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Abstract

Introduction: Diabetic foot ulcers (DFUs) are among the most severe and
debilitating diabetic complications, often leading to extremely high morbid-
ity and mortality. Recently, increasing evidence has highlighted the role of
necroptosis, a distinct type of programmed cell death distinct from apopto-
sis, in the progression and severity of DFUs. Understanding necroptosis-as-
sociated genes in DFUs could open new therapeutic avenues aimed at mod-
ulating this form of cell death, potentially improving outcomes for patients
suffering from this serious diabetic complication.

Material and methods: This study aimed to identify and confirm potential
necroptosis biomarkers associated with DFU through the application of ma-
chine learning and bioinformatics approaches. We obtained three microar-
ray datasets associated with DFU patients from the Gene Expression Omni-
bus (GEO) database: GSE68183, GSE134431, and GSE80178.

Results: In GSE134431, we identified necroptosis-associated genes (NRGs)
with differential expression between DFU patients and healthy controls, to-
taling 37 NRGs. Additionally, we observed an activated immune response in
both groups. Moreover, clustering analysis identified two distinct clusters
within the DFU samples, highlighting immune heterogeneity. Subsequently,
we constructed a random forest (RF) model using 5 genes (CENPB, TRIM56,
ZNF768, PLIN4, and ATP1A1). Notably, this model demonstrated outstanding
performance on the external validation datasets GSE134431, GSE68183 (AUC
= 1.000). The study identified five genes linked to necroptosis in the context
of DFU, revealing new potential biomarkers and targets for DFU therapy.
Conclusions: Bioinformatics analysis indicated that CENPB, TRIM56, ZNF768,
PLIN4, and ATP1A1 could serve as potential biomarkers for future DFU re-
search.

Key words: diabetic foot ulcer, necroptosis, bioinformatics analysis,
biomarkers.

Introduction

Diabetic foot ulcer (DFU) is a major complication of diabetes that can
result in serious outcomes, including infection, gangrene, amputation, and
even death. DFU affects around 18.6 million patients worldwide annually
[1]. Moreover, up to about 34% of individuals with type 1 or type 2 diabetes
will experience a foot ulcer at some point in their life [2]. Furthermore, it
is concerning that around 20% of people with a diabetic foot ulcer may
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require a lower extremity amputation [3]. Given
the increasing prevalence of diabetes and diabetic
wounds, addressing the diverse factors that impede
healing in diabetic wounds is essential for develop-
ing future treatment strategies. First-line therapies
for DFUs typically include surgical debridement,
offloading pressure from the ulcer, and managing
lower extremity ischemia and foot infections [4].
Despite advancements in treatment, nonhealing
DFUs remain a persistent clinical challenge. Hence,
investigating the pathological mechanisms of DFUs
and advancing therapeutic strategies are essential
for accelerating ulcer healing and enhancing pa-
tient prognosis.

The process of healing chronic wounds in DFU
that are resistant to treatment is highly intricate.
Chronic inflammation hampers the healing process
by affecting the immune cells’ ability to fight bacte-
ria, reducing blood flow to the wound site, damag-
ing the basement membrane of cells, and inhibiting
the production of collagen [5]. DFU wounds provide
an optimal environment for the formation of bio-
films, and both multidrug resistance and biofilm
formation are crucial factors in the development
of infections in DFU [6]. After blood sugar levels
rise, reactive oxygen species (ROS) are subsequent-
ly produced, thereby increasing the generation of
inflammatory mediators and degeneration of peri-
cytes, thickening the basement membrane, causing
endothelial hyperplasia, reducing prostacyclin syn-
thesis, impairing blood vessel dilation, and elevat-
ing procoagulant markers. This cascade of events
results in the formation of microthrombi, leading
to worsened blood flow and oxygen deprivation in
diabetic wounds, causing damage to local tissues
[7]. Additionally, factors such as the inhibition of
growth factors, disturbances in microcirculation,
and age-related changes are key factors contribut-
ing to DFU [8-10]. The precise mechanism behind
the resistance to healing in DFU remains unclear,
which poses challenges in diagnosing and treating
these conditions effectively.

Necroptosis has been identified as a novel form
of genetically controlled cell death. Initially, stud-
ies on necroptosis were mainly centered on acute
nervous system [11, 12], cancer [13, 14], and car-
diovascular diseases [15]. Necroptosis is a self-de-
structive cellular process that occurs when apop-
tosis is hindered. Cells undergoing necroptosis
display necrotic characteristics such as plasma
membrane disruption, organelle swelling, and cy-
tolysis [16]. Necroptosis, initiated by specific stim-
uli and regulated via caspase-independent path-
ways, primarily involves the activation of mixed
lineage kinase domain-like protein [17], recep-
tor-interacting protein kinase 1 (RIPK1), and RIPK3
[18]. While integrating necroptosis targeting with
immunotherapy appears promising in neurologi-

cal and cancer treatments, our understanding of
how necroptosis influences immunogenicity and
immunotherapy is still limited. Given the current
lack of research, our study aimed to extensively
investigate the relationship between necroptosis
and immunotherapy in the context of DFU.

Several prior studies have employed the Gene
Expression Omnibus (GEO) database to explore
targets related to DFU [19, 20], leveraging the ad-
vancements in bioinformatics and machine learn-
ing [21-23]. Therefore, we propose that necro-
ptosis-associated genes (NRGs) are crucial in the
development of DFU.

Material and methods

The study used unsupervised cluster analysis
to differentiate two unique clusters in the NRG ex-
pression matrix. Subsequently, a machine learn-
ing model was developed derived from the key
DFU module and two WGCNA clusters [24, 25],
with the selection of key models based on diag-
nostic sensitivity [26]. The study sought to iden-
tify necroptosis-associated genes within immune
responses and treatment strategies for DFUs [27,
28]. Figure 1 illustrates the study flowchart.

Raw data

We used datasets GSE134431, GSE80178, and
GSE68183 from the GEO database. The train-
ing set was GSE134431, while GSE80178 and
GSE68183 were validation sets. GSE68183 includ-
ed 3 DFU samples and 3 normal skin samples,
while GSE80178 contained 9 DFU samples and 3
normal skin samples [29]. GSE134431 comprised
13 DFU samples and 8 normal skin samples [30].
The NRG dataset was obtained from MSigDB; de-
tails are summarized in Table I.

Differentially expressed gene (DEG)
analysis

Data processing involved obtaining accurate
mRNA data from transcription data using Perl-
based matching and sorting techniques. Data nor-
malization was then conducted for GSE134431.

The limma R package (version 3.52.4) was used
to process raw gene expression matrices from
the GEO database. To adjust for batch variations
among GSE134431, GSE68183, and GSE80178,
the SVA package was used.

Cluster analysis

By evaluating the cumulative distribution func-
tion curve, consensus cluster score and consis-
tency matrix, the ideal cluster number was estab-
lished, with the maximum cluster count settok =9
for this study.
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Figure 1. Study flow chart

Table I. Dataset information
Dataset Platform Count DFU Control
GSE68183 GPL16686 6 3 3
GSE80178 GPL16686 12 9 3
GSE134431 GPL18573 21 13 8

Immune cell infiltration

The analysis of immune cell composition of
DFU was conducted using CIBERSORT. Using the
limma package, we visualized the immune cell
findings through bar plots and correlation plots.
Deconvolution p-values for each sample were ob-
tained using Monte Carlo sampling in CIBERSORT.
The transcriptional signature matrix representing
22 immune cells was used for the computational
simulation, ensuring that the total percentage of
these 22 immune cells equaled one for each sam-
ple. We conducted 1,000 computational simula-
tions, identifying samples with a p-value < 0.05 as
statistically significant.

Enrichment analysis

The Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) databases were
used to explore biological functions and pathways.
The analysis of how differentially expressed Gln-
MRGs affect biological processes (BP), molecular
functions (MF), and cellular components (CC) was

assessed using the Gene Set Variation Analysis
(GSVA) method in R. GSVA scores, derived through
the limma R package (version 3.52.4), with a |t val-
ue| > 2, were deemed significantly altered.

Co-expression gene identification

Weighted gene co-expression network analysis
(WGCNA) was employed to identify gene mod-
ules and evaluate their associations with clinical
traits. The co-expression network was constructed
using the top 25% most variable genes from the
GSE134431 dataset. Using a dynamic tree-cut-
ting approach with a cutoff of 0.25, modules were
merged. The modules showing the highest cor-
relation between the two classification approach-
es were then identified and mapped.

Developing predictive models using various
machine learning techniques

Cluster-specific NRGs were identified by com-
bining WGCNA with the analysis of DEGs within
gene clusters. The tool Vnnmap was used to illus-
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trate overlapping genes. The caret R package was
used to develop machine learning models for two
distinct GInMRG clusters, employing algorithms
such as Generalized Linear Model (GLM), Support
Vector Machine (SVM), Extreme Gradient Boost-
ing (XGB), and Random Forest (RF). GLM modeled
the expected response through a link function,
allowing predictions of relationships from linear
variable combinations [31]. XGB operated as a se-
ries of parallel trees, enhancing predictions itera-
tively with each new tree, which helped in aligning
predictions closely with actual values [32]. SVM,
a form of generalized linear classifier, was particu-
larly effective for binary classification tasks using
supervised learning, especially in small datasets
and high-dimensional spaces [33]. Furthermore,
RF combined multiple independent decision trees
to enhance prediction accuracy for classification
and regression tasks [34].

To analyze gene correlations in DFU, we used
various clusters as response variables and se-
lected differentially expressed genes (DEGs) that
were compatible with these clusters as explana-
tory variables. The DFUs were randomly assigned
to the training set and the validation setina 7 : 3
ratio. The caret R package was used to automat-
ically fine-tune model parameters through grid
search, default settings. Next, a 5-fold cross-vali-
dation was performed for evaluation. The DALEX
package (version 2.4.2) was employed to explain
and visualize the four machine learning models.
The pROC package (version 1.18.0) was used to
display the area under the receiver operating char-
acteristic curve (AUC). The top 5 key variables of
gene correlation in DFU depended on the optimal
machine learning model.

Developing and independently validating
a nomogram model

Using the rms R package (version 6.3.0), a no-
mogram model was developed to assign scores to
each predictor variable. The Total Score was the
cumulative sum of the scores for the predictive
variables. Calibration curve analysis and decision
curve analysis (DCA) were used to evaluate the
predictive performance of the nomogram model.
The model to differentiate between DFU and nor-
mal samples was independently validated with
the external datasets GSE134431, GSE68183, and
GSE80178.

Interactions between drugs and genes

Advancements in bioinformatics have empha-
sized the importance of creating biological models
and identifying effective biomarkers for disease
diagnosis. However, applying these biomarkers
in clinical practice was essential. The use of in-

formation markers to predict drug response was
critical for the prevention and treatment of DFU.
The DGIdb database assisted in forecasting drug-
gene interactions for key genes identified for the
RF model, enhancing drug prediction accuracy and
guiding therapeutic strategies.

Results
NRG expression in DFUs

Thirty-seven differentially expressed NRGs (deN-
RGs) were identified. Of these, compared with a nor-
mal control group, in DFU patients, the expression
levels of CTPS1, PIPK3, CAMK2A, CAMK2D, PPID,
VDAC2, PYGL, PLA2G4A, PLA2G4B, IL1B, CHMP2B,
VPS4B, CHMP1B, IL1A, TNFRS10A, IFNAL, STAT5A,
STAT5B, and TICAM1 were significantly elevated.
Conversely, RNF31, CAMK2B, CAMK2G, SLC25A4,
SLC25A6, GLUD1, GLUL, PYGB, PLA2G4F CHMP2A,
CHMP3, VPS4A, FAF1, SRAT3, STAT6, TLR3, SQSTM1,
HSP90AB1, and BCL2 showed lower expression lev-
els in testicular tissue of patients with DFU (Figures
2 A, B). Figure 2 C shows the chromosomal locations
of the NRGs, presented visually in circular format.
Subsequently, correlation analysis was conducted
on the genes (Figures 2 D, E), revealing that most
exhibited positive interrelationships.

Immune infiltration analysis

Figure 3 A depicts the distribution of immune
cells in different samples, while Figure 3 B high-
lights the differences between DFU and normal. In
DFU samples, activated mast cells and neutrophils
were elevated, whereas activated NK cells and
CD8 T cells were reduced compared to controls.
The correlation between immune cells and NRGs
is demonstrated in Figure 3 C.

Cluster analysis

When k was set to 2, the highest within-group
correlations emerge, suggesting that NRGs can
categorize patients with diabetic foot ulcers
into two distinct clusters (Figure 4 A). Figure 4 B
highlights notable variations in the principal
component analysis (PCA) across clusters. Fur-
ther, the NRGs across the various clusters were
investigated following this cluster analysis. Sig-
nificant variations were observed in the levels of
RNF31, GLUD1, PYGB, CHMP2A, CHMP2B, VPS4A,
CHMP1B, STAT3, STAT5A, HSO90AB1, and PARP1
among groups (Figure 4 C, D). Figures 4 E and F
illustrates the analysis of immune cell infiltration
outcomes according to the identified clusters.

Functional enrichment study

NRG enrichment was assessed using GSVA. The
pathway was significantly enriched in key genes

Arch Med Sci



Exploring necroptosis-associated genes: implications for immune responses and therapeutic strategies in diabetic foot ulcers

involved in small cell lung cancer, as well as in the
functions of arachidonic acid metabolic pathway
genes and metabolites (Figure 5 A). The results of
the GO analysis showed enzyme substrate adap-
tation and transportation of compounds contain-
ing nucleobases (Figure 5 B).

Identification and development of gene
modules within co-expression networks

We used WGCNA to develop co-expression
networks for healthy controls and DFU patients,

revealing significant gene modules related to
DFU. We discovered gene modules that exhibited
co-expression under this specific condition (Fig-
ure 6 A). Subsequently, the dynamic cut algorithm
resulted in 26 unique co-expression components,
distinguished with various colors, then created
a TOM heat map (Figures 6 B-D). Furthermore,
we analyzed the correlation and consistency of
co-expression patterns using genes from these
26 modules in relation to clinical characteristics.
The red module contained 222 hub genes, had the
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strongest correlation with DFU (Figure 6 E) and ex-
hibited a positive association (Figure 6 F).

Moreover, the pivotal gene modules related
to NRGs were identified by WGCNA. A scale-free
network was constructed with the soft threshold
parameter B = 12 and R? = 0.9 (Figure 7 A). Twen-
ty-two important modules were analyzed, and
a heatmap displayed the TOM of genes associated
with these modules (Figures 7 B-D). Analyzing the
relationship of modules and clinical picture indi-
cated the significance of the pink module (Figure
7 E). Figure 7 shows the correlation analysis, re-
vealing the strong positive association of the pink
module and hub gene.

Modeling

By aligning these genes of the pink module
from NRG clusters with those of the red module
from DFU, we identified 10 unique NRGs (Addi-
tional file 1: Appendix 1) specific to these clusters
(Figures 8 A, B). The analysis of residual distribu-

tions across the four models indicated that the RF
model has the largest residuals (Figure 8 B). Figure
8 C shows the top 10 important characteristics of
models. As shown in Figure 8 D, the ROC analysis
of the four machine models revealed that the RF
model achieved a perfect AUC value of 1.000. As
a result, the RF model (CENPB, TRIM56, ZNF768,
PLIN4, and ATP1A1) (Figure 8 E) was selected as
the most suitable model because it could most
clearly distinguish between DFU and normal sam-
ples.

Assessment of machine models

The predictive performance of the RF model
was evaluated by line graphs (Figure 9 A). The cal-
ibration graph showed the closest alignment be-
tween the real and predicted risk of DFU cluster-
ing (Figure 9 B). DCA demonstrated that the line
graph was highly accurate and provided valuable
insights for clinical treatment (Figure 9 C). After
validating the model with datasets GSE134431,
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Figure 5. Enrichment analysis for NRGs. A — KEGG. B — GO

GSE80178, and GSE68183 (Figure 9 D), ROC anal-  we predicted drugs such as istaroxime, digoxin,
ysis showed perfect discrimination, with an AUC  acetyldigitoxin, artemether, almitrine, deslano-
of 1.000. Figure 9 shows an immune-correlation  side, bepridil, lumefantrine, digitoxin, ouabain,
analysis of the model genes, highlighting theirim-  eplerenone, and chloroprocaine (Additional file 1:

mune function. Appendix 2).
Drug-gene interaction analysis Discussion
The identified genes were used to predict po- Diabetes is a persistent metabolic disorder

tential drug interactions. From the target ATP1A1, that can only be managed [35], not cured. Com-
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plications result from long-term poor blood glu-
cose control, including cardiovascular and cere-
brovascular diseases, as well as renal failure [36,
37]. DFU is a common complication of diabetes,
among other conditions. While nanodressings,
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bioactive dressings, and 3D printed dressings
have been created for DFU treatment [37], current
dressings prioritize therapy over real-time moni-
toring and wound response. Our understanding
of the molecular basis of DFU has significantly
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Figure 6. Co-expression network of NRGs in
DFU. A — Determination of soft threshold power.
B — Cluster tree dendrogram of co-expression mod-
ules, shown in different colors. C — Cluster diagram
of module eigengenes. D — TOM heatmap of 26
modules
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increased in the last few decades [38, 39]. This
highlights the potential of biomarkers for various
aspects of treatment, including diagnostics, dis-
ease diagnosis, disease prognosis, and new drug
research. However, the underlying mechanisms
contributing to the development of DFU remain
uncertain. Hence, we theorize that there is a com-
plex relationship between NRGs and the develop-
ment of DFU. We used bioinformatics methods in
our study to investigate the potential connection
between them [40].

Necroptosis, as a novel therapeutic target, has
received increasing attention, is gaining more
recognition, and its impact is seen differently
in various clinical environments. Necroptosis is
a basic physiological phenomenon in the human
body; it involves intricate interactions between
necrosis and apoptosis, demonstrating distinct
regulatory pathways. The initiation of necropto-
sis involves the activation of specific cell surface
receptors including Toll-like receptors, tumor ne-
crosis factor receptor 1, and interferon receptors.
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Figure 6. Cont. E — Heatmap of correlation anal-
ysis of module eigengenes with clinical features.
Rows and columns represent modules and clinical
features, respectively. F — Scatter plot of the genet-
ic significance of genes within the blue module in
relation to DFU

This activation leads to the formation of the ne-
crosome genes, involving crucial molecules such
as receptor-interacting protein kinases, which are
essential for orchestrating the necroptotic process
[41-43]. Several research studies have connected
interrupted necroptosis with brain damage and
the onset of cancer, leading to the approval of
medications targeting necroptosis for the treat-
ment of different neurological conditions and ma-
lignant tumors [44]. Naito et al. found that cerebral
ischemia-reperfusion injury can rapidly activate
necrotic apoptosis, promote cerebral hemorrhage
and neuroinflammation, and aggravate brain in-
jury [45]. Necroptosis in triple-negative breast
cancer promotes the formation of vasculogenic
mimicry through the RIPK1/p-AKT/elFAE signaling
pathway [14]. The exact function of necroptosis in
the development of DFU remains unclear, and this
could represent a promising field.

This study employed unsupervised clustering
analysis to explore distinct patterns of necroptosis
regulation using the expression profiles of NRGs,
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identifying two unique clusters of NRGs. Further-
more, this study innovatively constructed machine
learning models using disease characteristics and
pivotal genes identified through WGCNA within
the two unique NRG clusters. As research evolves,
there is a growing trend of using machine learn-

A Scale independence
1.0 A
—1142194415151113&‘1
910
8
E 7
o
o 0.5 A
B 6
w
£
= 5
o
o
= 04 4
&
) 3
°
Q.
L
[N
<
& i
E—O.S 2
3
1%}
1
T T T T
5 10 15 20
Soft threshold (power)
B Clustering of module eigengenes
1.4
1.2 1
1.0 1 Ii
£ 0.8
.20
2 06 -
0.4 +
0.2 1
O,
ARt L EE R R LT
> >EHE555 WE 82 gaégm'gg 02
PRl PE SR PS8 2RSS
S Seg<=¥» ds 528 SE2ms
=5 g 5 =<9 Do §==
= £ p E= =7%
s =

NN TN T DD AT 17 T
T =
- i3 o=

= r

ing models for DFU prediction. Unlike convention-
al univariate analysis, machine learning typically
uses a multivariate analysis method, considering
the interactions among variables. Hence, machine
learning models tend to be more precise and
produce more dependable outcomes. The caret
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Figure 7. Co-expression network of DEGs between
the two cuproptosis clusters. A — Determination
of soft threshold power. B — Cluster tree dendro-
gram of co-expression modules, shown in different
colors. C — Cluster diagram of module eigengenes.
D — TOM heatmap of 22 modules
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R package serves as a comprehensive machine
learning toolkit aimed at solving prediction issues.
Its main attribute is the rapid setup of essential
elements, ultimately completing the model predic-
tion [46]. We evaluated the predictive capabilities
of the following models: RF SVM, XGB, and GLM.
The model built using RF demonstrated extremely
high accuracy on the test dataset (AUC = 1.000),
highlighting a strong predictive level. Furthermore,
we developed a bar and line chart model for DFU,
employing the following genes: CENPB, TRIM56,
ZNF768, PLIN4, and ATP1A1. We found that the
model demonstrated strong predictive ability, sug-
gesting its viability for clinical use. Overall, the RF
model using five genes to identify DFU subtypes
proved to be effective.

Using the RF algorithm, we detected five key
NRGs (CENPB, TRIM56, ZNF768, PLIN4, and AT-
P1A1) and confirmed their diagnostic capabili-
ties through a separate dataset, suggesting their
relevance to the mechanism of DFU. The CENPB
gene is a critical protein that operates in the cen-
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Figure 6. Cont. E — Heatmap of correlation analysis
of module eigengenes with clinical features. Rows
and columns represent modules and clinical fea-
tures, respectively. F — Scatter plot of the genetic
significance of genes within the turquoise module
in relation to Cluster 1

tromeric region of chromosomes, ensuring proper
chromosome segregation during cell division [47].
CENPB predominantly attaches to a-satellite DNA
at the centromere and participates in the forma-
tion of kinetochores, which connect chromosomes
to the mitotic spindle during cellular division [48].
CENPB plays a role in controlling various cellular
functions, such as gene expression, DNA repair
mechanisms, and DNA replication [49]. TRIM56,
part of the TRIM protein family, acts as an E3
ubiquitin ligase that is inducible by interferons
and can increase expression when stimulated by
double-stranded DNA. It modulates the stimula-
tor of interferon genes, facilitating the synthesis
of type | interferon and boosting innate immune
responses [50]. PLIN4 belongs to the PAT protein
family involved in lipid storage droplets and serves
as a key regulator of lipid storage [51]. Reduced
expression of this protein has been linked to
weight gain [52]. ATP1A1 causes a range of disor-
ders, impacting the endocrine and neuromuscular
systems [53, 54], while also disrupting the renal
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and central nervous systems [55]. According to
a recent study, elevated ATP1A1 expression cor-
relates with unfavorable long-term outcomes in
individuals diagnosed with colon cancer and regu-
lates tumor progression [56]. Unfortunately, there
are limited studies on CENPB, TRIM56, ZNF768,
PLIN4, and ATP1A1 in DFU.

The acute wound healing process compris-
es four dynamic overlapping and differentiated
stages: hemostasis, inflammation, proliferation,
and remodeling. This process involves multiple
cell types, which are strictly controlled and asso-
ciated with cell migration and proliferation, ECM
deposition, and tissue remodeling. Chronic in-
flammation is the main culprit of normal wound
healing disorder [57]. Chronic inflammation im-
pairs wound healing by altering the bactericidal
function of immune cells, reducing vascular perfu-
sion, and disrupting the basement membrane and
collagen synthesis. Hyperglycemia leads to the
formation of microthrombus through the produc-
tion of inflammatory mediators mediated by the
increase of reactive oxygen species, pericellular
degeneration, basement membrane thickening,
endothelial hyperplasia, decreased vasodilation,
and increased coagulant promoting markers. Mi-
crothromboembolism may be more likely to occur
in microvessels, thus aggravating the local tis-
sue ischemia and hypoxia of diabetic wound and
nerve damage [58].

Research on biomarkers related to DFU re-
mains somewhat scarce. Lately, bioinformatics
analysis has emerged as a useful means for in-
vestigating the detailed and multifaceted relation-
ships between cell necrosis, cell apoptosis, and
DFU [59, 60]. A detailed investigation revealed
potential biomarkers for DFU using transcriptom-
ics and proteomics bioinformatics approaches. It
highlighted MMP9, FABP5, and ITGAM as central
genes, indicating their potential roles as molecular
targets in DFU immunotherapy treatments [61].
However, there are only a handful of studies fo-
cusing on predictive models related to necroptosis
in DFU. By exploring the mechanisms of necropto-
sis, this study offers valuable insights for the de-
velopment of effective immunotherapy strategies
in DFU. Initially, we gathered extensive data about
NRGs from the GEO databases to build on prior
study insights. We primarily analyzed GSE134431,
supplemented by GSE80178 and GSE68183, to
verify the trends observed. The validity of the
study was reinforced by GO and KEGG analyses,
along with the support of GSVA. Finally, few exist-
ing predictive models for NRGs offer targeted sug-
gestions for future immunoinflammatory studies
or treatments involving necroptosis interference
in DFU. The study employed machine learning

techniques to develop a diagnostic framework
for necroptosis and DFU, integrating immune cell
infiltration analysis. The computational outcomes
highlighted the connections between necroptosis,
DFU, and the immune responses, broadening the
approach to linking gene expression with clinical
practice. Moreover, ongoing advances in artificial
intelligence provide valuable insights for medical
professionals and hold promise for enhancing our
understanding of DFU and guiding future thera-
peutic strategies.

Our model is not without limitations. First of
all, depending on data from the GEO database
introduces difficulties in evaluating the quality
and reliability of statistical data. To mitigate this,
GSE134431 was selected as the primary data-
set, and model validation was conducted using
GSE13443, GSE80178, and GSE68183 due to their
well-defined grouping. Secondly, the sample size
of this study was not sufficiently large, which may
have impacted the robustness of the findings. Fu-
ture studies with a larger sample size are planned
to further validate these results. Thirdly, a signifi-
cant challenge lies in the limited analysis of genes
associated with NRGs and DFU, resulting in a lack
of knowledge regarding the underlying mecha-
nisms. Future research should include founda-
tional experiments to enhance validation. Lastly,
further exploration of parameter selection within
the model, combined with experimental studies,
is required to identify the final genes.

In conclusion, necroptosis plays a role in the
synthesis of CENPB, TRIM56, ZNF768, PLIN4, and
ATP1A1, leading to the construction of a diagnos-
tic model. Future enhancements include expand-
ing data sources and undertaking further research
to explore the potential of effective treatments in
reducing inflammation in DFUs by targeting necro-
ptosis pathways. Our findings highlight promising
biomarkers for the development of DFU treatment
strategies. This study examined the possibility of
using NRGs as biomarkers for DFU in order to ad-
vance treatment of this condition.
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