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 Abstract
Introduction
Diabetic foot ulcers (DFUs) are among the most severe and debilitating diabetic complications, often
leading to extremely high morbidity and mortality. Recently, increasing evidence has highlighted the
role of necroptosis, a distinct type of programmed cell death distinct from apoptosis, in the progression
and severity of DFUs. Understanding necroptosis-associated genes in DFUs could open new
therapeutic avenues aimed at modulating this form of cell death, potentially improving outcomes for
patients suffering from this serious diabetic complication.

Material and methods
This study focuses on discovering and confirming potential necroptosis biomarkers linked to DFU
through the application of machine learning and bioinformatics approaches. We obtained three
microarray datasets associated with DFU individuals from the Gene Expression Omnibus (GEO)
database: GSE68183, GSE134431, and GSE80178.

Results
In GSE134431, we identified necroptosis-associated genes (NRGs) with differential expression
between DFU patients and healthy controls, totaling 37 NRGs. Additionally, we observed an activated
immune response in both groups. Moreover, clustering analysis revealed two distinct clusters within
the DFU samples, showcasing immune heterogeneity. Subsequently, we constructed a Random
Forest (RF) model utilizing 5 genes (CENPB, TRIM56, ZNF768, PLIN4, and ATP1A1). Notably, this
model demonstrated outstanding performance on the external validation datasets GSE134431,
GSE68183 (AUC = 1.000). The study has pinpointed five genes linked to necroptosis in the context of
DFU, unveiling new potential biomarkers and targets for DFU therapy.

Conclusions
Bioinformatics analysis elucidated that CENPB, TRIM56, ZNF768, PLIN4, and ATP1A1 could serve as
potential biomarkers for future DFU research.
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Introduction: 6 

Diabetic foot ulcers (DFUs) are among the most severe and debilitating diabetic 7 

complications, often leading to extremely high morbidity and mortality. Recently, 8 

increasing evidence has highlighted the role of necroptosis, a distinct type of 9 

programmed cell death distinct from apoptosis, in the progression and severity of 10 

DFUs. Understanding necroptosis-associated genes in DFUs could open new 11 

therapeutic avenues aimed at modulating this form of cell death, potentially 12 

improving outcomes for patients suffering from this serious diabetic complication. 13 

Material and methods: 14 

This study focused on discovering and confirming potential necroptosis 15 

biomarkers linked to DFU through the application of machine learning and 16 

bioinformatics approaches. We obtained three microarray datasets associated with 17 

DFU individuals from the Gene Expression Omnibus (GEO) database: GSE68183, 18 

GSE134431, and GSE80178. 19 
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differential expression between DFU patients and healthy controls, totaling 37 NRGs. 22 

Additionally, we observed an activated immune response in both groups. Moreover, 23 

clustering analysis revealed two distinct clusters within the DFU samples, showcasing 24 

immune heterogeneity. Subsequently, we constructed a Random Forest (RF) model 25 

utilizing 5 genes (CENPB, TRIM56, ZNF768, PLIN4, and ATP1A1). Notably, this 26 

model demonstrated outstanding performance on the external validation datasets 27 

GSE134431, GSE68183 (AUC = 1.000). The study has pinpointed five genes linked 28 

to necroptosis in the context of DFU, unveiling new potential biomarkers and targets 29 

for DFU therapy.  30 

Conclusions: 31 

Bioinformatics analysis elucidated that CENPB, TRIM56, ZNF768, PLIN4, and 32 

ATP1A1 could serve as potential biomarkers for future DFU research. 33 

Keywords:  34 
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Introduction 44 

Diabetic foot ulcer (DFU) is a major diabetes complication that can result in 45 

serious outcomes, including infection, gangrene, amputation, and even death. DFU 46 

affects around 18.6 million patients worldwide annually[1]. Moreover, up to about 34% 47 

of individuals with type 1 or type 2 diabetes will experience a foot ulcer at some point 48 

in their lifetime[2]. Furthermore, it is concerning that around 20% of people with a 49 

diabetic foot ulcer may require a lower extremity amputation[3]. Given the increasing 50 

prevalence of diabetes and diabetic wounds, addressing the diverse factors that 51 

impede healing in diabetic wounds is essential for developing future treatment 52 

strategies. First-line therapies for DFUs typically include surgical debridement, 53 

offloading pressure from the ulcer, and managing lower extremity ischemia and foot 54 

infections[4]. Despite advancements in treatment, nonhealing DFUs remain a 55 

persistent clinical challenge. Hence, investigating the pathological mechanisms of 56 

DFUs and advancing therapeutic strategies are essential for accelerating ulcer healing 57 

and enhancing patient prognosis. 58 

The process of healing chronic wounds in DFU that are resistant to treatment is 59 

highly intricate. Chronic inflammation hampers the healing process by affecting the 60 

immune cells’ ability to fight bacteria, reducing blood flow to the wound site, 61 

damaging the basement membrane of cells, and inhibiting the production of 62 

collagen[5]. DFU wounds provide an optimal environment for the formation of 63 

biofilms, and resistance to multiple drugs along with biofilm formation are crucial 64 

factors in the development of infections in DFU[6]. After blood sugar levels rise, 65 
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reactive oxygen species (ROS) are subsequently produced, thereby increasing the 66 

generation of inflammatory mediators, degenerate pericytes, thicken the basement 67 

membrane, cause endothelial hyperplasia, reduce prostacyclin synthesis, impair blood 68 

vessel dilation, and elevate procoagulant markers. This cascade of events results in the 69 

formation of microthrombi, leading to worsened blood flow and oxygen deprivation 70 

in diabetic wounds, causing damage to local tissues[7]. Additionally, factors such as 71 

the inhibition of growth factors, disturbances in microcirculation, and age-related 72 

changes are key factors contributing to DFU[8-10]. The precise mechanism behind 73 

the resistance to healing in DFU remains unclear, which poses challenges in 74 

diagnosing and treating these conditions effectively. 75 

Necroptosis has been identified as a novel form of genetically controlled cell 76 

death. Initially, studies on necroptosis were mainly centered around acute nervous 77 

system[11,12], cancer[13,14], and cardiovascular diseases[15]. Necroptosis is a 78 

self-destructive cellular process that occurs when apoptosis is hindered. Cells 79 

undergoing necroptosis display necrotic characteristics such as plasma membrane 80 

disruption, organelle swelling, and cytolysis[16]. Necroptosis, initiated by specific 81 

stimuli and regulated via caspase-independent pathways, primarily involves the 82 

activation of mixed lineage kinase domain-like protein[17], receptor-interacting 83 

protein kinase 1 (RIPK1), and RIPK3[18]. While integrating necroptosis targeting 84 

with immunotherapy appears promising in neurological and cancer treatments, our 85 

understanding of how necroptosis influences immunogenicity and immunotherapy is 86 

still limited. Given the current lack of research, our study aims to extensively 87 

Prep
rin

t



 5 

investigate the relationship between necroptosis and immunotherapy in the context of 88 

DFU. 89 

Several prior studies have employed the Gene Expression Omnibus (GEO) 90 

database to explore targets related to DFU[19,20], leveraging the advancements in 91 

bioinformatics and machine learning[21-23]. Therefore, we propose that 92 

necroptosis-associated genes (NRGs) are crucial in the development of DFU.  93 

 94 

 95 

 96 
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Materials and methods 110 

The study utilized unsupervised cluster analysis to differentiate two unique 111 

clusters in the NRG expression matrix. Subsequently, a machine learning model was 112 

developed derived from the key DFU module and two WGCNA clusters[24,255], 113 

with the selection of key models based on diagnostic sensitivity[26]. The study seeks 114 

to unveil necroptosis-associated genes within immune responses and treatment 115 

strategies for DFUs [27,28]. Figure1 illustrated the flowchart of the study. 116 

Raw data  117 

We used datasets GSE134431, GSE80178, and GSE68183 from the GEO 118 

database. The training set was GSE134431, while GSE80178 and GSE68183 were 119 

validation sets. GSE68183 included 3 DFU samples and 3 normal skin samples, while 120 

GSE80178 contained 9 DFU samples and 3 normal skin samples[29]. GSE134431 121 

comprised 13 DFU samples and 8 normal skin samples[30]. The NRG dataset was 122 

obtained from MSigDB, details were summarized in Table 1. 123 

Dataset Platform Count DFU Control 

GSE68183 GPL16686 6 3 3 

GSE80178 GPL16686 12 9 3 

GSE134431 GPL18573 21 13 8 

Table 1: Dataset information. 124 

Differentially expressed genes (DEGs) analysis  125 

Data processing involved obtaining accurate mRNA data from transcription data 126 

using Perl-based matching and sorting techniques. Data normalization was then 127 

conducted for GSE134431. 128 
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The “limma” R package (version 3.52.4) was used to process raw gene 129 

expression matrices from the GEO database. To adjust for batch variations among 130 

GSE134431, GSE68183, and GSE80178, the SVA package was utilized. 131 

Cluster analysis  132 

By evaluating the cumulative distribution function curve, consensus cluster score 133 

and consistency matrix, the ideal cluster number was established, with the maximum 134 

cluster count set to k = 9 for this study. 135 

Immune cell infiltration 136 

The analysis of immune cell composition of DFU was conducted with 137 

CIBERSORT. Utilizing the limma package, we showcased the immune cell findings 138 

through barplots and corplots. Deconvolution p-values for each sample were obtained 139 

using Monte Carlo sampling in CIBERSORT. The transcriptional signature matrix 140 

representing 22 immune cells was utilized for the computational simulation, ensuring 141 

their total percentage of these 22 immune cells equaled one for each sample. We 142 

conducted 1,000 computational simulations, identifying samples with a p-value < 0.05 143 

as statistically significant. 144 

Enrichment analysis 145 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology 146 

(GO) were used to explore biological functions and pathways. The analysis of how 147 

differentially expressed GlnMRGs affect biological processes (BP), molecular 148 

functions (MF), and cellular components (CC) was assessed using the Gene Set 149 

Variation Analysis (GSVA) method in R. GSVA scores, derived through the “limma” 150 

R package (version 3.52.4), with a |t value| > 2, were deemed significantly altered. 151 
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Co-expression gene identification 152 

The Weighted Gene Co-Expression Network Analysis (WGCNA) method was 153 

employed to categorize genes and uncover connections of modules and traits. The 154 

co-expression network was constructed using the top 25% most variable genes from 155 

the GSE134431 dataset. Using a dynamic tree-cutting approach with a cutoff of 0.25, 156 

modules were merged. The modules showing the highest correlation between the two 157 

classification approaches were then identified and mapped. 158 

Developing predictive models using various machine learning techniques 159 

Cluster-specific NRGs were identified by combining WGCNA with the analysis 160 

of DEGs within gene clusters. The tool Vnnmap is utilized to illustrate overlapping 161 

genes. The “caret” R package was used to develop machine learning models for two 162 

distinct GlnMRG clusters, utilizing methods such as Generalized Linear Model 163 

(GLM), Support Vector Machine (SVM), Extreme Gradient Boosting (XGB), and 164 

Random Forest (RF). GLM modeled the expected response through a link function, 165 

allowing predictions of relationships from linear variable combinations[31]. XGB 166 

operated as a series of parallel trees, enhancing predictions iteratively with each new 167 

tree, which helped in aligning predictions closely with actual values[32]. SVM, a 168 

form of generalized linear classifier, was particularly effective for binary 169 

classification tasks using supervised learning, especially in small datasets and 170 

high-dimensional spaces[33]. Furthermore, RF combined multiple independent 171 

decision trees to enhance prediction accuracy for classification and regression 172 

tasks[34]. 173 

To analyze gene correlations in DFU, we used various clusters as response 174 
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variables and selected differentially expressed genes (DEGs) that were compatible 175 

with these clusters as explanatory variables. The DFUs were randomly assigned to the 176 

training set and the validation set in a 7:3 ratio. The “caret” R package was used to 177 

automatically fine-tune model parameters through grid search, default settings. Next, 178 

a 5-fold cross-validation was performed for evaluation. The “DALEX” package 179 

(version 2.4.2) was employed to explain and visualize the 4 machine learning models. 180 

The “pROC” package (version 1.18.0) was used to display the area under the receiver 181 

operating characteristic curve (AUC). The top 5 key variables of gene correlation in 182 

DFU were depended on the optimal machine learning model. 183 

Developing and independently validating a nomogram model 184 

Using the “rms” R package (version 6.3.0), a nomogram model was developed to 185 

assign scores to each predictor variable. The “Total Score” was the cumulative sum of 186 

the scores for the predictive variables. Calibration curve and decision curve analysis 187 

(DCA) were used to evaluate the predictive performance of the nomogram model. The 188 

model to differentiate between DFU and normal samples was independently validated 189 

with external datasets GSE134431, GSE68183, and GSE80178.  190 

Interactions between drugs and genes 191 

Advancements in bioinformatics have emphasized the importance of creating 192 

biological models and identifying effective biomarkers for disease diagnosis. 193 

However, applying these biomarkers in clinical practice was essential. The use of 194 

information markers to predict drug response was critical for the prevention and 195 

treatment of DFU. The DGIdb database assisted in forecasting drug-gene interactions 196 

for key genes identified for the RF model, enhancing drug prediction accuracy and 197 
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guiding therapeutic strategies. 198 

Ethical approval and informed consent 199 

There were no clinical trials involved in the study; so, ethical approval and 200 

consent of participants were not required. 201 
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Results 220 

NRGs expression in DFUs 221 

37 diferentially expressed NRGs (deNRGs) were identifed. Of these, compared 222 

with a normal control group, in DFU patients, the expression level of CTPS1, PIPK3, 223 

CAMK2A, CAMK2D, PPID, VDAC2, PYGL, PLA2G4A, PLA2G4B, IL1B, 224 

CHMP2B, VPS4B, CHMP1B, IL1A, TNFRS10A, IFNA1, STAT5A, STAT5B, and 225 

TICAM1 were significantly increased. Conversely, RNF31, CAMK2B, CAMK2G, 226 

SLC25A4, SLC25A6, GLUD1, GLUL, PYGB, PLA2G4F, CHMP2A, CHMP3, 227 

VPS4A, FAF1, SRAT3, STAT6, TLR3, SQSTM1, HSP90AB1, and BCL2 showed 228 

lower expression levels in testicular tissue of patients with DFU (Figure 2A,B). Figure 229 

2C illustrated the chromosomal locations of the NRGs were determined and presented 230 

visually in circle forma. Following this, correlation analysis was conducted on the 231 

genes (Figure 2D,E), revealing that most exhibited positive interrelationships. 232 

Immune infiltration analysis 233 

Figure 3A depicted the distribution of immune cells in different samples, while 234 

Figure 3B highlighted the differences between DFU and normal. In DFU samples, 235 

activated Mast cells and Neutrophils were elevated, whereas activated NK cells and 236 

CD8 T cells were reduced compared to controls. The correlation between immune 237 

cells and NRGs was demonstrated in Figure 3C. 238 

Cluster analysis 239 

When k was set to 2, the highest within-group correlations emerge, suggesting 240 

that NRGs can categorize patients with diabetic foot ulcers into two distinct clusters 241 

(Figure 4A). Figure 4B highlighted notable variations in the principal component 242 
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analysis (PCA) across clusters. Further, the NRGs across the various clusters were 243 

investigated following this cluster analysis. Significant variations were observed in 244 

the levels of RNF31, GLUD1, PYGB, CHMP2A, CHMP2B, VPS4A, CHMP1B, 245 

STAT3, STAT5A, HSO90AB1, and PARP1 among groups (Figure 4C,D). Figure 4E 246 

and F illustrated the analysis of immune cell infiltration outcomes according to the 247 

identified clusters. 248 

Functional enrichment study 249 

Assessing the enrichment of NRGs through GSVA. The pathway was 250 

significantly enriched in key genes involved in small cell lung cancer, as well as in the 251 

functions of arachidonic acid metabolic pathway genes and metabolites (Figure 5A). 252 

The results of the GO analysis showed enzyme substrate adaptation and transportation 253 

of compounds containing nucleobases (Figure 5B). 254 

Identification and development of gene modules within co-expression networks 255 

We utilized WGCNA to develop co-expression networks for healthy controls and 256 

DFU patients, revealing significant gene modules related to DFU. We discovered gene 257 

modules that exhibited co-expression under this specific condition (Figure 6A). 258 

Subsequently, the dynamic cut algorithm resulted in 26 unique co-expression 259 

components, distinguished with various colors, then created a TOM heat map (Figure 260 

6B,C,D). Furthermore, we analyzed the correlation and consistency of co-expression 261 

patterns using genes from these 26 modules in relation to clinical characteristics. The 262 

red module contained 222 hub genes, had the strongest correlation with DFU (Figure 263 

6E) and exhibited a positive association (Figure 6F). 264 

Prep
rin

t



 13 

Moreoverer, the pivotal gene modules related to NRGs were identified by 265 

WGCNA. A scale-free network was constructed with the soft threshold parameter β 266 

= 12 and R2 = 0.9 (Figure 7A). 22 important modules were analyzed, and a heatmap 267 

displayed the TOM of genes associated with these modules (Figure B,C,D). 268 

Analyzing the relationship of modules and clinical picture illustrated the significance 269 

of pink color module (Figure 7E). Figure 7 showed the correlation analysis, revealing 270 

the strong positive association of the pink module and hub gene. 271 

Modeling 272 

By aligning these genes of pink color module from NRGs clusters with those of 273 

the red module from DFU, we identified 10 unique NRGs (Additional fle 1: Appendix 274 

1) specific to these clusters (Figure 8A,B). The analysis of residual distributions 275 

across the four models indicated that the RF model has the largest residuals (Figure 276 

8B). Figure 8C showed the top 10 important characteristics of models. As shown in 277 

Figure 8D, the ROC analysis of the 4 machine models revealed that the RF model 278 

achieved a perfect AUC value of 1.000. As a result, the RF model (CENPB, TRIM56, 279 

ZNF768, PLIN4, and ATP1A1) (Figure 8E) was selected as the most suitable model 280 

because it could most clearly distinguish between DFU and normal samples. 281 

Assessment of machine models 282 

The predictive performance of the RF model was evaluated by line graphs  283 

(Figure 9A). The calibration graph showed the closest alignment between the real and 284 

predicted risk of DFU clustering (Figure 9B). DCA demonstrated that the line graph 285 

was highly accurate and provided valuable insights for clinic treatment (Figure 9C). 286 

After validating the model with datasets GSE134431, GSE80178, and GSE68183 287 
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(Figure 9D), ROC analysis showed perfect discrimination with an AUC of 1.000. 288 

Figure 9 showed an immune-correlation analysis of the model genes, highlighting 289 

their immune function. 290 

Drug-gene interactions analysis 291 

The interacting genes were utilized for predicting drug interactions. From target 292 

ATP1A1, we predicted drugs such as ISTAROXIME, DIGOXIN, 293 

ACETYLDIGITOXIN, ARTEMETHER, ALMITRINE, DESLANOSIDE, BEPRIDIL, 294 

LUMEFANTRINE, DIGITOXIN, OUABAIN, EPLERENONE, and 295 

CHLOROPROCAINE. (Additional file 1: Appendix 2). 296 

 297 
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Discussions 315 

Diabetes is a persistent metabolic disorder that can only be managed[35], not 316 

cured. Complications resulting from long-term poor blood glucose control, including 317 

cardiovascular and cerebrovascular diseases, as well as renal failure[36,37]. DFU is a 318 

common complication of diabetes among others. While nanodressings, bioactive 319 

dressings, and 3D printed dressings have been created for DFU treatment[38], current 320 

dressings prioritize therapy over real-time monitoring and wound response. Our 321 

understanding of the molecular basis of DFU has significantly increased in the last 322 

few decades[39,40]. This highlights the potential of biomarkers for various aspects of 323 

treatment, including diagnostics, disease diagnosis, disease prognosis, and new drug 324 

research. While the underlying mechanisms contributing to the development of DFU 325 

remains uncertain. Hence, we theorize that there is a complex relationship between 326 

NRGs and the development of DFU. We used bioinformatics methods in our study to 327 

investigate the potential connection between them[41]. 328 

Necroptosis, as a novel therapeutic target, has received increasing attention, is 329 

gaining more recognition and its impact is seen differently in various clinical 330 

environments. Necroptosis is a basic physiological phenomenon in human body, 331 

involves intricate interactions between necrosis and apoptosis, demonstrating distinct 332 

regulatory pathways. The initiation of necroptosis involves the activation of specific 333 

cell surface receptors including Toll-like receptors, tumor necrosis factor receptor 1, 334 

and interferon receptors. This activation leads to the formation of the necrosome 335 

genes, involving crucial molecules such as receptor-interacting protein kinases, which 336 
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are essential for orchestrating the necroptotic process[42-44]. Several research studies 337 

have connected interrupted necroptosis with brain damage and the onset of cancer, 338 

leading to the approval of medications targeting necroptosis for the treatment of 339 

different neurological conditions and malignant tumors[45]. Naito et al. found that 340 

cerebral ischemia-reperfusion injury can rapidly activate necrotic apoptosis, promote 341 

cerebral hemorrhage and neuroinflammation, and aggravate brain injury[46]. 342 

Necroptosis in triple-negative breast cancer promotes the formation of vasculogenic 343 

mimicry through RIPK1/p-AKT/eIF4E signaling pathway[47]. The exact function of 344 

necroptosis in the development of DFU remains unclear, and this could represent a 345 

promising feld. 346 

This study unsupervised clustering analysis to explore distinct patterns of 347 

necroptosis regulation using the expression profiles of NRGs, identifying two unique 348 

clusters of NRGs. Furthermore, this study innovatively constructed machine learning 349 

models using disease characteristics and pivotal genes identified through WGCNA 350 

within the two unique NRG clusters. As research evolves, there’ s a growing trend of 351 

using machine learning models for DFU prediction. Unlike the conventional 352 

univariate analysis, machine learning typically utilizes a multivariate analysis method, 353 

considering the interactions among variables. Hence, machine learning models tend to 354 

be more precise and produce more dependable outcomes. The “caret” R package 355 

utilized functions as an extensive machine learning toolkit aimed at solving prediction 356 

issues. Its main attribute is the rapid setup of essential elements, ultimately 357 

completing the model prediction[48]. We evaluated the predictive capabilities of the 358 
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following models: RF, SVM, XGB, and GLM. The model built using RF 359 

demonstrated extremely high accuracy on the test dataset (AUC = 1.000), highlighting 360 

a strong predictive level. Furthermore, we developed a bar and line chart model for 361 

DFU, employing the following genes: CENPB, TRIM56, ZNF768, PLIN4, and 362 

ATP1A1. Our findings indicated that the model demonstrated strong predictive ability, 363 

suggesting its viability for clinical use. Overall, the RF model utilizing five genes to 364 

identify DFU subtypes proved to be effective. 365 

Using the RF algorithm, we detected five key NRGs (CENPB, TRIM56, 366 

ZNF768, PLIN4, and ATP1A1) and confirmed their diagnostic capabilities through a 367 

separate dataset, suggesting their relevance to the mechanism of DFU. The CENPB 368 

gene is a critical protein that operates in the centromeric region of chromosomes, 369 

ensuring proper chromosome segregation during cell division[49]. CENPB 370 

predominantly attaches to a-satellite DNA at the centromere and participates in the 371 

formation of kinetochores, which connect chromosomes to the mitotic spindle during 372 

cellular division[50]. CENPB plays a role in controlling various cellular functions, 373 

such as gene expression, DNA repair mechanisms, and DNA replication[51]. TRIM56, 374 

part of the TRIM protein family, acts as an E3 ubiquitin ligase that is inducible by 375 

interferons and can increase expression when stimulated by double-stranded DNA. It 376 

modulates the stimulator of interferon genes, facilitating the synthesis of type I 377 

interferon and boosting innate immune responses[52]. PLIN4 belongs to the PAT 378 

protein family involved in lipid storage droplets and serves as a key regulator of lipid 379 

storage[53]. Reduced expression of this protein has been linked to weight gain[54]. 380 
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ATP1A1 causes a range of disorders, impacting the endocrine and neuromuscular 381 

systems[55,56], while also disrupting the renal and central nervous systems[57]. 382 

According to a recent study, elevated ATP1A1 expression correlates with unfavorable 383 

long-term outcomes in individuals diagnosed with colon cancer and regulates tumor 384 

progression[58]. Unfortunately, there are limited studies on CENPB, TRIM56, 385 

ZNF768, PLIN4, and ATP1A1 in DFU. 386 

The acute wound healing process comprises four dynamic overlapping and 387 

differentiated stages: hemostasis, inflammation, proliferation, and remodeling. This 388 

process is subject to many kinds Type cells are strictly controlled and associated with 389 

cell migration and proliferation, ECM deposition and group Weave remodeling related. 390 

Chronic inflammation is the main culprit of normal wound healing disorder[59]. 391 

Chronic inflammation impairs wound healing by altering the bactericidal function of 392 

immune cells, reducing vascular perfusion, disrupting the basement membrane and 393 

collagen synthesis. Hyperglycemia leads to the formation of microthrombus through 394 

the production of inflammatory mediators mediated by the increase of reactive 395 

oxygen species, pericellular degeneration, basement membrane thickening, 396 

endothelial hyperplasia, decreased vasodilation, and increased coagulant promoting 397 

markers. Microthromboembolism may be more likely to occur in microvessels, thus 398 

aggravating the local tissue ischemia and hypoxia of diabetic wound and nerve 399 

damage[60]. 400 

Research on biomarkers related to DFU remains somewhat scarce. Lately, 401 

bioinformatics analysis has emerged as a useful means for investigating the detailed 402 
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and multifaceted relationships between cell necrosis, cell apoptosis, and DFU[61,62]. 403 

A detailed investigation has revealed potential biomarkers for DFU utilizing 404 

transcriptomics and proteomics bioinformatics approaches. It highlighted MMP9, 405 

FABP5, and ITGAM as central genes, indicating their potential roles as molecular 406 

targets in DFU’ s immunotherapy treatments[63]. However, there are only a handful 407 

of studies focusing on predictive models related to necroptosis in DFU. By exploring 408 

the mechanisms of necroptosis, this study offers valuable insights for the development 409 

of effective immunotherapy strategies in DFU. Initially, we gathered extensive data 410 

about NRGs from the GEO databases to build on prior study insights. We primarily 411 

analyzed GSE134431, supplemented by GSE80178 and GSE68183 to verify the 412 

trends observed. The validity of the study was reinforced by GO and KEGG analyses, 413 

along with the support of GSVA. Finally, few existing predictive models for NRGs 414 

offer targeted suggestions for future immunoinflammatory studies or treatments 415 

involving necroptosis interference in DFU. The study employed machine learning 416 

techniques to develop a diagnostic framework for necroptosis and DFU, integrating 417 

immune cell infiltration analysis. The computational outcomes highlighted the 418 

connections between necroptosis, DFU, and the immune responses, broadening the 419 

approach to linking gene expression with clinical practice. Moreover, continued 420 

advances in artificial intelligence provides essential ideas for medical professionals 421 

and promises to enhance our understanding of DFU and future therapeutic strategies.  422 

 423 

 424 
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Translation     426 

Certainly, our model is not without its limitations. First of all, depending on data 427 

from the GEO database introduces difficulties in evaluating the statistical data’ s 428 

quality and reliability. To mitigate this, GSE134431 was selected as the primary 429 

dataset, and model validation was conducted using GSE13443, GSE80178, and 430 

GSE68183 due to their well-defined grouping. Secondly, the sample size of this study 431 

was not sufficiently large, which may have impacted the robustness of the findings. 432 

Future studies with a larger sample size are planned to further validate these results. 433 

Thirdly, a significant challenge lies in the limited analysis of genes associated with 434 

NRGs and DFU, resulting in a lack of knowledge regarding the underlying 435 

mechanisms. Future research should include foundational experiments to enhance 436 

validation. Lastly, further exploration of parameter selection within the model, 437 

combined with experimental studies, is required to identify the final genes. 438 

 439 
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Conclusions         451 

Necroptosis plays a role in the synthesis of CENPB, TRIM56, ZNF768, PLIN4, 452 

and ATP1A1, leading to the construction of a diagnostic model. Future enhancements 453 

include expanding data sources and undertaking further research to explore the 454 

potential of effective treatments in reducing inflammation in DFUs by targeting 455 

necroptosis pathways. Our findings present promising biomarkers for the 456 

development of DFU treatment strategies. This study have examined the possibility of 457 

using NRGs as biomarkers for DFU in order to advance treatment of this condition. 458 
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 670 

FIGURE 1: Flow chart of this study. 671 

 672 

FIGURE 2: Identification of NRGs in DFU. (A) The expression levels of NRGs. 673 

(B) Heatmap of NRGs. (C) The location of NRGs on chromosomes. (D) Gene 674 

relationship network diagram of NRGs. (E) Correlation analysis of NRGs. Red and 675 

green colors represent positive and negative correlations, respectively. The correlation 676 
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coefficient was expressed as the area of the pie chart. 677 

 678 

FIGURE 3: Expression of Immune cells. (A) and (B) Expression of immune cells in 679 

different clusters. (C) Correlation between NRGs and immune cells. 680 

 681 
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682 
FIGURE 4: Identification of NRGs clusters in DFU. (A) Consensus clustering matrix 683 

when k = 2. (B) PCA visualized the distribution of the two clusters. (C) Boxplots of 684 

NRGs expressed between the two clusters.  (D) Heatmap of the expression patterns of 685 

the NRGs between the two clusters. (E) Relative abundance maps of 22 infiltrating 686 

immune cells between the two clusters. (F) Boxplots of immune infiltration 687 

differences between the two clusters. 688 Prep
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 689 

FIGURE 5: Enrichment analysis for NRGs. (A)  KEGG. (B) GO. 690 
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692 
FIGURE 6: Co-expression network of NRGs in DFU. (A) Set soft threshold 693 

power. (B) The cluster tree dendrogram of co-expression modules is shown in 694 

different colors. (C) Cluster diagram of module eigengenes. (D) TOM heatmap of 26 695 

modules. (E) Heatmap of correlation analysis of module eigengenes with clinical 696 

features. Rows and columns represent modules and clinical features, 697 

respectively. (F) Scatter plot of the genetic significance of the blue module members 698 

with DFU. 699 Prep
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 700 

FIGURE 7: Co-expression network of DEGs between the two cuproptosis 701 

clusters. (A) Set soft threshold power. (B) The cluster tree dendrogram of 702 

co-expression modules is shown in different colors. (C) Cluster diagram of module 703 

eigengenes. (D) TOM heatmap of 22 modules. (E) Heatmap of correlation analysis of 704 

module eigengenes with clinical features. Rows and columns represent modules and 705 

clinical features, respectively. (F) Scatter plot of the genetic significance of the 706 

turquoise module members with Cluster1. 707 
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 708 

FIGURE 8: Construction of RF, SVM, XGB, and necroptosis models. (A) Crossover 709 

genes of the cuproptosis clusters module and the DFU module. (B) The cumulative 710 

residual distribution of the four models. (C) Residual Boxplots of the four machine 711 

learning models, where the red dots indicate the root mean square of the residuals. (D) 712 

ROC analysis of four machine learning models with 5-fold cross-validation in the test 713 

set. (E) The important features in RF, SVM, XGB, and GLM. 714 

 715 

FIGURE 9: Validation of a 5-gene-based RF model. (A) Construction of a nomogram 716 

to predict DFU risk based on a 5-gene RF model (B, C) Calibration curves. (D) ROC 717 

of the 5-gene-based SVM model (GSE80178). (E) ROC of the 5-gene-based SVM 718 
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model (GSE68183). 719 
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