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Abstract

Introduction: The aim of the study was to identify the key risk factors in-
fluencing in-intensive care unit (ICU) mortality of patients with sepsis and
develop prognosis prediction models for culture-positive sepsis (CPS) and
culture-negative sepsis (CNS) patients.

Material and methods: Data were extracted from the MIMIC-IV database,
which included 9288 patients with sepsis. The whole sample was divided
into CPS (6622 patients) and CNS groups (2666 patients). We established
six machine learning models — DT, RF, NB, XGB, GBDT, and NNET - to predict
in-1ICU death for all study samples, as well as for CPS and CNS subgroups.
Model performance was assessed using AUC, accuracy, sensitivity, and spec-
ificity. SHapley Additive exPlanations (SHAP) values were used to explain the
effect of variables on model results.

Results: The in-ICU mortality rate was 54.58% for the whole study sam-
ple; the difference in in-ICU mortality between the CPS (55.19%) and CNS
(53.04%) groups was not statistically significant. The main significant influ-
ential factors identified included Charlson Comorbidity Index (CCI), number
of days in hospital, Glasgow Coma Scale (GCS), older age, and total bilirubin
(TBil). The XGB model performed best in the overall sample (AUC = 0.782),
while the GBDT model was most effective for the CPS group (AUC = 0.7813)
and the CNS group (AUC = 0.7582).

Conclusions: This study identified key risk factors for in-ICU death in pa-
tients with sepsis and highlighted differences in clinical characteristics be-
tween patients with CPS and CNS. These findings may contribute to the
development of personalized treatment strategies and risk assessment,
thereby improving the prognosis of septic patients, especially patients with
CNS.

Key words: sepsis, in-intensive care unit mortality, machine learning, blood
culture, interpretable learning.

Introduction

Sepsis is a life-threatening condition characterized by organ dysfunc-
tion resulting from a dysregulated host response to infection [1]. It re-
mains a major public health challenge and is a leading cause of mortality
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among critically ill patients in the intensive care
unit (ICU) [2]. Sepsis affects more than 19 million
people worldwide each year, with a persistently
high mortality rate [3]. Effective prognosis im-
provement can be achieved by accurately iden-
tifying the pathogen and administering targeted
antibiotics [4]. Rapid microbiological techniques,
such as blood culture, play a crucial role in iden-
tifying sepsis pathogens [5]. These results can
guide timely adjustments to antimicrobial thera-
pies, enhancing patient outcomes, reducing hospi-
tal stays, and minimizing healthcare costs [5].

Most sepsis cases are found to have bacterial
origins, according to existing studies [6]. Blood
cultures are used to distinguish between cul-
ture-positive sepsis (CPS) and culture-negative
sepsis (CNS), based on pathogen detection within
24 h before or after ICU admission [7]. CNS refers
to sepsis cases where no causative organism is
detected within this time frame, while CPS indi-
cates the presence of identifiable pathogens [1].
The relationship between blood culture results
and patient prognosis is debated, with mixed con-
clusions in current literature [2]. Kim et al. suggest
a possible association between culture-negative
sepsis and organ dysfunction, although the data
do not indicate a significant association between
blood culture results and sepsis mortality [8]. Con-
versely, Hazwani et al. reported lower mortality
rates and reduced organ dysfunction among cul-
ture-negative sepsis patients [9]. Meanwhile, Bak-
er et al. found that patients in the CPS and CNS
groups exhibited similar symptoms upon admis-
sion and received comparable treatments [10].

Among studies to date, sepsis research has pre-
dominantly focused on CPS, with fewer investiga-
tions into CNS. However, CNS comprises 28-49%
of sepsis cases [8], making it a significant subset.
Due to the absence of clear pathogenic diagnoses,
CNS patients often miss out on targeted antibiot-
ic treatments, potentially resulting in higher mor-
bidity, mortality, and prolonged hospital stays [11,
12]. Additionally, the empirical use of broad-spec-
trum antibiotics for CNS patients can elevate the
risk of antibiotic resistance and complicate treat-
ment [11]. CNS cases may involve diverse patho-
gens such as viruses, fungi, and parasites or even
non-infectious factors such as autoimmune dis-
orders and drug reactions [1]. Understanding the
prognosis and underlying factors of CNS can shed
light on sepsis etiology and mechanisms, paving
the way for broader therapeutic strategies and im-
proved patient management.

Several factors influence ICU mortality in sep-
sis patients, with blood culture results being just
one aspect [1]. Accurate prediction of high-risk pa-
tients can aid clinicians in assessing disease sever-
ity, optimizing treatment, and reducing poor out-

comes [3]. In recent years, machine learning (ML)
has been increasingly applied to sepsis research
[13]. Persson et al. developed a high-performing
ML algorithm for sepsis prediction using routine
ICU data [14], while Yao et al. demonstrated that
the XGB model excelled at predicting in-hospital
mortality for postoperative sepsis patients [15].
Zhou et al. created an ML-based mortality predic-
tion model for S-AKI patients, with the CatBoost
model showing the best predictive results [16].
Yang et al. highlighted the superior predictive per-
formance of XGB and random forest models for
predicting sepsis onset [17].

Identifying high-risk subgroups is essential for
managing CPS and CNS patients and improving
their prognosis, with machine learning playing
a key role in this process [14-17]. However, ex-
isting models have limitations, as most research
focuses on CPS, with limited analysis of ICU mor-
tality risk factors in CNS patients. This gap exists
for several reasons. First, identifying the infection
source is more straightforward in CPS, while it is
often challenging in CNS cases [11, 12]. Second,
positive bacterial cultures provide reliable results,
whereas negative cultures can be affected by fac-
tors such as improper sampling or prior antibiotic
use [1]. Consequently, CNS studies are more com-
plex and may yield less consistent conclusions
compared to CPS. Additionally, CPS treatment is
more targeted, whereas CNS patients typically
receive broad-spectrum antibiotics based on clin-
ical judgment [1]. Lastly, CNS patients are more
heterogeneous due to the involvement of various
pathogens or non-infectious causes, complicating
their analysis and treatment.

Given these limitations in mortality prediction
for sepsis patients and the potential of machine
learning in healthcare, there is a pressing need
to develop predictive models that evaluate risk
factors for both CPS and CNS patients. This study
aimed to identify in-ICU mortality risk factors,
compare the prognostic differences between CPS
and CNS patients, and create predictive models
using machine learning techniques.

Material and methods
Sources of data

This study was conducted based on clinical re-
cords of sepsis patients who meet the diagnostic
criteria of the Sepsis-3 definition obtained from
the Medical Information Mart for Intensive Care
database-IV version 0.4 (MIMIC-IV v0.4). The MIM-
IC-IV database is a freely accessible critical care
database released by the Laboratory for Compu-
tational Physiology at the Massachusetts Institute
of Technology [18]. Detailed descriptions of this
database are available in the literature [18].
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Study population

In this study, sepsis was defined according to
the Third International Consensus Definitions [1].
The selection of study samples was based on the
following inclusion and exclusion criteria.

Inclusion criteria: (1) patients diagnosed with
sepsis: diagnosed according to the Sepsis 3.0 cri-
teria, i.e, infection + Sequential Organ Failure As-
sessment (SOFA) score > 2, or patients diagnosed
with sepsis in discharge diagnosis according to
ICD-9.0; (2) age > 18 years old; (3) stayed in ICU for
more than 24 h; (4) microbial cultures performed
within 24 h before and after ICU admission.

Exclusion criteria: (1) patients diagnosed with
sepsis after 24 h of ICU admission; (2) patients
with multiple ICU admissions were only included
based on their first ICU admission information;
(3) patients with microbial culture results indicat-
ing fungal or viral infections were excluded.

Database (N = 9350)

A total of 9350 patients from MIMIC-IV met
the inclusion and exclusion criteria. Among them,
62 patients lacked information on ICU ward type
and were excluded. Consequently, a total of
9288 patients were included in the study, with
6622 (71.30%) cases in the CPS group and 2666
(28.70%) cases in the CNS group (Figure 1).

Study outcome

The primary outcome event of this study, based
on its significance, is in-ICU death of the selected
septic patients.

Data pre-processing

Variables with > 30% missingness were ex-
cluded from the analysis. Multiple imputation was
performed on the remaining missing variables. To
further validate the robustness of the interpola-

Excluded (N = 62)
62 patients lacked

Y
Finally included in study (N = 9288)

Ungrouped

information on ICU ward
type and were excluded

Grouped by results of blood cultures

v

v

All patients (N = 9288)

CPS Group (N = 6622)

CNS Group (N = 2666)

pommon-d SRR | SeEEEE PRl e e Yoooooooe eo---- D ¥--------
E Survive Death in ICU ' , Survive Death in ICU ' , Survive Death in ICU '
H (N =4219) (N=5069) |i | (N=2967) (N=3655) |1 | (N=1252) (N=1414) |:

Univariate logistic regression, Elastic net regression, Random forest

}

Multifactorial lo

gistic regression

A

Variables used to construct models

Random
forest

Decision
tree

Extreme Gradient '
: Neural !
gradient boosted i
- L network H
boosting decision trees !

Evaluation metrics: Area under

<Y

the curve (AUC), Accuracy,
Sensitivity, Specificity

The best performing predictive model
for all patients, CPS group, CNS group

Figure 1. Study design
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tion method, we used the “mice” package nested
in the R programming language to generate five
interpolation datasets using the multiple interpo-
lation technique for variables containing missing
values, and trained the machine learning model
on each of the interpolation datasets separately
to obtain the prediction results. Then the inter-
polated datasets were integrated using the pool
function to achieve the final dataset for analysis.
Multiple interpolation effectively reduces the error
due to missing data by generating multiple data-
sets and integrating the interpolation uncertainty.
We also transformed the continuous factor age in
the database into an ordered factor age group. We
recorded all cases of patients who had received
vasopressin or ventilation or dialysis as 1. (The fil-
tered variables and variable missingness rates are
shown in Supplementary Table SI.)

Variable selection

To capture a broader range of variables associ-
ated with in-ICU death in the analysis, the follow-
ing steps were taken. Firstly, we used three meth-
ods for factor screening in the training set [19],
combining their results: (a) Univariate logistic re-
gression (LR): each factor was analyzed individual-
ly, and factors with a two-tailed p < 0.05 were se-
lected. (b) Elastic net regression: this regularized
method optimized model complexity to identify
important, sparse sets of factors [20]. (c) Random
forest: feature importance was assessed using the
Gini index to measure the contribution of each
factor. Secondly, we fit a multifactorial logistic re-
gression model with the selected variables. Then,
the variables with p < 0.05 in multifactorial logis-
tic regression were screened in conjunction with
clinical significance. In addition, the above steps
of screening variables were repeatedly conducted
for the whole study sample, as well as the CPS and
CNS subgroups. Finally, the valid variables identi-
fied from the overall sample, CPS group, and CNS
group were input into the corresponding six ma-
chine learning models for each group.

Statistical analysis

Descriptive analysis was performed on all in-
cluded patients. Continuous variables conforming
to a normal distribution were described using
means * standard deviations (SD). Skewed contin-
uous variables were described using medians (in-
terquartile ranges), and categorical variables were
described using frequencies (proportions).

The datasets for the overall sample, CPS, and
CNS were randomly sampled using the R program-
ming language, and all were randomly divided
into a training set and a test set in a ratio of 7 : 3.
The training sets were used for selecting variables

and building models, and the test sets were used
for validation.

Six machine learning methods — Decision Tree
(DT), Random Forest (RF), Naive Bayes (NB), Ex-
treme gradient boosting (XGB), Gradient Boost-
ed Decision Trees (GBDT), and Neural Network
(NNET) models — were employed to establish
predict models. The training and testing process
involves 5-fold cross-validation. Subsequently, the
accuracy, sensitivity, specificity, and area under
the curve (AUC) of the receiver operating char-
acteristic (ROC) curve were compared across the
models to evaluate their performance and identify
the optimized model for predicting in-ICU mortal-
ity of septic patients. In order to compensate for
the lack of machine learning algorithms in vari-
able interpretation, we applied SHAP to explain
the importance of each feature in the best model.

All statistical analyses were conducted using R
programming language (version 4.3.3, the R Foun-
dation, Vienna, Austria) and R Studio software
(version 2023.12.1.402,R Studio, PBC, Boston, MA),
with R packages including “tidyverse”, “mice”,
“rpart”, “dplyr”, “randomForest”, “e1071”, “XGB”,
“gbm”, “nnet”, and “shapr”. Statistical significance
was decided at a two-sided p-value less than 0.05.

Results
Baseline characteristics

This study included 9288 study participants
and 43 variables, covering basic demographic in-
formation, laboratory indicators, and comorbidi-
ties. Baseline clinical characteristics included ICU
ward type, number of days in ICU, pulse, heart
rate, temperature, systolic blood pressure, diastol-
ic blood pressure, hemoglobin (Hb), white blood
cell (WBC) count, platelet (PLT) count, CCl, SOFA
score, SAPSII, etc. Additionally, comorbidities such
as diabetes, liver disease, chronic obstructive pul-
monary disease, etc., were also incorporated.

Among the 9288 patients included in the study,
5069 patients died in the ICU, with a mortality rate
of 54.58%. The CPS group comprised 6622 indi-
viduals, among whom 3655 died in the ICU, result-
ing in a mortality rate of 55.19%. The CNS group
consisted of 2666 individuals, with 1414 deaths in
the ICU, yielding a mortality rate of 53.04%.

The majority of participants were in the age
group of 45 to 79 years (65.20%). There was
a slightly different proportion between males and
females in the study population, with 57.55%
being male and 42.45% female. The majority of
patients were of white ethnicity. Chronic lung dis-
ease was the most common comorbidity, affecting
1866 out of 9288 (30.60%) septic patients. This
was followed by hypertension and liver disease,
presentin 23.41% and 8.5%, respectively. Selected
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features of included patients are shown in Table I. ~ Statistically significant differences were observed
This table compares the baseline characteristics of  in age distribution, ethnicity, and ICU ward type
CPS and CNS sepsis patient subgroups in the ICU.  (p < 0.05). Severity scores (SOFA, SAPSII) were

Table 1. Comparison of baseline characteristics between the two subgroups in the ICU

Variables CPS group (N = 6622) CNS group (N = 2666) Z/y? P-value
Age 65.48 £16.34 65.52 £16.63 73.38 0.53
Age group/(n, %) 11.47 0.04
18-25 98 (1.48) 56 (2.1)
26-44 656 (9.91) 277 (10.39)
45-64 2307 (34.84) 862 (32.33)
65-79 2042 (30.84) 845 (31.7)
80-85 740 (11.17) 328 (12.3)
> 85 779 (11.76) 298 (11.18)
Male/(n, %) 3802 (57.41) 1543 (57.88) 0.15 0.70
Ethnicity/(n, %) 26.15 <0.01
Asian 217 (3.28) 52 (1.95)
Black 739 (11.16) 277 (10.39)
White 4379 (66.13) 1744 (65.42)
Other 1287 (19.44) 593 (22.24)
ICU ward type/(n, %) 212.31 <0.01
ccu 518 (7.82) 335 (12.57)
CVICU 469 (7.08) 310 (11.63)
MICU 2115 (31.94) 629 (23.59)
MICU/SICU 1781 (26.9) 524 (19.65)
SICU 940 (14.20) 429 (16.09)
Neuro SICU 129 (1.95) 83 (3.11)
TSICU 670 (10.12) 356 (13.35)
Severity score/(Md [IQR])
SOFA 7.73 3.72,11.75) 7.04 (3.29, 10.8) 82.83 < 0.01
SAPSII 42.35(27.62, 57.07) 40.27 (26.22, 54.31) 80.92 < 0.01
CCl 6.17 (3.26, 9.09) 6.06 (3.09, 9.04) 76.79 0.15
Comorbidity/(n, %)
Chronic pulmonary disease 2067 (31.21) 775 (29.07) 4.02 0.05
Liver disease 571 (8.62) 218 (8.18) 0.43 0.51
Diabetes 271 (4.09) 97 (3.64) 0.91 0.34
Hypertension 1554 (23.47) 620 (23.26) 0.04 0.85
Treatment measures/(n, %)
Ventilation 4369 (65.98) 1740 (65.27) 0.40 0.53
Dialysis 494 (7.46) 180 (6.75) 1.33 0.25
Vasopressin 1083 (16.35) 362 (13.58) 10.94 <0.01
Number of days/(d[IQR])
Number of days in hospital 17.2 (0.4, 34.01) 16.07 (0.21, 31.93) 78.28 <0.01
Number of days in ICU 7.4 (-0.95, 15.75) 7.63 (-0.92, 16.17) 74.11 0.22
Outcome/(n, %)
Deaths 3655 (55.19) 1414 (53.04) 3.48 0.06
90-day deaths 2206 (33.31) 811 (30.42) 7.12 <0.01

CCU - coronary care unit, CVICU — cardiac vascular intensive care unit, MICU — medical intensive care unit, MICU/SICU — medical/surgical
intensive care unit, SICU — surgical intensive care unit, Neuro SICU — neurosurgical intensive care unit, TSICU — trauma surgical intensive
care unit, SOFA — Sequential Organ Failure Assessment, SAPSII — Simplified Acute Physiology Score Il, CCl — Charlson Comorbidity Index.
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generally higher for CPS patients, indicating great-
er illness severity (p < 0.01). CNS patients showed
slightly lower mortality rates and were more likely
to be in certain ICU wards such as the Coronary
Care Unit (CCU) and Trauma and Surgical Inten-
sive Care Unit (TSICU). Both groups had similar
comorbidity patterns, but CPS patients required
more vasopressin treatment (p < 0.01). Lengths of
hospital stay were also significantly different be-
tween the groups (p < 0.01).

Variable selection

The final selection results are illustrated in the
Figure below.

Based on the selection results, we considered the
following 14 variables for machine learning model-
ing analysis with the whole study sample, including
number of days in hospital, Hb, hematocrit (Hct),
temperature, urine output, GCS, CCl, RBC count,
SAPSII, alkaline phosphatase (ALP), blood urea nitro-
gen (BUN), liver disease, vasopressin, and age group.

In addition, we found that BUN and liver dis-
ease were not significant, and they were excluded
from the analysis of the CPS group, while mean
blood pressure (MBP) and ICU ward type were
included due to their significance (p < 0.05) in
screening stage. Four variables — number of days
in hospital, urine output, SAPSII, and liver disease
— were not significant in the CNS group and were
excluded from its analysis, whereas blood lactic
acid (LaC) count and ICU ward type were meaning-
ful variables and included in the modeling analysis
of the CNS group.

Model development and validation

Six machine learning models were construct-
ed to predict the risk of in-ICU mortality among

septic patients. We divided datasets into train-
ing and test sets in a ratio of 7 : 3, and the pre-
diction results of the six machine learning algo-
rithms based on test sets are shown in Table II.
The table describes the prediction performance
of the six machine learning models (DT, RF, NB,
XGB, GBDT, and NNET) in predicting the in-ICU
mortality rate of patients with sepsis, including
the CPS and CNS subgroups, which mainly in-
cludes accuracy, sensitivity, specificity, and AUC.
(The prediction results of the six machine learn-
ing models on training sets are shown in Supple-
mentary Table SlI.)

For septic patients (the whole study sample),
the XGB model achieved the highest AUC of 0.782,
while the AUCs of the remaining five models were
lower, with the AUC of the DT model being the
lowest at 0.6741. Regarding predictive accuracy,
the RF, XGB, GBDT, and NNET models all achieved
around 70%, while the DT and the NB achieved
the lowest accuracy of around 67%. In terms of
sensitivity and specificity, XGB, GBDT, and NNET
performed better.

Considering the above four evaluation indica-
tors collectively, the XGB algorithm demonstrat-
ed the best predictive performance, followed by
the NNET model. Additionally, under the same
evaluation indicators, the best prediction mod-
el for both the CPS and CNS groups was GBDT.
XGB outperformed other models in the overall
sample, mainly due to its strong generalization
ability and adaptability to large datasets. The su-
periority of GBDT in the two subgroups of CPS
and CNS, on the other hand, may stem from its
flexibility and robustness in dealing with small
samples and data with large feature differences.
The ROC curves for the established models are
shown in Figure 2.

Table II. Predictive results of six machine learning models based on test sets for septic patients who died in the ICU

Group Indicators Model
DT RF NB XGB GBDT NNET
All patients Accuracy 0.6701 0.7003 0.6701 0.7136 0.7042 0.6978
Sensitivity 0.6605 0.6888 0.7062 0.7127 0.7056 0.7054
Specificity 0.6887 0.7207 0.6324 0.7149 0.7022 0.6872
AUC area 0.6741 0.7695 0.7372 0.782 0.7816 0.7768
CPS group Accuracy 0.6934 0.7135 0.6964 0.708 0.7185 0.7044
Sensitivity 0.6845 0.7136 0.7243 0.7142 0.7281 0.7226
Specificity 0.7103 0.7134 0.6626 0.6986 0.7049 0.6803
AUC area 0.6869 0.7775 0.7516 0.7756 0.7779 0.7751
CNS group Accuracy 0.6683 0.6884 0.6821 0.6871 0.7109 0.6583
Sensitivity 0.6616 0.7201 0.7709 0.7223 0.7403 0.7106
Specificity 0.6872 0.6435 0.6051 0.6391 0.6697 0.5967
AUC area 0.661 0.7558 0.754 0.7439 0.7588 0.7223

DT — decision tree, RF — random forest, NB — naive bayes, XGB — Extreme Gradient Boosting, GBDT — Gradient Boosted Decision Trees,

NNET — Neural Network, AUC — area under the curve.
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Significance of features

CCl, SAPSIl, BUN, liver disease, vasopressin,
and age were associated with a higher risk of in-
ICU death. As their levels increased, the patient’s
risk of death increased. Number of days in hospi-
tal, Hb count, temperature, urine output, GCS, and
RBC count were associated with lower in-ICU mor-
tality. Patients in Cardiac Vascular Intensive Care
Unit (CVICU), Surgical Intensive Care Unit (SICU),
and Trauma SICU (TSICU) had a higher risk of in-
ICU mortality compared to the Coronary Care Unit
(CCU). Risk factors that were the same between
the CPS and CNS subgroups were CCl, age, GCS,
bilirubin total, temperature, Hb, RBC count, ICU
ward type, hematocrit, and vasopressin. In terms
of differences between the two subgroups, days of
hospitalization, urine output, SAPSII, and MBP were
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Figure 2. Summary AUC of 6 machine learning al-
gorithms. A — AUC of the 6 machine learning algo-
rithms in all patients. B — AUC of the 6 machine
learning algorithms in the CPS group. C — AUC of
the 6 machine learning algorithms in the CNS

group

risk factors specific to the CPS group that may lead
to an increased risk of death in the ICU, whereas in
the CNS group, higher levels of BUN and LaC were
specific risk factors (Figures 3 and 4).

Discussion

In this study, the clinical measurements of sep-
sis patients were extracted from the MIMIC-IV da-
tabase. Then, we compared the baseline features
and clinical characteristics of patients in the CPS
and the CNS subgroups. We identified three dif-
ferent combinations of factors that may be asso-
ciated with in-ICU death of sepsis patients. Based
on six different machine learning algorithms, pre-
diction models for in-ICU death were established
for general patients with sepsis, as well as the
CPS and the CNS groups. The optimized prediction
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model was selected by comprehensively consider-
ing the evaluation metrics, including AUC, predic-
tion accuracy, sensitivity and specificity. The XGB
model performed best for general patients with
sepsis, while the GBDT model performed best for
the CPS and the CNS groups. Based on the inter-
pretable learning method, we explored the im-
portance of the identified relevant factors for the
prognosis of sepsis patients.

A

Despite the many challenges of studying pa-
tients with CNS, exploring the characteristics of
patients with CNS can further reveal their prog-
nostic features and influencing factors, which
can contribute to treatment efficacy and improve
prognosis [7]. By identifying specific biomarkers
or clinical features, it is also possible to provide
useful information for the development of treat-
ment strategies for patients with CPS and CNS
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Figure 3. Summary of SHAP for the XGB model for all patients, the GBDT model for the CPS group, and the GBDT
for the CNS group. A — Feature importance from the XGB model of all patients. Feature importance is represented
by the absolute mean of the SHAP values for each feature. B — The higher the SHAP feature value, the higher the
risk of death in the ICU for patients with sepsis. A point created in the model represents a characteristic attribute
value for one patient, so that there is a point on each characteristic line for each patient. The points are colored
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Red color indicates higher eigenvalues and blue color indicates lower eigenvalues. C — Feature importance from
the GBDT model of the CPS group. Feature importance is represented by the absolute mean of the SHAP values
for each feature. D — The higher the SHAP feature value, the greater the risk of death in the ICU for CPS patients
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[5]. The machine learning models developed offer
a valuable tool for ICU clinicians, helping to identi-
fy high-risk patients early and enabling timely, tar-
geted interventions [13]. Integrating these models
into electronic health record (EHR) systems could
facilitate real-time risk assessment and person-
alized care [21]. Future steps include prospective
validation in independent ICU cohorts and the
incorporation of dynamic data (e.g., real-time vi-
tal signs) to enhance model accuracy. Ultimately,
these models could improve patient outcomes by
guiding interventions and resource allocation, po-
tentially reducing in-ICU mortality.

Among the clinical features selected, low levels
of hospital days, Hb, urine output, temperature,
and GCS were found to be associated with in-
creased risk of in-ICU death. Higher levels of age,
Hct, CCI, SAPSII, TBil, BUN, the presence of liver
disease, and use of vasopressin were also asso-
ciated with a higher in-ICU death risk for sepsis
patients.

Our analysis revealed little difference in co-
morbidities between the patients with CPS and
CNS, but patients with CPS experienced more va-
sopressor support, which may be related to the
severely impaired endothelial function of patients
with CPS. It has been shown [22] that sepsis is
an abnormal host response to infection, which is
characterized by a variety of systemic disturbanc-
es, including increased vascular permeability and
vasodilatation. Therapeutically, in addition to the
use of antibiotics [23], early fluid resuscitation is
also critical [24]. Su et al. reported that a large
positive fluid balance worsens the condition of
patients with hypoxemia [25]. However, not all
patients respond effectively to fluid resuscitation,
and its effects usually last for a shorter period [26],
thus requiring the use of vasoconstrictive drugs to
improve organ perfusion [27]. In addition, septic
patients admitted to different types of ICU wards
differ in their risk of in-ICU death, and a study by
Ohbe et al. found a difference in case-fatality rates
between patients in the ICU and those in the gen-
eral ward [28], but no study has yet explored the
association between the type of ICU ward and the
risk of in-ICU death in septic patients.

Our study further compared the similarities
and differences in identified influential factors
and established models for patients with CPS and
CNS. Risk factors that were the same between
the two subgroups were CCl, age, GCS, bilirubin
total, temperature, Hb, RBC count, ICU ward type,
hematocrit, and vasopressin. This may be related
to disease risk factors in sepsis patients, which
did not seem to differ between the CPS and CNS
groups. Nejtek et al. found that a higher CCl had
a significant effect on mortality [29]. For differenc-
es between the two subgroups, number of days

in hospital, urine output, SAPSII, and mean MAP
were important factors related to increased risk
of in-ICU death in the CPS group. However, in the
CNS group, these variables were not included in
the final model. In the CNS group, higher BUN and
LaC levels were significant risk factors related to
increased risk of in-ICU death, whereas they were
not included in the final model in the CPS group.
Sigakis et al observed that blood transfusion
within the first 24 h of onset was significantly as-
sociated with mortality in patients with CNS, but
not in patients with CPS [30]. These differences
may reflect variations in the type of pathogen in-
fection and severity of the disease between the
two groups, requiring targeted prevention and
treatment measures for each group. Therefore,
based on these differences, we can further ex-
plore the potential pathological and physiological
similarities and differences between patients with
CPS and CNS in order to achieve meaningful re-
sults in the prevention or treatment of sepsis in
the future.

In terms of model performance, the XGB model
performed best for predicting death in the ICU for
all patients. For patients in the CPS and CNS sub-
groups, the GBDT model performed best. These
findings are similar to those of Yang et al.,, who
reported that XGB and RF models performed op-
timally for predicting sepsis onset [17]. Howev-
er, the choice of model also needs to be based
on practical clinical scenarios and needs to be
weighed against other considerations.

In this study, the SHAP approach was also
used to enhance the interpretation of the model
established and to explore the main risk factors
affecting sepsis patients’ mortality in the ICU. The
results showed that some common risk factors,
such as higher TBil, renal insufficiency (reflected
in higher BUN levels), higher SAPSII, older age, and
treatment with vasopressin significantly increased
the risk of in-ICU death for the whole study sam-
ple and in two subgroups. This is consistent with
the results of previous studies [1, 31, 32]. It has
been shown that the prevalence of sepsis is in-
creasing in the elderly population and age is an
independent risk factor for death [31]. A study by
Kubler et al. revealed that about 89% of septic pa-
tients admitted to the ICU in critical condition had
dysfunction in three or more organs [32]. Organ
dysfunction can be measured by the SOFA score,
where an increase of 2 or more points implies an
in-hospital mortality rate of more than 10% [1].

We also found that lower Hb levels, urine out-
put, and GCS were associated with a lower risk
of in-ICU death. These findings are also supported
by previous studies [32-35]. Qi et al. found that
when a patient’s Hb level falls below 80 g/l within
48 h of admission to the ICU, it will likely increase
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the risk of death in patients with sepsis [33]. Low
urine output is an important indicator for detect-
ing acute kidney injury [36], and also suggests an
increased risk of death [34], which is often associ-
ated with renal dysfunction in patients with sepsis
[32]. GCS is a rating scale that provides an objec-
tive assessment of patient consciousness [35],
and a low GCS may be a simple and reliable pre-
dictor suggesting the need for initial resuscitation
in patients with sepsis [37]. These findings are
in line with the conclusions of previous studies,
suggesting that, to improve the prognosis of sep-
tic patients, we may need to closely monitor the
liver and kidney functions, SOFA score and other
indicators of infected patients, actively correct the
anemia, and maintain the patient’s urine output
and mental status, so as to allow the patient to
obtain a good therapeutic prognosis.

The SHAP approach applied provide better un-
derstanding of the final machine learning model
and selected influential factors. A comprehensive
analysis of the key factors affecting the prognosis
of sepsis patients provided a potentially important
guide for future risk assessment and individual-
ized treatment in clinical practice. It also provides
the quantitative evidence necessary for better un-
derstanding of the prognosis of septic patients.

Limitations of this study include the following:
(1) Despite our rigorous screening of potential
factors, we may not have been able to exclude all
possible confounders due to the retrospective na-
ture of this study, and we were unable to consider
some important confounders such as antimicrobi-
al use and timing of interventions due to lack of
information about these factors. (2) Our analyses
were based on retrospective data on the histo-
ry of the first ICU admission, and potential bias
in sample selection may not be totally avoided.
(3) The aim of our study was to explore the ma-
jor influences on bacterial sepsis. The inclusion
of other pathogens (e.g., fungi and viruses) may
greatly increase the complexity of the data and
make it difficult to accurately differentiate the
specific characteristics of bacterial infections. Fu-
ture studies could take fungal and viral infections
into account to fully assess the impact of multi-
ple pathogens. (4) Our study has only established
a preliminary prediction model, and further pro-
spective validation and optimization are needed
before application in practice.

In conclusion, this study found no significant
difference in in-ICU mortality between CPS and
CNS, but it identified key risk factors for in-ICU
mortality in sepsis patients, revealing significant
differences between CPS and CNS. These findings
can inform personalized treatment strategies,
particularly for CNS patients, who may require
distinct management approaches.
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