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A b s t r a c t

Introduction: Diabetic foot ulcers (DFUs) are among the most severe and 
debilitating diabetic complications, often leading to extremely high morbid-
ity and mortality. Recently, increasing evidence has highlighted the role of 
necroptosis, a distinct type of programmed cell death distinct from apopto-
sis, in the progression and severity of DFUs. Understanding necroptosis-as-
sociated genes in DFUs could open new therapeutic avenues aimed at mod-
ulating this form of cell death, potentially improving outcomes for patients 
suffering from this serious diabetic complication.
Material and methods: This study aimed to identify and confirm potential 
necroptosis biomarkers associated with DFU through the application of ma-
chine learning and bioinformatics approaches. We obtained three microar-
ray datasets associated with DFU patients from the Gene Expression Omni-
bus (GEO) database: GSE68183, GSE134431, and GSE80178.
Results: In GSE134431, we identified necroptosis-associated genes (NRGs) 
with differential expression between DFU patients and healthy controls, to-
taling 37 NRGs. Additionally, we observed an activated immune response in 
both groups. Moreover, clustering analysis identified two distinct clusters 
within the DFU samples, highlighting immune heterogeneity. Subsequently, 
we constructed a random forest (RF) model using 5 genes (CENPB, TRIM56, 
ZNF768, PLIN4, and ATP1A1). Notably, this model demonstrated outstanding 
performance on the external validation datasets GSE134431, GSE68183 (AUC 
= 1.000). The study identified five genes linked to necroptosis in the context 
of DFU, revealing new potential biomarkers and targets for DFU therapy. 
Conclusions: Bioinformatics analysis indicated that CENPB, TRIM56, ZNF768, 
PLIN4, and ATP1A1 could serve as potential biomarkers for future DFU re-
search.

Key words: diabetic foot ulcer, necroptosis, bioinformatics analysis, 
biomarkers.

Introduction

Diabetic foot ulcer (DFU) is a major complication of diabetes that can 
result in serious outcomes, including infection, gangrene, amputation, and 
even death. DFU affects around 18.6 million patients worldwide annually 
[1]. Moreover, up to about 34% of individuals with type 1 or type 2 diabetes 
will experience a foot ulcer at some point in their life [2]. Furthermore, it 
is concerning that around 20% of people with a diabetic foot ulcer may 
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require a  lower extremity amputation [3]. Given 
the increasing prevalence of diabetes and diabetic 
wounds, addressing the diverse factors that impede 
healing in diabetic wounds is essential for develop-
ing future treatment strategies. First-line therapies 
for DFUs typically include surgical debridement, 
offloading pressure from the ulcer, and managing 
lower extremity ischemia and foot infections [4]. 
Despite advancements in treatment, nonhealing 
DFUs remain a persistent clinical challenge. Hence, 
investigating the pathological mechanisms of DFUs 
and advancing therapeutic strategies are essential 
for accelerating ulcer healing and enhancing pa-
tient prognosis.

The process of healing chronic wounds in DFU 
that are resistant to treatment is highly intricate. 
Chronic inflammation hampers the healing process 
by affecting the immune cells’ ability to fight bacte-
ria, reducing blood flow to the wound site, damag-
ing the basement membrane of cells, and inhibiting 
the production of collagen [5]. DFU wounds provide 
an optimal environment for the formation of bio-
films, and both multidrug resistance and biofilm 
formation are crucial factors in the development 
of infections in DFU [6]. After blood sugar levels 
rise, reactive oxygen species (ROS) are subsequent-
ly produced, thereby increasing the generation of 
inflammatory mediators and degeneration of peri-
cytes, thickening the basement membrane, causing 
endothelial hyperplasia, reducing prostacyclin syn-
thesis, impairing blood vessel dilation, and elevat-
ing procoagulant markers. This cascade of events 
results in the formation of microthrombi, leading 
to worsened blood flow and oxygen deprivation in 
diabetic wounds, causing damage to local tissues 
[7]. Additionally, factors such as the inhibition of 
growth factors, disturbances in microcirculation, 
and age-related changes are key factors contribut-
ing to DFU [8–10]. The precise mechanism behind 
the resistance to healing in DFU remains unclear, 
which poses challenges in diagnosing and treating 
these conditions effectively.

Necroptosis has been identified as a novel form 
of genetically controlled cell death. Initially, stud-
ies on necroptosis were mainly centered on acute 
nervous system [11, 12], cancer [13, 14], and car-
diovascular diseases [15]. Necroptosis is a self-de-
structive cellular process that occurs when apop-
tosis is hindered. Cells undergoing necroptosis 
display necrotic characteristics such as plasma 
membrane disruption, organelle swelling, and cy-
tolysis [16]. Necroptosis, initiated by specific stim-
uli and regulated via caspase-independent path-
ways, primarily involves the activation of mixed 
lineage kinase domain-like protein [17], recep-
tor-interacting protein kinase 1 (RIPK1), and RIPK3 
[18]. While integrating necroptosis targeting with 
immunotherapy appears promising in neurologi-

cal and cancer treatments, our understanding of 
how necroptosis influences immunogenicity and 
immunotherapy is still limited. Given the current 
lack of research, our study aimed to extensively 
investigate the relationship between necroptosis 
and immunotherapy in the context of DFU.

Several prior studies have employed the Gene 
Expression Omnibus (GEO) database to explore 
targets related to DFU [19, 20], leveraging the ad-
vancements in bioinformatics and machine learn-
ing [21–23]. Therefore, we propose that necro-
ptosis-associated genes (NRGs) are crucial in the 
development of DFU. 

Material and methods

The study used unsupervised cluster analysis 
to differentiate two unique clusters in the NRG ex-
pression matrix. Subsequently, a  machine learn-
ing model was developed derived from the key 
DFU module and two WGCNA clusters [24, 25], 
with the selection of key models based on diag-
nostic sensitivity [26]. The study sought to iden-
tify necroptosis-associated genes within immune 
responses and treatment strategies for DFUs [27, 
28]. Figure 1 illustrates the study flowchart.

Raw data 

We used datasets GSE134431, GSE80178, and 
GSE68183 from the GEO database. The train-
ing set was GSE134431, while GSE80178 and 
GSE68183 were validation sets. GSE68183 includ-
ed 3 DFU samples and 3 normal skin samples, 
while GSE80178 contained 9 DFU samples and 3 
normal skin samples [29]. GSE134431 comprised 
13 DFU samples and 8 normal skin samples [30]. 
The NRG dataset was obtained from MSigDB; de-
tails are summarized in Table I.

Differentially expressed gene (DEG) 
analysis 

Data processing involved obtaining accurate 
mRNA data from transcription data using Perl-
based matching and sorting techniques. Data nor-
malization was then conducted for GSE134431.

The limma R package (version 3.52.4) was used 
to process raw gene expression matrices from 
the GEO database. To adjust for batch variations 
among GSE134431, GSE68183, and GSE80178, 
the SVA package was used.

Cluster analysis 

By evaluating the cumulative distribution func-
tion curve, consensus cluster score and consis-
tency matrix, the ideal cluster number was estab-
lished, with the maximum cluster count set to k = 9  
for this study.
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Immune cell infiltration

The analysis of immune cell composition of 
DFU was conducted using CIBERSORT. Using the 
limma package, we visualized the immune cell 
findings through bar plots and correlation plots. 
Deconvolution p-values for each sample were ob-
tained using Monte Carlo sampling in CIBERSORT. 
The transcriptional signature matrix representing 
22 immune cells was used for the computational 
simulation, ensuring that the total percentage of 
these 22 immune cells equaled one for each sam-
ple. We conducted 1,000 computational simula-
tions, identifying samples with a p-value < 0.05 as 
statistically significant.

Enrichment analysis

The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Gene Ontology (GO) databases were 
used to explore biological functions and pathways. 
The analysis of how differentially expressed Gln-
MRGs affect biological processes (BP), molecular 
functions (MF), and cellular components (CC) was 

assessed using the Gene Set Variation Analysis 
(GSVA) method in R. GSVA scores, derived through 
the limma R package (version 3.52.4), with a |t val-
ue| > 2, were deemed significantly altered.

Co-expression gene identification

Weighted gene co-expression network analysis 
(WGCNA) was employed to identify gene mod-
ules and evaluate their associations with clinical 
traits. The co-expression network was constructed 
using the top 25% most variable genes from the 
GSE134431 dataset. Using a  dynamic tree-cut-
ting approach with a cutoff of 0.25, modules were 
merged. The modules showing the highest cor-
relation between the two classification approach-
es were then identified and mapped.

Developing predictive models using various 
machine learning techniques

Cluster-specific NRGs were identified by com-
bining WGCNA with the analysis of DEGs within 
gene clusters. The tool Vnnmap was used to illus-

Figure 1. Study flow chart
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Table I. Dataset information

Dataset Platform Count DFU Control

GSE68183 GPL16686 6 3 3

GSE80178 GPL16686 12 9 3

GSE134431 GPL18573 21 13 8
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trate overlapping genes. The caret R package was 
used to develop machine learning models for two 
distinct GlnMRG clusters, employing algorithms 
such as Generalized Linear Model (GLM), Support 
Vector Machine (SVM), Extreme Gradient Boost-
ing (XGB), and Random Forest (RF). GLM modeled 
the expected response through a  link function, 
allowing predictions of relationships from linear 
variable combinations [31]. XGB operated as a se-
ries of parallel trees, enhancing predictions itera-
tively with each new tree, which helped in aligning 
predictions closely with actual values [32]. SVM, 
a form of generalized linear classifier, was particu-
larly effective for binary classification tasks using 
supervised learning, especially in small datasets 
and high-dimensional spaces [33]. Furthermore, 
RF combined multiple independent decision trees 
to enhance prediction accuracy for classification 
and regression tasks [34].

To analyze gene correlations in DFU, we used 
various clusters as response variables and se-
lected differentially expressed genes (DEGs) that 
were compatible with these clusters as explana-
tory variables. The DFUs were randomly assigned 
to the training set and the validation set in a 7 : 3 
ratio. The caret R package was used to automat-
ically fine-tune model parameters through grid 
search, default settings. Next, a 5-fold cross-vali-
dation was performed for evaluation. The DALEX 
package (version 2.4.2) was employed to explain 
and visualize the four machine learning models. 
The pROC package (version 1.18.0) was used to 
display the area under the receiver operating char-
acteristic curve (AUC). The top 5 key variables of 
gene correlation in DFU depended on the optimal 
machine learning model.

Developing and independently validating 
a nomogram model

Using the rms R package (version 6.3.0), a no-
mogram model was developed to assign scores to 
each predictor variable. The Total Score was the 
cumulative sum of the scores for the predictive 
variables. Calibration curve analysis and decision 
curve analysis (DCA) were used to evaluate the 
predictive performance of the nomogram model. 
The model to differentiate between DFU and nor-
mal samples was independently validated with 
the external datasets GSE134431, GSE68183, and 
GSE80178. 

Interactions between drugs and genes

Advancements in bioinformatics have empha-
sized the importance of creating biological models 
and identifying effective biomarkers for disease 
diagnosis. However, applying these biomarkers 
in clinical practice was essential. The use of in-

formation markers to predict drug response was 
critical for the prevention and treatment of DFU. 
The DGIdb database assisted in forecasting drug-
gene interactions for key genes identified for the 
RF model, enhancing drug prediction accuracy and 
guiding therapeutic strategies.

Results

NRG expression in DFUs

Thirty-seven differentially expressed NRGs (deN-
RGs) were identified. Of these, compared with a nor-
mal control group, in DFU patients, the expression 
levels of CTPS1, PIPK3, CAMK2A, CAMK2D, PPID, 
VDAC2, PYGL, PLA2G4A, PLA2G4B, IL1B, CHMP2B, 
VPS4B, CHMP1B, IL1A, TNFRS10A, IFNA1, STAT5A, 
STAT5B, and TICAM1 were significantly elevated. 
Conversely, RNF31, CAMK2B, CAMK2G, SLC25A4, 
SLC25A6, GLUD1, GLUL, PYGB, PLA2G4F, CHMP2A, 
CHMP3, VPS4A, FAF1, SRAT3, STAT6, TLR3, SQSTM1, 
HSP90AB1, and BCL2 showed lower expression lev-
els in testicular tissue of patients with DFU (Figures 
2 A, B). Figure 2 C shows the chromosomal locations 
of the NRGs, presented visually in circular format. 
Subsequently, correlation analysis was conducted 
on the genes (Figures 2 D, E), revealing that most 
exhibited positive interrelationships.

Immune infiltration analysis

Figure 3 A depicts the distribution of immune 
cells in different samples, while Figure 3 B high-
lights the differences between DFU and normal. In 
DFU samples, activated mast cells and neutrophils 
were elevated, whereas activated NK cells and 
CD8 T cells were reduced compared to controls. 
The correlation between immune cells and NRGs 
is demonstrated in Figure 3 C.

Cluster analysis

When k was set to 2, the highest within-group 
correlations emerge, suggesting that NRGs can 
categorize patients with diabetic foot ulcers 
into two distinct clusters (Figure 4 A). Figure 4 B  
highlights notable variations in the principal 
component analysis (PCA) across clusters. Fur-
ther, the NRGs across the various clusters were 
investigated following this cluster analysis. Sig-
nificant variations were observed in the levels of 
RNF31, GLUD1, PYGB, CHMP2A, CHMP2B, VPS4A, 
CHMP1B, STAT3, STAT5A, HSO90AB1, and PARP1 
among groups (Figure 4 C, D). Figures 4 E and F 
illustrates the analysis of immune cell infiltration 
outcomes according to the identified clusters.

Functional enrichment study

NRG enrichment was assessed using GSVA. The 
pathway was significantly enriched in key genes 
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Figure 2. Identification of NRGs in DFU. A – Expression levels of NRGs. B – Heatmap of NRGs
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involved in small cell lung cancer, as well as in the 
functions of arachidonic acid metabolic pathway 
genes and metabolites (Figure 5 A). The results of 
the GO analysis showed enzyme substrate adap-
tation and transportation of compounds contain-
ing nucleobases (Figure 5 B).

Identification and development of gene 
modules within co-expression networks

We used WGCNA to develop co-expression 
networks for healthy controls and DFU patients, 

revealing significant gene modules related to 
DFU. We discovered gene modules that exhibited 
co-expression under this specific condition (Fig-
ure 6 A). Subsequently, the dynamic cut algorithm 
resulted in 26 unique co-expression components, 
distinguished with various colors, then created 
a  TOM heat map (Figures 6 B–D). Furthermore, 
we analyzed the correlation and consistency of 
co-expression patterns using genes from these 
26 modules in relation to clinical characteristics. 
The red module contained 222 hub genes, had the 
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Figure 2. Cont. C – Location of NRGs on chromosomes. D – Gene relationship network diagram of NRGs. E – Cor-
relation analysis of NRGs. Red and green colors represent positive and negative correlations, respectively. The 
correlation coefficient was expressed as the area of the pie chart
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Figure 3. Expression of immune cells. A, B – Expression of immune cells in different clusters. C – Correlation be-
tween NRGs and immune cells
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Figure 4. Identification of NRG clusters in 
DFU. A – Consensus clustering matrix when k = 2.  
B – PCA visualized the distribution of the two clus-
ters
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Figure 4. Cont. C – Boxplots of NRGs expressed between the two clusters. D – Heatmap of expression patterns of 
the NRGs between the two clusters
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strongest correlation with DFU (Figure 6 E) and ex-
hibited a positive association (Figure 6 F).

Moreover, the pivotal gene modules related 
to NRGs were identified by WGCNA. A scale-free 
network was constructed with the soft threshold 
parameter β = 12 and R2 = 0.9 (Figure 7 A). Twen-
ty-two important modules were analyzed, and 
a heatmap displayed the TOM of genes associated 
with these modules (Figures 7 B–D). Analyzing the 
relationship of modules and clinical picture indi-
cated the significance of the pink module (Figure 
7 E). Figure 7 shows the correlation analysis, re-
vealing the strong positive association of the pink 
module and hub gene.

Modeling

By aligning these genes of the pink module 
from NRG clusters with those of the red module 
from DFU, we identified 10 unique NRGs (Addi-
tional file 1: Appendix 1) specific to these clusters 
(Figures 8 A, B). The analysis of residual distribu-

tions across the four models indicated that the RF 
model has the largest residuals (Figure 8 B). Figure 
8 C shows the top 10 important characteristics of 
models. As shown in Figure 8 D, the ROC analysis 
of the four machine models revealed that the RF 
model achieved a perfect AUC value of 1.000. As 
a  result, the RF model (CENPB, TRIM56, ZNF768, 
PLIN4, and ATP1A1) (Figure 8 E) was selected as 
the most suitable model because it could most 
clearly distinguish between DFU and normal sam-
ples.

Assessment of machine models

The predictive performance of the RF model 
was evaluated by line graphs (Figure 9 A). The cal-
ibration graph showed the closest alignment be-
tween the real and predicted risk of DFU cluster-
ing (Figure 9 B). DCA demonstrated that the line 
graph was highly accurate and provided valuable 
insights for clinical treatment (Figure 9 C). After 
validating the model with datasets GSE134431, 

Figure 4. Cont. E – Relative abundance maps of 22 infiltrating immune cells between the two clusters. F – Boxplots 
of immune infiltration differences between the two clusters
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GSE80178, and GSE68183 (Figure 9 D), ROC anal-
ysis showed perfect discrimination, with an AUC 
of 1.000. Figure 9 shows an immune-correlation 
analysis of the model genes, highlighting their im-
mune function.

Drug-gene interaction analysis

The identified genes were used to predict po-
tential drug interactions. From the target ATP1A1, 

we predicted drugs such as istaroxime, digoxin, 
acetyldigitoxin, artemether, almitrine, deslano-
side, bepridil, lumefantrine, digitoxin, ouabain, 
eplerenone, and chloroprocaine (Additional file 1: 
Appendix 2).

Discussion

Diabetes is a  persistent metabolic disorder 
that can only be managed [35], not cured. Com-
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Figure 6. Co-expression network of NRGs in 
DFU. A  –  Determination of soft threshold power.   
B – Cluster tree dendrogram of co-expression mod-
ules, shown in different colors. C – Cluster diagram 
of module eigengenes.  D –   TOM heatmap of 26 
modules
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plications result from long-term poor blood glu-
cose control, including cardiovascular and cere-
brovascular diseases, as well as renal failure [36, 
37]. DFU is a  common complication of diabetes, 
among other conditions. While nanodressings, 

bioactive dressings, and 3D printed dressings 
have been created for DFU treatment [37], current 
dressings prioritize therapy over real-time moni-
toring and wound response. Our understanding 
of the molecular basis of DFU has significantly 
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Figure 6. Cont.  E –  Heatmap of correlation anal-
ysis of module eigengenes with clinical features. 
Rows and columns represent modules and clinical 
features, respectively. F – Scatter plot of the genet-
ic significance of genes within the blue module in 
relation to DFU
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increased in the last few decades [38, 39]. This 
highlights the potential of biomarkers for various 
aspects of treatment, including diagnostics, dis-
ease diagnosis, disease prognosis, and new drug 
research. However, the underlying mechanisms 
contributing to the development of DFU remain 
uncertain. Hence, we theorize that there is a com-
plex relationship between NRGs and the develop-
ment of DFU. We used bioinformatics methods in 
our study to investigate the potential connection 
between them [40].

Necroptosis, as a novel therapeutic target, has 
received increasing attention, is gaining more 
recognition, and its impact is seen differently 
in various clinical environments. Necroptosis is 
a basic physiological phenomenon in the human 
body; it involves intricate interactions between 
necrosis and apoptosis, demonstrating distinct 
regulatory pathways. The initiation of necropto-
sis involves the activation of specific cell surface 
receptors including Toll-like receptors, tumor ne-
crosis factor receptor 1, and interferon receptors. 

This activation leads to the formation of the ne-
crosome genes, involving crucial molecules such 
as receptor-interacting protein kinases, which are 
essential for orchestrating the necroptotic process 
[41–43]. Several research studies have connected 
interrupted necroptosis with brain damage and 
the onset of cancer, leading to the approval of 
medications targeting necroptosis for the treat-
ment of different neurological conditions and ma-
lignant tumors [44]. Naito et al. found that cerebral 
ischemia-reperfusion injury can rapidly activate 
necrotic apoptosis, promote cerebral hemorrhage 
and neuroinflammation, and aggravate brain in-
jury [45]. Necroptosis in triple-negative breast 
cancer promotes the formation of vasculogenic 
mimicry through the RIPK1/p-AKT/eIF4E signaling 
pathway [14]. The exact function of necroptosis in 
the development of DFU remains unclear, and this 
could represent a promising field.

This study employed unsupervised clustering 
analysis to explore distinct patterns of necroptosis 
regulation using the expression profiles of NRGs, 
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Figure 7. Co-expression network of DEGs between 
the two cuproptosis clusters.  A  –  Determination 
of soft threshold power.  B –  Cluster tree dendro-
gram of co-expression modules, shown in different 
colors. C – Cluster diagram of module eigengenes.  
D – TOM heatmap of 22 modules
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identifying two unique clusters of NRGs. Further-
more, this study innovatively constructed machine 
learning models using disease characteristics and 
pivotal genes identified through WGCNA within 
the two unique NRG clusters. As research evolves, 
there is a growing trend of using machine learn-

ing models for DFU prediction. Unlike convention-
al univariate analysis, machine learning typically 
uses a multivariate analysis method, considering 
the interactions among variables. Hence, machine 
learning models tend to be more precise and 
produce more dependable outcomes. The caret 
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Figure 6. Cont. E – Heatmap of correlation analysis 
of module eigengenes with clinical features. Rows 
and columns represent modules and clinical fea-
tures, respectively. F – Scatter plot of the genetic 
significance of genes within the turquoise module 
in relation to Cluster 1
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R package serves as a  comprehensive machine 
learning toolkit aimed at solving prediction issues. 
Its main attribute is the rapid setup of essential 
elements, ultimately completing the model predic-
tion [46]. We evaluated the predictive capabilities 
of the following models: RF, SVM, XGB, and GLM. 
The model built using RF demonstrated extremely 
high accuracy on the test dataset (AUC = 1.000), 
highlighting a strong predictive level. Furthermore, 
we developed a bar and line chart model for DFU, 
employing the following genes: CENPB, TRIM56, 
ZNF768, PLIN4, and ATP1A1. We found that the 
model demonstrated strong predictive ability, sug-
gesting its viability for clinical use. Overall, the RF 
model using five genes to identify DFU subtypes 
proved to be effective.

Using the RF algorithm, we detected five key 
NRGs (CENPB, TRIM56, ZNF768, PLIN4, and AT-
P1A1) and confirmed their diagnostic capabili-
ties through a separate dataset, suggesting their 
relevance to the mechanism of DFU. The CENPB 
gene is a critical protein that operates in the cen-

tromeric region of chromosomes, ensuring proper 
chromosome segregation during cell division [47]. 
CENPB predominantly attaches to a-satellite DNA 
at the centromere and participates in the forma-
tion of kinetochores, which connect chromosomes 
to the mitotic spindle during cellular division [48]. 
CENPB plays a  role in controlling various cellular 
functions, such as gene expression, DNA repair 
mechanisms, and DNA replication [49]. TRIM56, 
part of the TRIM protein family, acts as an E3 
ubiquitin ligase that is inducible by interferons 
and can increase expression when stimulated by 
double-stranded DNA. It modulates the stimula-
tor of interferon genes, facilitating the synthesis 
of type I  interferon and boosting innate immune 
responses [50]. PLIN4 belongs to the PAT protein 
family involved in lipid storage droplets and serves 
as a key regulator of lipid storage [51]. Reduced 
expression of this protein has been linked to 
weight gain [52]. ATP1A1 causes a range of disor-
ders, impacting the endocrine and neuromuscular 
systems [53, 54], while also disrupting the renal 
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Figure 8. Construction of RF, SVM, XGB, and necro-
ptosis models. A – Crossover genes of the cupro-
ptosis cluster module and the DFU module. B – Cu-
mulative residual distribution of the four models.   
C – Residual boxplots of the four machine learning 
models, where the red dots indicate the root mean 
square of the residuals. D – ROC analysis of four 
machine learning models with 5-fold cross-valida-
tion in the test set. E – The important features in RF, 
SVM, XGB, and GLM
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Figure 9. Validation of a  5-gene-based RF mod-
el. A – Construction of a nomogram to predict DFU 
risk based on a 5-gene RF model. B, C – Calibration 
curves. D – ROC of the 5-gene-based SVM model 
(GSE80178). E – ROC of the 5-gene-based SVM 
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and central nervous systems [55]. According to 
a  recent study, elevated ATP1A1 expression cor-
relates with unfavorable long-term outcomes in 
individuals diagnosed with colon cancer and regu-
lates tumor progression [56]. Unfortunately, there 
are limited studies on CENPB, TRIM56, ZNF768, 
PLIN4, and ATP1A1 in DFU.

The acute wound healing process compris-
es four dynamic overlapping and differentiated 
stages: hemostasis, inflammation, proliferation, 
and remodeling. This process involves multiple 
cell types, which are strictly controlled and asso-
ciated with cell migration and proliferation, ECM 
deposition, and tissue remodeling. Chronic in-
flammation is the main culprit of normal wound 
healing disorder [57]. Chronic inflammation im-
pairs wound healing by altering the bactericidal 
function of immune cells, reducing vascular perfu-
sion, and disrupting the basement membrane and 
collagen synthesis. Hyperglycemia leads to the 
formation of microthrombus through the produc-
tion of inflammatory mediators mediated by the 
increase of reactive oxygen species, pericellular 
degeneration, basement membrane thickening, 
endothelial hyperplasia, decreased vasodilation, 
and increased coagulant promoting markers. Mi-
crothromboembolism may be more likely to occur 
in microvessels, thus aggravating the local tis-
sue ischemia and hypoxia of diabetic wound and 
nerve damage [58].

Research on biomarkers related to DFU re-
mains somewhat scarce. Lately, bioinformatics 
analysis has emerged as a  useful means for in-
vestigating the detailed and multifaceted relation-
ships between cell necrosis, cell apoptosis, and 
DFU [59, 60]. A  detailed investigation revealed 
potential biomarkers for DFU using transcriptom-
ics and proteomics bioinformatics approaches. It 
highlighted MMP9, FABP5, and ITGAM as central 
genes, indicating their potential roles as molecular 
targets in DFU immunotherapy treatments [61]. 
However, there are only a handful of studies fo-
cusing on predictive models related to necroptosis 
in DFU. By exploring the mechanisms of necropto-
sis, this study offers valuable insights for the de-
velopment of effective immunotherapy strategies 
in DFU. Initially, we gathered extensive data about 
NRGs from the GEO databases to build on prior 
study insights. We primarily analyzed GSE134431, 
supplemented by GSE80178 and GSE68183, to 
verify the trends observed. The validity of the 
study was reinforced by GO and KEGG analyses, 
along with the support of GSVA. Finally, few exist-
ing predictive models for NRGs offer targeted sug-
gestions for future immunoinflammatory studies 
or treatments involving necroptosis interference 
in DFU. The study employed machine learning 

techniques to develop a  diagnostic framework 
for necroptosis and DFU, integrating immune cell 
infiltration analysis. The computational outcomes 
highlighted the connections between necroptosis, 
DFU, and the immune responses, broadening the 
approach to linking gene expression with clinical 
practice. Moreover, ongoing advances in artificial 
intelligence provide valuable insights for medical 
professionals and hold promise for enhancing our 
understanding of DFU and guiding future thera-
peutic strategies. 

Our model is not without limitations. First of 
all, depending on data from the GEO database 
introduces difficulties in evaluating the quality 
and reliability of statistical data. To mitigate this, 
GSE134431 was selected as the primary data-
set, and model validation was conducted using 
GSE13443, GSE80178, and GSE68183 due to their 
well-defined grouping. Secondly, the sample size 
of this study was not sufficiently large, which may 
have impacted the robustness of the findings. Fu-
ture studies with a larger sample size are planned 
to further validate these results. Thirdly, a signifi-
cant challenge lies in the limited analysis of genes 
associated with NRGs and DFU, resulting in a lack 
of knowledge regarding the underlying mecha-
nisms. Future research should include founda-
tional experiments to enhance validation. Lastly, 
further exploration of parameter selection within 
the model, combined with experimental studies, 
is required to identify the final genes.

In conclusion, necroptosis plays a  role in the 
synthesis of CENPB, TRIM56, ZNF768, PLIN4, and 
ATP1A1, leading to the construction of a diagnos-
tic model. Future enhancements include expand-
ing data sources and undertaking further research 
to explore the potential of effective treatments in 
reducing inflammation in DFUs by targeting necro-
ptosis pathways. Our findings highlight promising 
biomarkers for the development of DFU treatment 
strategies. This study examined the possibility of 
using NRGs as biomarkers for DFU in order to ad-
vance treatment of this condition.
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