preserve joint function and alleviate OA 
symptoms, providing a targeted strategy to com-
bat this debilitating disease.

Despite these promising findings, this study 
has several limitations that should be acknowl-
edged. First, our study is primarily bioinformat-
ics-based and lacks experimental validation. While 
the identified lncRNAs and their associations with 
immune cell subsets are promising, in vitro and  
in vivo experiments are necessary to confirm these 
findings and explore the underlying mechanisms. 
In addition, the constructed ceRNA network and 
the identified pathways, such as mTOR signaling 
and autophagy, offer potential therapeutic tar-
gets; however, their clinical relevance and efficacy 
in treating OA remain to be established through 
further research and clinical trials.

Overall, our study underscored the complexity 
of OA pathogenesis and emphasized the impor-
tance of ceRNA networks in understanding dis-
ease mechanisms. The integration of multi-om-
ics data and bioinformatics approaches allowed 
us to uncover new insights into OA, highlighting 
key molecules and pathways that could serve as 
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diagnostic biomarkers and therapeutic targets. 
This research contributes to the growing body of 
knowledge surrounding OA and paves the way 
for developing personalized medical approaches 
tailored to individual patients. Nevertheless, fur-
ther experimental validation and clinical trials are 
essential to translate these findings into effective 
treatment strategies for OA, and to fully realize 
the potential of the identified ceRNA networks in 
clinical practice.

In conclusion, this study elucidated the role of 
immune-related ceRNA networks in osteoarthritis 
pathogenesis, providing a comprehensive frame-
work for understanding the molecular mecha-
nisms driving disease progression. We identified 
differentially expressed lncRNAs and constructed 
a  classification model with high discriminatory 
power for OA, offering promising diagnostic and 
therapeutic insights. The significant correlations 
between lncRNAs and immune cell infiltration 
patterns suggested an immunological component 
in OA progression. The ceRNA network centered 
around DGCR11 revealed connections to autopha-
gy and mTOR signaling pathways, which play a piv-
otal role in cartilage homeostasis. Understanding 
these molecular mechanisms opens new avenues 
for developing targeted therapies for OA. Future 
research should focus on experimental validation 
and clinical trials to translate these findings into 
effective treatment strategies that can alleviate 
OA symptoms and improve joint function.
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