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A b s t r a c t

Introduction: The aim of the study was to identify the key risk factors in-
fluencing in-intensive care unit (ICU) mortality of patients with sepsis and 
develop prognosis prediction models for culture-positive sepsis (CPS) and 
culture-negative sepsis (CNS) patients. 
Material and methods: Data were extracted from the MIMIC-IV database, 
which included 9288 patients with sepsis. The whole sample was divided 
into CPS (6622 patients) and CNS groups (2666 patients). We established 
six machine learning models – DT, RF, NB, XGB, GBDT, and NNET – to predict 
in-ICU death for all study samples, as well as for CPS and CNS subgroups. 
Model performance was assessed using AUC, accuracy, sensitivity, and spec-
ificity. SHapley Additive exPlanations (SHAP) values were used to explain the 
effect of variables on model results. 
Results: The in-ICU mortality rate was 54.58% for the whole study sam-
ple; the difference in in-ICU mortality between the CPS (55.19%) and CNS 
(53.04%) groups was not statistically significant. The main significant influ-
ential factors identified included Charlson Comorbidity Index (CCI), number 
of days in hospital, Glasgow Coma Scale (GCS), older age, and total bilirubin 
(TBil). The XGB model performed best in the overall sample (AUC = 0.782), 
while the GBDT model was most effective for the CPS group (AUC = 0.7813) 
and the CNS group (AUC = 0.7582). 
Conclusions: This study identified key risk factors for in-ICU death in pa-
tients with sepsis and highlighted differences in clinical characteristics be-
tween patients with CPS and CNS. These findings may contribute to the 
development of personalized treatment strategies and risk assessment, 
thereby improving the prognosis of septic patients, especially patients with 
CNS.

Key words: sepsis, in-intensive care unit mortality, machine learning, blood 
culture, interpretable learning.

Introduction

Sepsis is a life-threatening condition characterized by organ dysfunc-
tion resulting from a dysregulated host response to infection [1]. It re-
mains a major public health challenge and is a leading cause of mortality 

mailto:chenfy@xjtu.edu.cn


Sitong Liu, Lingmin Gong, Weiwei Hu, Jiaxin Cai, Yuhui Yang, Shiyu Chen, Baibing Mi, Yaling Zhao, Leilei Pei, Fangyao Chen

2� Arch Med Sci

among critically ill patients in the intensive care 
unit (ICU) [2]. Sepsis affects more than 19 million 
people worldwide each year, with a  persistently 
high mortality rate [3]. Effective prognosis im-
provement can be achieved by accurately iden-
tifying the pathogen and administering targeted 
antibiotics [4]. Rapid microbiological techniques, 
such as blood culture, play a crucial role in iden-
tifying sepsis pathogens [5]. These results can 
guide timely adjustments to antimicrobial thera-
pies, enhancing patient outcomes, reducing hospi-
tal stays, and minimizing healthcare costs [5].

Most sepsis cases are found to have bacterial 
origins, according to existing studies [6]. Blood 
cultures are used to distinguish between cul-
ture-positive sepsis (CPS) and culture-negative 
sepsis (CNS), based on pathogen detection within 
24 h before or after ICU admission [7]. CNS refers 
to sepsis cases where no causative organism is 
detected within this time frame, while CPS indi-
cates the presence of identifiable pathogens [1]. 
The relationship between blood culture results 
and patient prognosis is debated, with mixed con-
clusions in current literature [2]. Kim et al. suggest 
a  possible association between culture-negative 
sepsis and organ dysfunction, although the data 
do not indicate a significant association between 
blood culture results and sepsis mortality [8]. Con-
versely, Hazwani et al. reported lower mortality 
rates and reduced organ dysfunction among cul-
ture-negative sepsis patients [9]. Meanwhile, Bak-
er et al. found that patients in the CPS and CNS 
groups exhibited similar symptoms upon admis-
sion and received comparable treatments [10].

Among studies to date, sepsis research has pre-
dominantly focused on CPS, with fewer investiga-
tions into CNS. However, CNS comprises 28–49% 
of sepsis cases [8], making it a significant subset. 
Due to the absence of clear pathogenic diagnoses, 
CNS patients often miss out on targeted antibiot-
ic treatments, potentially resulting in higher mor-
bidity, mortality, and prolonged hospital stays [11, 
12]. Additionally, the empirical use of broad-spec-
trum antibiotics for CNS patients can elevate the 
risk of antibiotic resistance and complicate treat-
ment [11]. CNS cases may involve diverse patho-
gens such as viruses, fungi, and parasites or even 
non-infectious factors such as autoimmune dis-
orders and drug reactions [1]. Understanding the 
prognosis and underlying factors of CNS can shed 
light on sepsis etiology and mechanisms, paving 
the way for broader therapeutic strategies and im-
proved patient management.

Several factors influence ICU mortality in sep-
sis patients, with blood culture results being just 
one aspect [1]. Accurate prediction of high-risk pa-
tients can aid clinicians in assessing disease sever-
ity, optimizing treatment, and reducing poor out-

comes [3]. In recent years, machine learning (ML) 
has been increasingly applied to sepsis research 
[13]. Persson et al. developed a  high-performing 
ML algorithm for sepsis prediction using routine 
ICU data [14], while Yao et al. demonstrated that 
the XGB model excelled at predicting in-hospital 
mortality for postoperative sepsis patients [15]. 
Zhou et al. created an ML-based mortality predic-
tion model for S-AKI patients, with the CatBoost 
model showing the best predictive results [16]. 
Yang et al. highlighted the superior predictive per-
formance of XGB and random forest models for 
predicting sepsis onset [17].

Identifying high-risk subgroups is essential for 
managing CPS and CNS patients and improving 
their prognosis, with machine learning playing 
a  key role in this process [14–17]. However, ex-
isting models have limitations, as most research 
focuses on CPS, with limited analysis of ICU mor-
tality risk factors in CNS patients. This gap exists 
for several reasons. First, identifying the infection 
source is more straightforward in CPS, while it is 
often challenging in CNS cases [11, 12]. Second, 
positive bacterial cultures provide reliable results, 
whereas negative cultures can be affected by fac-
tors such as improper sampling or prior antibiotic 
use [1]. Consequently, CNS studies are more com-
plex and may yield less consistent conclusions 
compared to CPS. Additionally, CPS treatment is 
more targeted, whereas CNS patients typically 
receive broad-spectrum antibiotics based on clin-
ical judgment [1]. Lastly, CNS patients are more 
heterogeneous due to the involvement of various 
pathogens or non-infectious causes, complicating 
their analysis and treatment.

Given these limitations in mortality prediction 
for sepsis patients and the potential of machine 
learning in healthcare, there is a  pressing need 
to develop predictive models that evaluate risk 
factors for both CPS and CNS patients. This study 
aimed to identify in-ICU mortality risk factors, 
compare the prognostic differences between CPS 
and CNS patients, and create predictive models 
using machine learning techniques.

Material and methods

Sources of data

This study was conducted based on clinical re-
cords of sepsis patients who meet the diagnostic 
criteria of the Sepsis-3 definition obtained from 
the Medical Information Mart for Intensive Care 
database-IV version 0.4 (MIMIC-IV v0.4). The MIM-
IC-IV database is a  freely accessible critical care 
database released by the Laboratory for Compu-
tational Physiology at the Massachusetts Institute 
of Technology [18]. Detailed descriptions of this 
database are available in the literature [18].
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Study population

In this study, sepsis was defined according to 
the Third International Consensus Definitions [1]. 
The selection of study samples was based on the 
following inclusion and exclusion criteria.

Inclusion criteria: (1) patients diagnosed with 
sepsis: diagnosed according to the Sepsis 3.0 cri-
teria, i.e., infection + Sequential Organ Failure As-
sessment (SOFA) score ≥ 2, or patients diagnosed 
with sepsis in discharge diagnosis according to 
ICD-9.0; (2) age ≥ 18 years old; (3) stayed in ICU for 
more than 24 h; (4) microbial cultures performed 
within 24 h before and after ICU admission.

Exclusion criteria: (1) patients diagnosed with 
sepsis after 24 h of ICU admission; (2) patients 
with multiple ICU admissions were only included 
based on their first ICU admission information;  
(3) patients with microbial culture results indicat-
ing fungal or viral infections were excluded.

A  total of 9350 patients from MIMIC-IV met 
the inclusion and exclusion criteria. Among them, 
62 patients lacked information on ICU ward type 
and were excluded. Consequently, a  total of 
9288 patients were included in the study, with 
6622 (71.30%) cases in the CPS group and 2666 
(28.70%) cases in the CNS group (Figure 1).

Study outcome

The primary outcome event of this study, based 
on its significance, is in-ICU death of the selected 
septic patients.

Data pre-processing

Variables with ≥ 30% missingness were ex-
cluded from the analysis. Multiple imputation was 
performed on the remaining missing variables. To 
further validate the robustness of the interpola-

Figure 1. Study design
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tion method, we used the “mice” package nested 
in the R programming language to generate five 
interpolation datasets using the multiple interpo-
lation technique for variables containing missing 
values, and trained the machine learning model 
on each of the interpolation datasets separately 
to obtain the prediction results. Then the inter-
polated datasets were integrated using the pool 
function to achieve the final dataset for analysis. 
Multiple interpolation effectively reduces the error 
due to missing data by generating multiple data-
sets and integrating the interpolation uncertainty. 
We also transformed the continuous factor age in 
the database into an ordered factor age group. We 
recorded all cases of patients who had received 
vasopressin or ventilation or dialysis as 1. (The fil-
tered variables and variable missingness rates are 
shown in Supplementary Table SI.)

Variable selection

To capture a broader range of variables associ-
ated with in-ICU death in the analysis, the follow-
ing steps were taken. Firstly, we used three meth-
ods for factor screening in the training set [19], 
combining their results: (a) Univariate logistic re-
gression (LR): each factor was analyzed individual-
ly, and factors with a two-tailed p < 0.05 were se-
lected. (b) Elastic net regression: this regularized 
method optimized model complexity to identify 
important, sparse sets of factors [20]. (c) Random 
forest: feature importance was assessed using the 
Gini index to measure the contribution of each 
factor. Secondly, we fit a multifactorial logistic re-
gression model with the selected variables. Then, 
the variables with p < 0.05 in multifactorial logis-
tic regression were screened in conjunction with 
clinical significance. In addition, the above steps 
of screening variables were repeatedly conducted 
for the whole study sample, as well as the CPS and 
CNS subgroups. Finally, the valid variables identi-
fied from the overall sample, CPS group, and CNS 
group were input into the corresponding six ma-
chine learning models for each group.

Statistical analysis

Descriptive analysis was performed on all in-
cluded patients. Continuous variables conforming 
to a  normal distribution were described using 
means ± standard deviations (SD). Skewed contin-
uous variables were described using medians (in-
terquartile ranges), and categorical variables were 
described using frequencies (proportions). 

The datasets for the overall sample, CPS, and 
CNS were randomly sampled using the R program-
ming language, and all were randomly divided 
into a training set and a test set in a ratio of 7 : 3. 
The training sets were used for selecting variables 

and building models, and the test sets were used 
for validation.

Six machine learning methods – Decision Tree 
(DT), Random Forest (RF), Naive Bayes (NB), Ex-
treme gradient boosting (XGB), Gradient Boost-
ed Decision Trees (GBDT), and Neural Network 
(NNET) models – were employed to establish 
predict models. The training and testing process 
involves 5-fold cross-validation. Subsequently, the 
accuracy, sensitivity, specificity, and area under 
the curve (AUC) of the receiver operating char-
acteristic (ROC) curve were compared across the 
models to evaluate their performance and identify 
the optimized model for predicting in-ICU mortal-
ity of septic patients. In order to compensate for 
the lack of machine learning algorithms in vari-
able interpretation, we applied SHAP to explain 
the importance of each feature in the best model. 

All statistical analyses were conducted using R 
programming language (version 4.3.3, the R Foun-
dation, Vienna, Austria) and R Studio software 
(version 2023.12.1.402,R Studio, PBC, Boston, MA), 
with R packages including “tidyverse”, “mice”, 
“rpart”, “dplyr”, “randomForest”, “e1071”, “XGB”, 
“gbm”, “nnet”, and “shapr”. Statistical significance 
was decided at a two-sided p-value less than 0.05.

Results

Baseline characteristics

This study included 9288 study participants 
and 43 variables, covering basic demographic in-
formation, laboratory indicators, and comorbidi-
ties. Baseline clinical characteristics included ICU 
ward type, number of days in ICU, pulse, heart 
rate, temperature, systolic blood pressure, diastol-
ic blood pressure, hemoglobin (Hb), white blood 
cell (WBC) count, platelet (PLT) count, CCI, SOFA 
score, SAPSII, etc. Additionally, comorbidities such 
as diabetes, liver disease, chronic obstructive pul-
monary disease, etc., were also incorporated. 

Among the 9288 patients included in the study, 
5069 patients died in the ICU, with a mortality rate 
of 54.58%. The CPS group comprised 6622 indi-
viduals, among whom 3655 died in the ICU, result-
ing in a mortality rate of 55.19%. The CNS group 
consisted of 2666 individuals, with 1414 deaths in 
the ICU, yielding a mortality rate of 53.04%.

The majority of participants were in the age 
group of 45 to 79 years (65.20%). There was 
a slightly different proportion between males and 
females in the study population, with 57.55% 
being male and 42.45% female. The majority of 
patients were of white ethnicity. Chronic lung dis-
ease was the most common comorbidity, affecting 
1866 out of 9288 (30.60%) septic patients. This 
was followed by hypertension and liver disease, 
present in 23.41% and 8.5%, respectively. Selected 
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features of included patients are shown in Table I. 
This table compares the baseline characteristics of 
CPS and CNS sepsis patient subgroups in the ICU. 

Statistically significant differences were observed 
in age distribution, ethnicity, and ICU ward type  
(p < 0.05). Severity scores (SOFA, SAPSII) were 

Table I. Comparison of baseline characteristics between the two subgroups in the ICU

Variables CPS group (N = 6622) CNS group (N = 2666) Z/χ2 P-value

Age 65.48 ±16.34 65.52 ±16.63 73.38 0.53 

Age group/(n, %) 11.47 0.04

 18–25 98 (1.48) 56 (2.1)

 26–44 656 (9.91) 277 (10.39)

 45–64 2307 (34.84) 862 (32.33)

 65–79 2042 (30.84) 845 (31.7)

 80–85 740 (11.17) 328 (12.3)

 > 85 779 (11.76) 298 (11.18)

Male/(n, %) 3802 (57.41) 1543 (57.88) 0.15 0.70

Ethnicity/(n, %) 26.15 < 0.01

 Asian 217 (3.28) 52 (1.95)

 Black 739 (11.16) 277 (10.39)

 White 4379 (66.13) 1744 (65.42)

 Other 1287 (19.44) 593 (22.24)

ICU ward type/(n, %) 212.31 < 0.01

 CCU 518 (7.82) 335 (12.57)

 CVICU 469 (7.08) 310 (11.63)

 MICU 2115 (31.94) 629 (23.59)

 MICU/SICU 1781 (26.9) 524 (19.65)

 SICU 940 (14.20) 429 (16.09)

 Neuro SICU 129 (1.95) 83 (3.11)

 TSICU 670 (10.12) 356 (13.35)

Severity score/(Md [IQR])

 SOFA 7.73 (3.72, 11.75) 7.04 (3.29, 10.8) 82.83 < 0.01

 SAPSII 42.35 (27.62, 57.07) 40.27 (26.22, 54.31) 80.92 < 0.01

 CCI 6.17 (3.26, 9.09) 6.06 (3.09, 9.04) 76.79 0.15 

Comorbidity/(n, %)

 Chronic pulmonary disease 2067 (31.21) 775 (29.07) 4.02 0.05

 Liver disease 571 (8.62) 218 (8.18) 0.43 0.51

 Diabetes 271 (4.09) 97 (3.64) 0.91 0.34

 Hypertension 1554 (23.47) 620 (23.26) 0.04 0.85

Treatment measures/(n, %)

 Ventilation 4369 (65.98) 1740 (65.27) 0.40 0.53

 Dialysis 494 (7.46) 180 (6.75) 1.33 0.25

 Vasopressin 1083 (16.35) 362 (13.58) 10.94 < 0.01

Number of days/(d[IQR])

 Number of days in hospital 17.2 (0.4, 34.01) 16.07 (0.21, 31.93) 78.28 < 0.01

 Number of days in ICU 7.4 (–0.95, 15.75) 7.63 (–0.92, 16.17) 74.11 0.22 

Outcome/(n, %)

 Deaths 3655 (55.19) 1414 (53.04) 3.48 0.06

 90-day deaths 2206 (33.31) 811 (30.42) 7.12 < 0.01

CCU – coronary care unit, CVICU – cardiac vascular intensive care unit, MICU – medical intensive care unit, MICU/SICU – medical/surgical 
intensive care unit, SICU – surgical intensive care unit, Neuro SICU – neurosurgical intensive care unit, TSICU – trauma surgical intensive 
care unit, SOFA – Sequential Organ Failure Assessment, SAPSII – Simplified Acute Physiology Score II, CCI – Charlson Comorbidity Index.
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generally higher for CPS patients, indicating great-
er illness severity (p < 0.01). CNS patients showed 
slightly lower mortality rates and were more likely 
to be in certain ICU wards such as the Coronary 
Care Unit (CCU) and Trauma and Surgical Inten-
sive Care Unit (TSICU). Both groups had similar 
comorbidity patterns, but CPS patients required 
more vasopressin treatment (p < 0.01). Lengths of 
hospital stay were also significantly different be-
tween the groups (p < 0.01).

Variable selection

The final selection results are illustrated in the 
Figure below.

Based on the selection results, we considered the 
following 14 variables for machine learning model-
ing analysis with the whole study sample, including 
number of days in hospital, Hb, hematocrit (Hct), 
temperature, urine output, GCS, CCI, RBC count,  
SAPSII, alkaline phosphatase (ALP), blood urea nitro-
gen (BUN), liver disease, vasopressin, and age group.

In addition, we found that BUN and liver dis-
ease were not significant, and they were excluded 
from the analysis of the CPS group, while mean 
blood pressure (MBP) and ICU ward type were 
included due to their significance (p  <  0.05) in 
screening stage. Four variables – number of days 
in hospital, urine output, SAPSII, and liver disease 
– were not significant in the CNS group and were 
excluded from its analysis, whereas blood lactic 
acid (LaC) count and ICU ward type were meaning-
ful variables and included in the modeling analysis 
of the CNS group.

Model development and validation

Six machine learning models were construct-
ed to predict the risk of in-ICU mortality among 

septic patients. We divided datasets into train-
ing and test sets in a ratio of 7 : 3, and the pre-
diction results of the six machine learning algo-
rithms based on test sets are shown in Table II. 
The table describes the prediction performance 
of the six machine learning models (DT, RF, NB, 
XGB, GBDT, and NNET) in predicting the in-ICU 
mortality rate of patients with sepsis, including 
the CPS and CNS subgroups, which mainly in-
cludes accuracy, sensitivity, specificity, and AUC. 
(The prediction results of the six machine learn-
ing models on training sets are shown in Supple-
mentary Table SII.)

For septic patients (the whole study sample), 
the XGB model achieved the highest AUC of 0.782, 
while the AUCs of the remaining five models were 
lower, with the AUC of the DT model being the 
lowest at 0.6741. Regarding predictive accuracy, 
the RF, XGB, GBDT, and NNET models all achieved 
around 70%, while the DT and the NB achieved 
the lowest accuracy of around 67%. In terms of 
sensitivity and specificity, XGB, GBDT, and NNET 
performed better. 

Considering the above four evaluation indica-
tors collectively, the XGB algorithm demonstrat-
ed the best predictive performance, followed by 
the NNET model. Additionally, under the same 
evaluation indicators, the best prediction mod-
el for both the CPS and CNS groups was GBDT. 
XGB outperformed other models in the overall 
sample, mainly due to its strong generalization 
ability and adaptability to large datasets. The su-
periority of GBDT in the two subgroups of CPS 
and CNS, on the other hand, may stem from its 
flexibility and robustness in dealing with small 
samples and data with large feature differences. 
The ROC curves for the established models are 
shown in Figure 2.

Table II. Predictive results of six machine learning models based on test sets for septic patients who died in the ICU

Group Indicators Model

DT RF NB XGB GBDT NNET

All patients Accuracy 0.6701 0.7003 0.6701 0.7136 0.7042 0.6978

Sensitivity 0.6605 0.6888 0.7062 0.7127 0.7056 0.7054

Specificity 0.6887 0.7207 0.6324 0.7149 0.7022 0.6872

AUC area 0.6741 0.7695 0.7372 0.782 0.7816 0.7768

CPS group Accuracy 0.6934 0.7135 0.6964 0.708 0.7185 0.7044

Sensitivity 0.6845 0.7136 0.7243 0.7142 0.7281 0.7226

Specificity 0.7103 0.7134 0.6626 0.6986 0.7049 0.6803

AUC area 0.6869 0.7775 0.7516 0.7756 0.7779 0.7751

CNS group Accuracy 0.6683 0.6884 0.6821 0.6871 0.7109 0.6583

Sensitivity 0.6616 0.7201 0.7709 0.7223 0.7403 0.7106

Specificity 0.6872 0.6435 0.6051 0.6391 0.6697 0.5967

AUC area 0.661 0.7558 0.754 0.7439 0.7588 0.7223

DT – decision tree, RF – random forest, NB – naive bayes, XGB – Extreme Gradient Boosting, GBDT – Gradient Boosted Decision Trees, 
NNET – Neural Network, AUC – area under the curve.
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Figure 2. Summary AUC of 6 machine learning al-
gorithms. A – AUC of the 6 machine learning algo-
rithms in all patients. B – AUC of the 6 machine 
learning algorithms in the CPS group. C – AUC of 
the 6 machine learning algorithms in the CNS 
group
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Significance of features

CCI, SAPSII, BUN, liver disease, vasopressin, 
and age were associated with a higher risk of in-
ICU death. As their levels increased, the patient’s 
risk of death increased. Number of days in hospi-
tal, Hb count, temperature, urine output, GCS, and 
RBC count were associated with lower in-ICU mor-
tality. Patients in Cardiac Vascular Intensive Care 
Unit (CVICU), Surgical Intensive Care Unit (SICU), 
and Trauma SICU (TSICU) had a higher risk of in-
ICU mortality compared to the Coronary Care Unit 
(CCU). Risk factors that were the same between 
the CPS and CNS subgroups were CCI, age, GCS, 
bilirubin total, temperature, Hb, RBC count, ICU 
ward type, hematocrit, and vasopressin. In terms 
of differences between the two subgroups, days of 
hospitalization, urine output, SAPSII, and MBP were 

risk factors specific to the CPS group that may lead 
to an increased risk of death in the ICU, whereas in 
the CNS group, higher levels of BUN and LaC were 
specific risk factors (Figures 3 and 4). 

Discussion

In this study, the clinical measurements of sep-
sis patients were extracted from the MIMIC-IV da-
tabase. Then, we compared the baseline features 
and clinical characteristics of patients in the CPS 
and the CNS subgroups. We identified three dif-
ferent combinations of factors that may be asso-
ciated with in-ICU death of sepsis patients. Based 
on six different machine learning algorithms, pre-
diction models for in-ICU death were established 
for general patients with sepsis, as well as the 
CPS and the CNS groups. The optimized prediction 
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Figure 3. Summary of SHAP for the XGB model for all patients, the GBDT model for the CPS group, and the GBDT 
for the CNS group. A – Feature importance from the XGB model of all patients. Feature importance is represented 
by the absolute mean of the SHAP values for each feature. B – The higher the SHAP feature value, the higher the 
risk of death in the ICU for patients with sepsis. A point created in the model represents a characteristic attribute 
value for one patient, so that there is a point on each characteristic line for each patient. The points are colored 
according to the characteristic value of the corresponding patient and vertically cumulated to describe the density. 
Red color indicates higher eigenvalues and blue color indicates lower eigenvalues. C – Feature importance from 
the GBDT model of the CPS group. Feature importance is represented by the absolute mean of the SHAP values 
for each feature. D – The higher the SHAP feature value, the greater the risk of death in the ICU for CPS patients

model was selected by comprehensively consider-
ing the evaluation metrics, including AUC, predic-
tion accuracy, sensitivity and specificity. The XGB 
model performed best for general patients with 
sepsis, while the GBDT model performed best for 
the CPS and the CNS groups. Based on the inter-
pretable learning method, we explored the im-
portance of the identified relevant factors for the 
prognosis of sepsis patients.

Despite the many challenges of studying pa-
tients with CNS, exploring the characteristics of 
patients with CNS can further reveal their prog-
nostic features and influencing factors, which 
can contribute to treatment efficacy and improve 
prognosis [7]. By identifying specific biomarkers 
or clinical features, it is also possible to provide 
useful information for the development of treat-
ment strategies for patients with CPS and CNS 
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Figure 4. Summary of variable interaction depen-
dency plot. A – Interaction effect between CCI and 
number of days in hospital on the risk of in-ICU 
mortality in patients with sepsis. B – Interaction 
effect between CCI and GCS on the risk of death in 
the ICU in patients with CPS. C – Interaction effect 
between AGE and CCI on the risk of death in the 
ICU in patients with CNS
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[5]. The machine learning models developed offer 
a valuable tool for ICU clinicians, helping to identi-
fy high-risk patients early and enabling timely, tar-
geted interventions [13]. Integrating these models 
into electronic health record (EHR) systems could 
facilitate real-time risk assessment and person-
alized care [21]. Future steps include prospective 
validation in independent ICU cohorts and the 
incorporation of dynamic data (e.g., real-time vi-
tal signs) to enhance model accuracy. Ultimately, 
these models could improve patient outcomes by 
guiding interventions and resource allocation, po-
tentially reducing in-ICU mortality.

Among the clinical features selected, low levels 
of hospital days, Hb, urine output, temperature, 
and GCS were found to be associated with in-
creased risk of in-ICU death. Higher levels of age, 
Hct, CCI, SAPSII, TBil, BUN, the presence of liver 
disease, and use of vasopressin were also asso-
ciated with a higher in-ICU death risk for sepsis 
patients.

Our analysis revealed little difference in co-
morbidities between the patients with CPS and 
CNS, but patients with CPS experienced more va-
sopressor support, which may be related to the 
severely impaired endothelial function of patients 
with CPS. It has been shown [22] that sepsis is 
an abnormal host response to infection, which is 
characterized by a variety of systemic disturbanc-
es, including increased vascular permeability and 
vasodilatation. Therapeutically, in addition to the 
use of antibiotics [23], early fluid resuscitation is 
also critical [24]. Su et al. reported that a  large 
positive fluid balance worsens the condition of 
patients with hypoxemia [25]. However, not all 
patients respond effectively to fluid resuscitation, 
and its effects usually last for a shorter period [26], 
thus requiring the use of vasoconstrictive drugs to 
improve organ perfusion [27]. In addition, septic 
patients admitted to different types of ICU wards 
differ in their risk of in-ICU death, and a study by 
Ohbe et al. found a difference in case-fatality rates 
between patients in the ICU and those in the gen-
eral ward [28], but no study has yet explored the 
association between the type of ICU ward and the 
risk of in-ICU death in septic patients.

Our study further compared the similarities 
and differences in identified influential factors 
and established models for patients with CPS and 
CNS. Risk factors that were the same between 
the two subgroups were CCI, age, GCS, bilirubin 
total, temperature, Hb, RBC count, ICU ward type, 
hematocrit, and vasopressin. This may be related 
to disease risk factors in sepsis patients, which 
did not seem to differ between the CPS and CNS 
groups. Nejtek et al. found that a higher CCI had 
a significant effect on mortality [29]. For differenc-
es between the two subgroups, number of days 

in hospital, urine output, SAPSII, and mean MAP 
were important factors related to increased risk 
of in-ICU death in the CPS group. However, in the 
CNS group, these variables were not included in 
the final model. In the CNS group, higher BUN and 
LaC levels were significant risk factors related to 
increased risk of in-ICU death, whereas they were 
not included in the final model in the CPS group. 
Sigakis et al. observed that blood transfusion 
within the first 24 h of onset was significantly as-
sociated with mortality in patients with CNS, but 
not in patients with CPS [30]. These differences 
may reflect variations in the type of pathogen in-
fection and severity of the disease between the 
two groups, requiring targeted prevention and 
treatment measures for each group. Therefore, 
based on these differences, we can further ex-
plore the potential pathological and physiological 
similarities and differences between patients with 
CPS and CNS in order to achieve meaningful re-
sults in the prevention or treatment of sepsis in 
the future.

In terms of model performance, the XGB model 
performed best for predicting death in the ICU for 
all patients. For patients in the CPS and CNS sub-
groups, the GBDT model performed best. These 
findings are similar to those of Yang et al., who 
reported that XGB and RF models performed op-
timally for predicting sepsis onset [17]. Howev-
er, the choice of model also needs to be based 
on practical clinical scenarios and needs to be 
weighed against other considerations.

In this study, the SHAP approach was also 
used to enhance the interpretation of the model 
established and to explore the main risk factors 
affecting sepsis patients’ mortality in the ICU. The 
results showed that some common risk factors, 
such as higher TBil, renal insufficiency (reflected 
in higher BUN levels), higher SAPSII, older age, and 
treatment with vasopressin significantly increased 
the risk of in-ICU death for the whole study sam-
ple and in two subgroups. This is consistent with 
the results of previous studies [1, 31, 32]. It has 
been shown that the prevalence of sepsis is in-
creasing in the elderly population and age is an 
independent risk factor for death [31]. A study by 
Kübler et al. revealed that about 89% of septic pa-
tients admitted to the ICU in critical condition had 
dysfunction in three or more organs [32]. Organ 
dysfunction can be measured by the SOFA score, 
where an increase of 2 or more points implies an 
in-hospital mortality rate of more than 10% [1].

We also found that lower Hb levels, urine out-
put, and GCS were associated with a  lower risk 
of in-ICU death. These findings are also supported 
by previous studies [32–35]. Qi et al. found that 
when a patient’s Hb level falls below 80 g/l within 
48 h of admission to the ICU, it will likely increase 
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the risk of death in patients with sepsis [33]. Low 
urine output is an important indicator for detect-
ing acute kidney injury [36], and also suggests an 
increased risk of death [34], which is often associ-
ated with renal dysfunction in patients with sepsis 
[32]. GCS is a rating scale that provides an objec-
tive assessment of patient consciousness [35], 
and a low GCS may be a simple and reliable pre-
dictor suggesting the need for initial resuscitation 
in patients with sepsis [37]. These findings are 
in line with the conclusions of previous studies, 
suggesting that, to improve the prognosis of sep-
tic patients, we may need to closely monitor the 
liver and kidney functions, SOFA score and other 
indicators of infected patients, actively correct the 
anemia, and maintain the patient’s urine output 
and mental status, so as to allow the patient to 
obtain a good therapeutic prognosis. 

The SHAP approach applied provide better un-
derstanding of the final machine learning model 
and selected influential factors. A comprehensive 
analysis of the key factors affecting the prognosis 
of sepsis patients provided a potentially important 
guide for future risk assessment and individual-
ized treatment in clinical practice. It also provides 
the quantitative evidence necessary for better un-
derstanding of the prognosis of septic patients.

Limitations of this study include the following: 
(1) Despite our rigorous screening of potential 
factors, we may not have been able to exclude all 
possible confounders due to the retrospective na-
ture of this study, and we were unable to consider 
some important confounders such as antimicrobi-
al use and timing of interventions due to lack of 
information about these factors. (2) Our analyses 
were based on retrospective data on the histo-
ry of the first ICU admission, and potential bias 
in sample selection may not be totally avoided.  
(3) The aim of our study was to explore the ma-
jor influences on bacterial sepsis. The inclusion 
of other pathogens (e.g., fungi and viruses) may 
greatly increase the complexity of the data and 
make it difficult to accurately differentiate the 
specific characteristics of bacterial infections. Fu-
ture studies could take fungal and viral infections 
into account to fully assess the impact of multi-
ple pathogens. (4) Our study has only established 
a  preliminary prediction model, and further pro-
spective validation and optimization are needed 
before application in practice.

In conclusion, this study found no significant 
difference in in-ICU mortality between CPS and 
CNS, but it identified key risk factors for in-ICU 
mortality in sepsis patients, revealing significant 
differences between CPS and CNS. These findings 
can inform personalized treatment strategies, 
particularly for CNS patients, who may require 
distinct management approaches. 
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