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Risk stratification of soft tissue sarcoma based on 
activity of prognostic molecules associated with 
unpolarized macrophages
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A b s t r a c t

Introduction: Soft tissue sarcomas (STS), representing 80% of sarcomas, are 
a rare and diverse group of neoplasms with a dire prognosis. Macrophages 
and their subtypes play an essential role with diverse outcomes in the tu-
mor microenvironment (TME) of cancers, including sarcomas. The aim of this 
study was to investigate the role of macrophages in the development and 
prognosis of sarcoma patients.
Material and methods: Transcriptomic data from 5 sarcoma cohorts includ-
ing 581 patients and transcripts of 56,752 single cells from 6 sarcoma pa-
tients were retrieved from public databases and analyzed. The infiltration 
of immune cells in the TME was evaluated with the CIBERSORT algorithm. 
Kaplan-Meier estimation with the log-rank test and Cox regression hazards 
models were adopted for evaluation of prognostic impacts. 
Results: Deconvolution of 22 types of immune cells via the CIBERSORT algo-
rithm revealed macrophages as a prominent component of the TME of sarco-
ma patients. Of these, M0 was associated with worst prognosis. A six-gene 
prognostic signature, termed MRPS, was developed that was significantly 
positively correlated with M0 macrophages. The MRPS-stratified high-risk 
subgroup showed abundance of M0 macrophages, indicating inhibition of 
macrophage polarization, specifically the classically activated pro-inflam-
matory M1 phenotype. Moreover, enrichment of oncogenic pathways and 
glycolysis and high frequency of mutations were evident. The robustness 
of the MRPS as a predictive biomarker was validated in external soft-tissue 
sarcoma patient datasets. A nomogram based on MRPS was developed as 
a potentially accurate and practical predictive tool for identifying high-risk 
sarcoma patients with lower survival probabilities. Furthermore, the MRPS 
signature exhibited reliable predictive capabilities for immunotherapy re-
sponse, suggesting its potential to enhance the effectiveness of personal-
ized immunotherapy in sarcoma patients.
Conclusions: MRPS represents a robust biomarker for predicting outcomes 
and response to therapy in soft-tissue sarcoma patients. 
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Introduction

Sarcomas, comprising only 1% of adult ma-
lignancies, represent a  rare and diverse group of 
neoplasms originating from mesenchymal tissues 
[1]. Heterogeneity is evident from the fact that 
sarcomas encompasses over 100 subtypes, each 
displaying variations in clinicopathological fea-
tures, molecular characteristics, and responsive-
ness to treatment [1]. Categorized by the primary 
tissue of tumor origin, sarcomas consist of 80% 
soft tissue sarcoma (STS), 15% arising from bone 
tissue, and 5% classified as gastrointestinal stro-
mal tumors (GISTs) [2]. STS itself comprises over 
50 different neoplasms arising from various soft 
tissues including adipose and fibrous tissue, sy-
novium, smooth and skeletal muscles, blood and 
lymphatic vessels, and peripheral nerves [1]. In the 
United States in 2023, there were an estimated 
13,400 new cases and 5140 deaths due to cancers 
originating from soft tissues [3]. 

Surgical resection stands as the primary ap-
proach for treating STS, complemented by radio-
therapy at various stages of the treatment pro-
cess (pre-, intra-, and post-operatively, as well as 
concurrently with chemotherapy) [4]. However, 
the substantial heterogeneity of STS poses chal-
lenges, leading to variable responses to conven-
tional treatments with limited applicability across 
subtypes [1, 5]. Notably, approximately one-third 
of sarcoma diagnoses progress to metastasis, 
exhibiting poor responsiveness to chemotherapy, 
typically the frontline treatment for advanced and 
metastatic cases [5]. Additionally, recurrence rates 
are markedly high, reaching about 20% [5]. Conse-
quently, the 5-year survival rate for localized STS 
is about 50%, while for metastatic STS, it remains 
below 10% [6, 7].

In recent years, the role of tumor microenviron-
ment (TME) components in cancer development 
and prognosis has been increasingly explored for 
predictive and prognostic biomarkers and thera-
peutic targets [8, 9]. Tumor-infiltrating immune 
cells have shown improved responses to treat-
ment in sarcoma with prognostic consequences 
[10, 11]. Moreover, infiltration of lymphocytes has 
also been shown to determine the outcome of im-
munotherapy in sarcoma patients [12]. Therefore, 
in-depth evaluation of various TME components, 
particularly the tumor infiltrating immune cells, in 
sarcoma may reveal potential therapeutic targets 
for sarcoma targeted therapy. 

Material and methods

Transcriptomic data 

The training dataset utilized transcriptomic 
data (log2 normalized FPKM [fragments per ki-
lobase of transcript per million mapped reads] 

expression values) and clinical information from 
soft tissue sarcoma (STS) patients (TCGA-SARC;  
n = 259), sourced through the UCSC Xena browser 
(https://xenabrowser.net/). Additionally, gene ex-
pression and survival data for three supplemen-
tary sarcoma patient cohorts (GSE119041 [undif-
ferentiated uterine sarcoma; n = 50], GSE30929 
[dedifferentiated liposarcoma; n = 140], GSE17674 
[Ewing sarcoma; n = 44]) for external validation 
were acquired from the Gene Expression Omni-
bus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/). The fourth cohort, TARGET OS (osteo-
sarcoma; n = 88), employed for further external 
validation. Transcriptomic data (log2 normalized 
FPKM expression values) and clinical informa-
tion for TARGET OS were also obtained from the 
UCSC Xena browser (https://xenabrowser.net/). 
Transcriptomic data from microarray datasets in-
cluded in the present study were log2 normalized 
using the limma R package. A  summary of the 
datasets used in this study is outlined in Supple-
mentary Table SI.

TISCH analysis 

The Tumor Immune Single-cell Hub (TISCH, 
http://tisch.comp-genomics.org/, accessed on  
15 October 2023) is a database dedicated to eval-
uation of the tumor microenvironment (TME), of-
fering cell-type annotation at the single-cell level 
[13]. TISCH has employed a  standard pipeline in 
MAESTRO for preprocessing each single cell data-
set [14]. In this study, we examined the gene ex-
pression levels of monocytes or macrophages 
(Mono/Macro) in three primary sarcoma single-cell 
datasets. These datasets encompassed gastro-
intestinal stromal tumor (GIST) (Geo accession 
number: GSE162115; N = 2; single cells = 35,308), 
pleuropulmonary blastoma (PPB) (Geo accession 
number: GSE163678; N = 1; single cells = 12,239), 
and synovial sarcoma (SS) (Geo accession number: 
GSE131309; N = 3; single cells = 9,205). 

Tumor microenvironment annotation

Quantitative analysis of the relative abundance 
of 22 immune cell types in the TCGA cohort was 
achieved using the CIBERSORT algorithm [15]. 
CIBERSORT estimates immune cell proportions in 
bulk tissue samples using gene expression data. 
It relies on a  reference signature matrix, LM22, 
derived from 570 genes that characterize the ex-
pression profiles of 22 immune cell types. By ap-
plying support vector regression, it deconvolves 
the mixed gene expression in tissue samples into 
relative contributions from each immune cell type. 
This method enables the inference of immune cell 
composition from RNA sequencing or microarray 
datasets. The ESTIMATE algorithm was run to eval-

https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/
http://tisch.comp-genomics.org/
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uate the infiltration of stromal (stromal score) and 
immune cells (immune score), collectively termed 
the ESTIMATE score (https://sourceforge.net/proj-
ects/estimateproject/) [16]. The TIDE (Tumor Im-
mune Dysfunction and Exclusion) algorithm was 
used to estimate the anti-tumor and immune-eva-
sive abilities of the risk subgroups [17].

Identification of M0-related prognostic 
signature

To identify the M0-related genes in sarcoma 
patients, we first identified significantly positively 
correlated genes expressed in TCGA sarcoma pa-
tients with the M0 fraction of the CIBERSORT algo-
rithm of the TCGA SARC cohort. Significance was 
set at Spearman’s correlation coefficient of 0.2 and 
a p-value of less than 0.01. Then, the genes differ-
entially expressed (logFC = 0.2 and adjusted p-val-
ue of less than 0.05) by monocytes/macrophages 
in each single cell dataset were screened. A Venn 
diagram was created which identified 38 M0-relat-
ed common differentially expressed genes (DEGs). 
Subsequently, we performed univariate Cox re-
gression analysis to identify the M0-related genes 
with prognostic significance (p < 0.05). To refine 
and construct a  robust prognostic signature, we 
applied multivariate Cox regression analysis. This 
step was crucial as it allowed us to consider the 
independent effect of each gene while adjusting 
for potential confounders, such as gene-gene cor-
relations. The multivariate model accounts for in-
teractions between the candidate genes, ensuring 
that the identified genes remain significant even 
in the presence of other related markers. By includ-
ing multiple variables, the multivariate Cox regres-
sion narrows down the gene set to the most im-
pactful prognostic factors. The coefficients derived 
from the multivariate model indicate the relative 
weight of each gene in predicting patient survival, 
allowing for a more precise risk score calculation. 
The risk score for each patient was then calculated 
based on the individual gene expression levels and 
their corresponding multi-Cox coefficients, em-
ploying the following formula: Risk score = (Expres-
sion of mRNA1 × Coefficient mRNA1) + (Expression 
of mRNA2 × Coefficient mRNA2) + … + (Expression 
of mRNAn × Coefficient mRNAn). 

Risk model assessment

The classification of TCGA SARC samples into 
high- and low-risk subgroups was based on the 
median risk score. To gain insight into the spatial 
distribution and integration of risk within these 
defined groups, we employed principal compo-
nent analysis (PCA), which was executed using 
the prcomp function from the R package stats. To 
assess the prognostic and predictive significance 

of these risk subgroups, we used Kaplan-Meier 
survival analysis and generated receiver operating 
characteristic (ROC) curves. These analyses were 
carried out with the R packages survival, survmin-
er, and time-ROC.

Development of nomogram

To ascertain the independent prognostic value 
of the risk groups, we performed uni- and multi-
variate Cox regression models. Subsequently, we 
developed a nomogram based on the MRPS and 
common clinicopathological features identified 
through regression analysis to predict 1-, 3-, and 
5-year TCGA SARC survival. The performance of 
our nomogram was evaluated using a calibration 
curve. Additionally, we conducted decision curve 
analysis (DCA) using the ggDCA package, a statis-
tical approach that considers clinical consequenc-
es, to assess the diagnostic and prognostic value 
of the nomogram [18].

Mutational landscape 

Simple nucleotide variation (SNV) data of the 
TCGA SARC cohort were downloaded from the 
TCGA Data Portal (https://portal. gdc.cancer.gov/
repository/). The oncoplot was constructed using 
the R package maftools to analyze the number 
and categories of gene mutations in two MRPS 
risk subgroups. 

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was car-
ried out to detect enrichment of the signaling 
pathways involved in risk groups based on the 
hallmark gene sets (h.all.v2022.1) (http://gsea-
msigdb.org/gsea/msigdb/).

Statistical analysis

Categorical variables were compared using the 
c2 test. Two or more groups were compared using 
Student t/Wilcoxon and ANOVA/Kruskal-Wallis 
tests. Survival analysis were performed using the 
Kaplan-Meier method with the log-rank test. Cox 
regression hazard models were adopted to per-
form univariate and multivariate factor analyses. 
Spearman’s and Pearson’s correlation tests were 
used perform correlation analysis. The statistical 
software R v4.0.3 (http://www.r-project.org) was 
used to carry out all the statistical analyses.

Results

Infiltration of M0 macrophage and its 
prognostic impact

In order to investigate the composition of the 
tumor microenvironment (TME) in sarcoma pa-

http://gsea-msigdb.org/gsea/msigdb/
http://gsea-msigdb.org/gsea/msigdb/
http://www.r-project.org
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tients (TCGA SARC cohort; n = 259), we employed 
the CIBERSORT algorithm, which estimates the 
abundance of 22 types of immune cells in sarco-
ma cancer tissues based on the gene expression 
profiles as illustrated in Figures 1 A and 1 B. The 
M2 phenotype, resting CD4+ memory T cells, and 
CD8+ T cells were the top three most infiltrated 
immune cells in the TME (Figure 1 B). It is notewor-
thy that all the three phenotypes of macrophages 
were among the most abundant immune cells (Fig-
ure 1 B). Prognostic analysis based on Cox regres-
sion hazard models revealed that the infiltration 
of the majority of the immune cells was protective 
in nature (Figures 2 C; Supplementary Table SII). 
Myeloid cells (monocytes, M0 & M2 macrophages, 
and resting NK cells) and activated CD4+ memory 
T cells were identified as risky immune cells (Figure 

1 C). Among them, infiltration of M0 macrophage 
was significantly associated with the worst prog-
nosis (Cox test; p = 0.02) which was also revealed 
in Kaplan-Meier analysis (log-rank test; p < 0.001) 
(Figure 1 D; Supplementary Figure S1). Moreover, 
the infiltration of M0 macrophages was evident 
across each pathological subtype of sarcoma, as 
demonstrated in Figure 1 E. Overall, these results 
indicate that the infiltration of M0 macrophage 
represents a risk factor for sarcoma patients. 

Identification of M0 macrophage related 
transcripts 

In order to elucidate the role of M0 macrophages 
in sarcoma, we next focused on the identification 
of M0 macrophage-related genes. For this purpose, 
we first identified three single cell datasets be-

Figure 1. A  – Heatmap of immune landscape assessed by CIBERSORT algorithm illustrating the abundance of  
22 types of immune cells in sarcoma tissues. B – Bar plot presenting the infiltration fraction of 22 types of immune 
cells in sarcoma tissues, arranged in descending order from high to low fraction. The points represent the indi-
vidual fraction value of each sample. The quartile range is illustrated as upper and lower ends of the box and the 
median is represented by the midline within the box
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Figure 1. Cont. C – Bubble network illustrating the prognostic impact of immune cell infiltration and their inter-
correlations. D – Kaplan-Meier survival curve showing the survival difference between sarcoma patients with or 
low infiltration of M0 macrophages. E – Bar plot illustrating the abundance of M0 macrophage in each histological 
type of sarcoma patients
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longing to various types of sarcoma. These data-
sets encompassed gastrointestinal stromal tumor 
(GIST) (Geo accession number: GSE162115; N = 2; 
single cells = 35,308), pleuropulmonary blastoma 
(PPB) (Geo accession number: GSE163678; N = 1; 
single cells = 12,239), and synovial sarcoma (SS) 
(Geo accession number: GSE131309; N = 3; single 
cells = 9,205). These datasets were preprocessed 
using the standard pipeline in MAESTRO and an-
notated by the TISCH team [13, 14]. All the three 
datasets demonstrated the infiltration of myeloid 
cells annotated as mono/macro cell types (Figure 

2 A–C). We downloaded the DEGs (PPB = 2454;  
SS = 2780; GIST = 6365) between mono/mac-
ro cells in comparison to other cell types in each 
dataset (logFC = 0.2 and adjusted p < 0.05). Conse-
quently, the genes in the TCGA SARC dataset that 
were positively correlated (n = 1336) with the infil-
tration fraction of M0 macrophages, as assessed 
by the CIBERSORT algorithm, were also identified 
(Spearman’s correlation coefficient = 0.2 and p < 
0.01; Supplementary Table SIII). The Venn diagram 
shows the filtering of common genes between the 
four datasets (Figure 2 D). A total of 38 common 

Figure 2. A–C – UMAP (uniform manifold approx-
imation and projection) plots showing main cell 
types in single-cell (A) synovial sarcoma dataset 
(SS_GSE131309_10X), (B) pleuropulmonary blas-
toma (PPB_GSE163678), and (C) gastrointestinal 
stromal tumor (GIST_GSE162115)
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D
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E

Figure 2. Cont. D – Venn diagram showing the screening of common genes among the differentially expressed 
genes (DEGs) by mono/macro in comparison to other cell types in the three single cell datasets and M0-related 
genes from the TCGA SARC dataset. E – Regulatory network of M0-related genes and M0 macrophages. F – Gene 
Ontology (GO) enrichment analysis of the 38 M0-related genes
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genes that positively correlated with the M0 mac-
rophages in the TCGA SARC tissues were obtained 
(Figure 2 E). Figure 2 F shows the enrichment of 
GO terms involving these genes (Supplementary 
Table SIII). The GO terms (GO:0071634-regula-
tion of transforming growth factor b production; 
GO:0071604-transforming growth factor b pro-
duction) included the production of TGF-b as the 
main biological process (BP). Enriched GO terms 
belonging to Cellular Components (CC) indicated 
the involvement/association of these genes in 
secretion of bioactive molecules (GO:0034774-se-
cretory granule lumen), protein folding and mod-
ification (GO:0005788-endoplasmic reticulum lu-
men), and intracellular trafficking and transport 
process (GO:0060205-cytoplasmic vesicle lumen). 
Molecular functions (MF) included regulation of 
gene expression (GO:0043425-BHLH transcription 
factor binding), cell adhesion (GO:0045296-cad-
herin binding) and structural components 
(GO:0005200-structural constituent of cytoskel-
eton and GO:0051015-actin filament binding). 
Moreover, these genes might also be involved in 
immune evasion strategies by suppressing antigen 
presentation (GO:0023026-MHC class II protein 
complex; GO:0023023-MHC class II protein com-
plex binding) (Supplementary Table SIV). In sum-
mary, these results indicate that M0-related genes 
may be involved in production of TGF-b, which is 
critical for tumor development and immune eva-
sion by promoting alternative macrophage polar-
ization and suppressing antigen presentation. 

Establishment of M0 macrophage-related 
prognostic signature (MRPS)

In the next step, we aimed to identify the M0-re-
lated genes with a significant impact on progno-
sis, thereby augmenting their clinical relevance. 
The 38 M0 macrophage-related genes were sub-
jected to univariate Cox regression analysis, which 
indicated 15 genes having a significant impact on 
sarcoma prognosis (Figure 3 A; Supplementary Ta-
ble SV). Further scrutiny was performed through 
multivariable Cox regression analysis, which yield-
ed 6 genes, as illustrated in Figure 3 B. A  risk 
score, termed the M0-related prognostic signature 
(MRPS), was calculated for each sarcoma patient 
based on the multivariable Cox coefficients and 
mRNA expression of the genes as follows: MRPS 
= (0.4764 × SERBP1 expression) + (0.4133 × TUBB 
expression) + (0.2523 × LAPTM4B expression) + 
(0.2514 × SATB1 expression) + (0.2347 × ARF4 ex-
pression) + (0.1614 × MARCKSL1 expression). The 
distribution of risk score (MRPS) between the high 
and low risk as determined by the median risk 
score is shown in Figure 3 C. PCA showed well-sep-
arated clusters for the two MRPS subgroups, as il-
lustrated in Figure 3 D. Patients in the MRPS-high 

subgroup experienced more deaths and a shorter 
survival time than those in the MRPS-low sub-
group (Figure 3 E). Kaplan-Meier plots of progres-
sion-free survival (PFS) and overall survival (OS) 
showed significantly worst survival outcomes for 
the MRPS-high subgroup (p < 0.001) (Figures 3 F, 
G). Predictive value of the MRPS was also evaluat-
ed with time-dependent receiver operating charac-
teristic (ROC) analysis, which showed area under 
the curve (AUC) values of 0.758/0.711/0.721 for 
1/3/5 years in the TCGA SARC cohort (Figure 3 H). 

Clinical and functional implications

Subsequently, we further evaluated the clini-
cal and functional significance of the MRPS. The 
expression pattern of risk genes between the risk 
subgroups is illustrated in Figure 4 A. The MRPS-
high subgroup shows high expression of the risk 
genes. Among the clinical features, gender, race, 
primary diagnosis, therapy outcome, and vital 
status showed significant differences in distribu-
tion between the MRPS subgroups. Female, Black, 
disease progression and occurrence of death were 
more frequent in the MRPS-high subgroup than in 
the MRPS-low subgroup. Since there were many 
small groups of patients with a unique subtype of 
primary diagnosis, we combined them as ‘Others’ 
and evaluated the distribution of primary diagnosis 
among major subtypes. The analysis revealed the 
abundance of leiomyosarcoma and liposarcoma in 
the MRPS-low subgroup and synovial and undif-
ferentiated sarcoma in the MRPS-high subgroup  
(p = 0.007) (Figure 4 B). Functional enrichment anal-
ysis of Hallmark pathways showed activation of 
immune response pathways in the MRPS-low sub-
group, which indicates the abundance of immune 
cells and corresponds to the protective role of these 
in this subgroup. The MRPS-high subgroup, on the 
other hand, was enriched in oncogenic pathways 
and glycolysis, suggesting a high tumor component 
(Figure 4 C, D; Supplementary Table SVI). Moreover, 
the MRPS-high subgroup was also dominated by 
frequent mutations (71.79%) as compared to the  
MRPS-low subgroup (65.52%) (Figures 4 E, F). Ma-
jor cancer-specific mutated genes included TP53 
(35% vs. 30%), ARTX (21% vs. 8%), MUC16 (16% 
vs. 10%), and RB1 (12% vs. 6%). There was no 
difference in the occurrence of mutations in TTN 
(12% vs. 13%). Frameshift deletions in TP53 and 
ARTX were more abundant in the MRPS-high sub-
group, whereas the low subgroup showed occur-
rence of nonsense mutations. 

Dynamics of MRPS within sarcoma TME at 
single-cell level

To elucidate the dynamics of MRPS within the 
TME of sarcoma patients, we sought to examine 
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Figure 3. A – Univariate Cox regression analysis of M0-related genes. B – Bar plot depicting the multivariate Cox re-
gression coefficients for each M0-related gene. C – Risk plot showing MRPS score on y-axis and number of patients 
on x-axis. D – Principal component analysis (PCA) plots of MRPS subgroups for TCGA SARC cohort. E – Risk plot of 
MRPS score and distribution of survival status
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Figure 3. Cont. F, G – Kaplan-Meier curves for (F) 
progression-free survival (PFS) and (G) overall sur-
vival (OS) of MRPS-high and MRPS-low patients 
in the TCGA SARC cohort. H – Time-dependent 
receiver operating characteristic (ROC) curve plot 
depicting the area under curves (AUC) of MRPS for 
1-, 3- and 5-year OS
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the distribution of immune cell abundance, as 
determined by the CIBERSORT algorithm, across 
MRPS subgroups. As anticipated, the infiltration 
of M0 macrophages was significantly enriched 
in the MRPS-high subgroup (Figure 5 A). In line 
with the outcomes of GSEA of hallmark pathways 
which suggested enrichment of the inflammatory 
response in the MRPS-low subgroup, the MRPS-
low subgroup showed enrichment of the pro-in-
flammatory M1 phenotype of macrophages. That 
also implies suppression of the M1 phenotype by 
MRPS risk genes. Moreover, infiltration of CD8+ T 
cells was higher in the MRPS-low subgroup than 
in the high subgroup. The majority of the immune 
cells were more abundant in the MRPS-low sub-
group, which is also evident in the ESTIMATE re-
sults (Figure 5 B). The enrichment of MRPS was 
lower in immune and stromal contents as com-
pared to tumor parity. These outcomes are fully 
consistent with the functional analysis described 
in the previous sections. 

To further strengthen the reliability of these 
outcomes, we investigated the expression pat-

tern of MRPS signature and individual risk genes 
at the single-cell level. In general, the MRPS sig-
nature was significantly upregulated in malignant 
cells as compared to stromal and immune cells 
in all three datasets (Figures 5 C–H). Specifically, 
mono/macro annotated cells showed the lowest 
expression of the MRPS signature (Figure 5 C–H, 
Supplementary Figure S2 A). Individually, a simi-
lar pattern of expression was observed for each 
risk gene except LAPTM4B and SATB1 (Figures 
5 I–K; Supplementary Figures S2 B–E). LAPTM4B 
showed the lowest expression in mono/macro 
cells while SATB1 was majorly expressed in these 
cells (Figures 5 I–K; Supplementary Figures S2 
B–D). Hence, MRPS appears to contribute to im-
munosuppression in sarcoma by targeting macro-
phage polarization. 

Response to immunotherapy

The presence of CD8+ T cells in the TME of sar-
coma patients suggests that these patients may 
respond to immune checkpoint therapy. However, 
the functional status of CD8+ T cells is important 
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Figure 4. A – Heatmap illustrating the expression of 6 MRPS risk genes (red: upregulation; blue: downregulation) 
in the MRPS subgroups and comparison of clinicopathological features between MRPS subgroups and clinicopath-
ological features. c2 test; *p < 0.05; **p < 0.01; ***p < 0.001. B – Distribution of pathological subtypes between 
MRPS subgroups. c2 test. C, D – Gene Set Enrichment Analysis (GSEA) of Hallmark pathways in MRPS subgroups
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Figure 4. Cont. E, F – Oncoplot depicting mutation frequency of top 20 mutated genes in MRPS subgroups
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in determining whether these cells will respond or 
not [17]. Tumor Immune Dysfunction and Exclu-
sion (TIDE) is a  computational framework which 
models immune evasion strategies by cancers in 
terms of the T-cell dysfunction (high CTL infiltra-
tion) or exclusion (low CTL infiltration) and pre-
dicts the tumor response to ICI therapy [17]. In 
this cohort, the MRPS-high subgroup had high  
T cell exclusion and low T cell dysfunction scores 
(Figures 6 A–C). As such, CD8 T cells, production 
of interferon g (IFN-g), and expression of PD-L1, 

mainly expressed on tumor cells and antigen pre-
senting cells to engage CD8 T cells via PD-1/PD-L1 
interaction, were lower in this cohort (Figures 6 
D–F). On the other hand, only enriched presence 
of myeloid-derived suppressor cells (MDSC) con-
tributed to the exclusion of T cells in the MRPS-
high subgroup (Figures 6 G–I). Collectively, the 
TIDE score was lower for the MRPS-high subgroup, 
and hence 80% of the MRPS-high subgroup par-
ticipants were categorized as responders (Figures 
6 C, J, K). 
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Figure 5. A  – Relative abundance of 22 immune 
cells in MRPS subgroups. Statistically significant 
differences between the two subgroups were as-
sessed using the Wilcoxon test. B – Difference in 
tumor microenvironment (TME) scores between 
MRPS subgroups (p-values are shown as: *p < 0.05;  
**p < 0.01; ***p < 0.001). C–H – UMAP (uniform man-
ifold approximation and projection) and violin plots 
showing enrichment of MRPS score in single-cell 
(C, D) synovial sarcoma (SS_GSE131309_10X)
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Validation of the MRPS in external 
independent sarcoma cohorts

To assess the robustness of the MRPS’s appli-
cability and limitations, survival analysis was con-
ducted on four independent sarcoma cohorts, en-

compassing diverse histological subtypes. Within 
each cohort, sarcoma patients were categorized 
as high or low risk using the same risk estimation 
formula described above. This involved employing 
individual gene expression data in each cohort 
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Figure 5. Cont. (E, F) pleuropulmonary blastoma (PPB_GSE163678), and (G, H) gastrointestinal stromal tumor 
(GIST_GSE162115) datasets. I – Violin plot showing enrichment of individual MRPS genes in each cell type in sin-
gle-cell synovial sarcoma dataset (SS_GSE131309_10X)
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Figure 6. A–I – Boxplots showing comparison of Tumor Immune Dysfunction and Exclusion (TIDE) algorithm re-
sults between MRPS subgroups: A – T cell dysfunction score; B – T cell exclusion score; C – TIDE score; D – CD8.  
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns – not significant
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and utilizing multivariable Cox regression coeffi-
cients derived from the TCGA SARC cohort.

The MRPS demonstrated excellent performance 
in cohorts where the risk signature originated, 
such as undifferentiated sarcoma and dedifferen-
tiated liposarcoma (DLS) (Figures 7 A–D). Notably, 
risk stratification based on MRPS in 50 undifferen-

tiated uterine sarcoma (US) patients (GSE119041) 
revealed significantly worse survival outcomes for 
high-risk patients (Figure 7 A). Similarly, 140 de-
differentiated liposarcoma patients (GSE30929) 
exhibited the poorest disease-free survival (Figure 
7 C). Receiver-operating characteristic (ROC) curve 
analysis also indicated comparable performance 
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Figure 6. Cont. E – CD274; F – IFN-g; G – MDSC; H – TAM M2; and 
I – CAF. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns – not 
significant. J, K – Distribution of TIDE value between MRPS sub-
groups and categorization as responders and non-responders to 
immunotherapy response based on TIDE value
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Figure 7. A – Kaplan-Meier curve for the overall survival (OS) of MRPS-stratified subgroups of undifferentiated 
uterine sarcoma (US) patients (GSE119041) into high- and low-risk, B – time-dependent receiver operating charac-
teristic (ROC) curve plot depicting the area under the curve (AUC) of MRPS for 1-, 3- and 5-year OS. C – Kaplan-Mei-
er curve for disease-free survival (DFS) of MRPS-stratified subgroups of 140 dedifferentiated liposarcoma patients 
(GSE30929) into high- and low-risk, D – time-dependent ROC curve plot depicting the AUC of MRPS for 1-, 3- and 
5-year DFS. E – Kaplan-Meier curve for OS of MRPS-stratified subgroups of Ewing sarcoma patients (GSE17674) 
into high- and low-risk, F – time-dependent ROC curve plot depicting the AUC of MRPS for 1-, 3- and 5-year OS

1.00

0.75

0.50

0.25

0

1.00

0.75

0.50

0.25

0

1.00

0.75

0.50

0.25

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Se
ns

it
iv

it
y

Se
ns

it
iv

it
y

Se
ns

it
iv

it
y

A

C

E

B

D

F

	 0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20

Time [years]
MRPS     High       Low

	 0	 2	 4	 6	 8	 10	 12

Time [years]
MRPS     High       Low

	 0	 2	 4	 6	 8	 10	 12	 14	 16

Time [years]
MRPS     High       Low

	 0	 0.2	 0.4	 0.6	 0.8	 1.0

1 – specificity
 AUC at 1 year: 0.679      AUC at 3 years: 0.758

 AUC at 5 years: 0.758

	 0	 0.2	 0.4	 0.6	 0.8	 1.0

1 – specificity
 AUC at 1 year: 0.684      AUC at 3 years: 0.676

 AUC at 5 years: 0.634

	 0	 0.2	 0.4	 0.6	 0.8	 1.0

1 – specificity
 AUC at 1 year: 0.722      AUC at 3 years: 0.470

 AUC at 5 years: 0.574

p = 0.011

p < 0.001

p = 0.040



Muhammad Usman, Shengfa Lin, Guiqiong He, Hong Lu

18� Arch Med Sci

Figure 7. Cont. G – Kaplan-Meier curve for OS of MRPS-stratified subgroups of osteosarcoma patients (TARGET 
dataset) into high- and low-risk, H – time-dependent ROC curve plot depicting the AUC of MRPS for 1-, 3- and 
5-year OS
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Figure 9. A  – Nomogram incorporating resection 
margin, metastasis, and MRPS to predict 1-, 3-, and 
5-year OS in individual sarcoma patients. B – Ka-
plan-Meier curve of OS for nomogram-based risk 
subgroups. C – AUC of the nomogram to predict the 
1-, 3- and 5-year OS in the TCGA SARC cohort. D – 
Calibration plots of the nomogram in predicting 1-, 
3-, and 5-year OS in the TCGA SARC cohort
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to that of TCGA SARC (Figures 7 B, D). The 1-, 3-, 
and 5-year AUCs in the US (OS) and DLS cohorts 
(DFS) were 0.68/0.76/0.76 and 0.68/0.68/0.63, re-
spectively (Figures 7 B, D).

However, MRPS performance was constrained 
in Ewing (GSE17674; n = 44) and osteosarcoma 
(TARGET; n = 88) patients (Figures 7 E–H). Despite 
a  notable improvement in overall survival (OS) 
for Ewing sarcoma patients, only the AUC for the 
1-year period exceeded 0.7 (Figures 7 E, F). Simi-
lar ROC performance was evident in osteosarco-
ma, with an opposite trend in OS (Figures 7 G, H). 
These findings suggest a more robust long-term 
survival predictive ability of MRPS in sarcoma 
subtypes from which the risk signature originat-
ed, while its effectiveness appears to be predomi-
nantly short term in other subtypes and is limited 
to soft-tissue sarcomas.

Nomogram 

To expand on the clinical applicability of MRPS, 
we constructed a  nomogram incorporating the 
MRPS and several of the clinical features of sarco-
ma patients including age, gender, race, extent of 
necrosis, tumor resection margins, and presence 
of metastasis. Complete clinicopathological infor-
mation was only available for 149 patients, and 
hence only these patients were included in the 
Cox regression analysis. Independent prognos-
tic efficacy of MRPS was shown in both uni- and 
multivariate Cox regression analysis (Figure 8). 
Moreover, tumor resection margin and diagnosis 
of metastasis were also identified as independent 

prognostic factors. Hence, these three factors 
were used to construct a  nomogram involving 
163 sarcoma patients with complete information 
for these two factors. Each of these factors was 
assigned unique points depending on its con-
tribution to survival, as illustrated in Figure 9 A. 
The accumulative point scores of a single patient 
(highlighted as red dotted lines) with positive tu-
mor resection margins, presence of metastasis 
and an MRPS score of just over 3 amounts to 116, 
which corresponds to 1-, 3- and 5-year survival 
probability of 63.7%, 10.1%, and 0.7%, respective-
ly. Risk stratification of sarcoma patients based on 
the nomogram demonstrated a  significant over-
all survival difference between high- and low-risk 
subgroups (Figure 9 B). The survival predictability 
based on ROC curves showed an enhanced perfor-
mance in predicting 1-, 3-, and 5-year OS as com-
pared to MRPS in the entire cohort (Figure 9 C).  
High predictive accuracy for OS was shown by 
the newly constructed nomogram with 1-, 3-, and 
5-year AUC of 0.747, 0.795, and 0.820, respective-
ly. Calibration plots indicate nomogram predictive 
ability in predicting the median 1-, 3- and 5-year 
OS close to observed OS values (Figure 9 D). More-
over, the decision curve analysis (DCA) demon-
strated a  superior benefit of the nomogram as 
compared to MRPS and other clinicopathological 
features (Figure 9 E). Moreover, MRPS (AUC = 
0.800) and the nomogram (AUC = 0.769) showed 
similar predictive ability, which was much higher 
than that of other clinicopathological factors in 
predicting overall survival (Figure 9 F). 

Figure 9. Cont. E – DCA (decision curve analysis) and F – ROC of evaluating the nomogram efficacy compared to 
other clinicopathological factors
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Discussion

Sarcomas are a group of diverse mesenchymal 
neoplasms with poor prognosis [1, 6, 7]. Hetero-
geneity makes clinical management of sarcomas 
challenging due to limited applicability of current 
treatments across diverse subtypes [1]. Simul-
taneously, identification of diverse prognostic 
nomograms and novel therapeutics with broad 
applicability in this group of patients is a difficult 
task. Hence, exploration of avenues with a wider 
impact on the pathogenesis and prognosis of sar-
coma is of critical importance. One such aspect 
is the understanding of TME features in cancer. 
In this study, we employed the CIBERSORT algo-
rithm to study the dynamics of tumor-infiltrating 
lymphocytes and other immune cells in the TME 
of sarcoma patients. Overall, the presence of the 
various immune cells was associated with bet-
ter prognosis except the M0 phenotype of mac-
rophages. We identified a  prognostic signature 
consisting of 6 genes related to M0 macrophages 
utilizing bulk and single cell RNA sequencing. The 
MRPS signature was proven to be an accurate 
prognostic parameter in 3 other external cohorts 
of soft-tissue sarcomas. The MRPS risk genes were 
mainly enriched in malignant and M0 macrophage 
cells, indicating a  possible crosstalk parameter 
restricting macrophage polarization towards M1 
phenotype, a  pro-inflammatory phenotype. The 
MRPS was significantly correlated with response 
to immunotherapy. A nomogram was constructed 
to quantify individual risk assessment based on 
the MRPS score, which showed excellent predic-
tive ability for overall survival of soft-tissue sarco-
ma patients. 

It is well known that histologic grade and tu-
mor size are important prognostic factors for local 
recurrence, distant metastasis, and overall surviv-
al, and there have been several attempts to devel-
op predictive nomograms involving these clinical 
features [19, 20]. The Memorial Sloan Kettering 
Sarcoma nomogram used tumor grade, depth, 
size, margin status, age, and histology to predict 
3- and 5-year local recurrence risk of non-meta-
static sarcoma in patients who had been treated 
with surgery alone between 1982 and 2006 [19]. 
Age, tumor size, FNCLCC (Fédération Nationale 
des Centres de Lutte Contre le Cancer) grade, and 
histologic subtype were used by another team to 
develop two nomograms predicting overall sur-
vival and distant metastasis for sarcoma patients 
treated between 1994 and 2013, which were vali-
dated on three external independent cohorts [20]. 
Our cohort, which comprised only 149 patients 
with complete clinicopathological information, 
revealed tumor resection margin and metastasis 
as significant prognostic factors in univariate and 
multivariate Cox regression analysis. This cohort 

lacked important information such as tumor size 
and grade, and the histologic subtypes were di-
verse, with a small number of participants. Hence, 
these factors were not included in the analysis. 
Age and the extent of necrosis did not show any 
prognostic impact, probably due to low number 
of participants in comparison to previous studies 
[19, 20]. Nonetheless, our study incorporates the 
resection margin and presence of metastasis as 
prognostic factors, which had not been previously 
incorporated in such nomograms. Moreover, this 
nomogram also used computational gene signa-
ture associated with macrophages (MRPS), which 
has not been reported before. Similar, computa-
tional signature-based nomograms that were 
derived from TME features have previously been 
reported [21, 22]. However, these studies utilized 
the ssGSEA or ImmucellAI database to identify the 
immune-related risk signatures (immune-related 
genes – IRGs), which greatly differ in composition 
of immune cells from the CIBERSORT database. In 
the study by Ren et al., the risk subgroups identi-
fied lacked any significant differences in the abun-
dance of macrophages between them as assessed 
by ImmucellAI, which does not probe the various 
macrophage phenotypes [21]. The high-risk sub-
group in the study by Xiao et al., however, had 
more M0 macrophages, but the IRG that differ-
entiated between the three risk-subgroups was 
not derived from M0 macrophages and the par-
ticipants were osteosarcoma patients [22]. These 
differences greatly differentiate our risk signature 
and nomogram from the previous ones.

Sarcoma exhibits the highest relative percent-
age of gene amplifications, deletions, and fusions, 
along with the lowest average mutation count 
compared to other tumor types [3, 23]. Genom-
ic alterations in major tumor suppressor genes, 
such as TP53, RB1, and ARTX, are frequently ob-
served in sarcoma patients and are associated 
with a poor prognosis [23]. Additionally, different 
histological subtypes of sarcoma vary in their 
susceptibility to genomic alterations in terms of 
type and frequency. For instance, in a  cohort of 
8000 soft tissue sarcoma (STS) patients, RB1 
(22%) and CDKN2A (22%) were identified as the 
most commonly altered genes, leading to loss of 
DNA copy number and point mutations [23]. The 
study also suggested that CDKN2A could serve as 
a prognostic factor and is rarely aberrant in leio-
myosarcomas and liposarcomas (≤ 10%). Another 
study focusing on 67 leiomyosarcomas revealed 
that ARTX was the most frequently mutated gene 
following TP53 and RB1 [24]. In our TCGA SARC 
cohort, predominantly composed of leiomyosarco-
mas, liposarcomas, and undifferentiated sarcoma, 
TP53 (35% vs. 30%), ARTX (21% vs. 8%), and RB1 
(12% vs. 6%) emerged as the most frequently mu-
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tated genes, with a higher frequency observed in 
the MRPS-high subgroup. Frameshift deletions in 
TP53 and ARTX were more prevalent in the MRPS-
high subgroup, while the low subgroup exhibited 
higher occurrence of nonsense mutations.

In this study we identified six oncogenes that 
were mainly expressed by malignant sarcoma 
cells showing a positive correlation with M0 mac-
rophages. The oncogenic role of these genes was 
also evident in external datasets indicating robust-
ness of these genes in sarcoma development and 
prognosis. Lysosomal-associated transmembrane 
protein 4B (LAPTM4B), which was first cloned in 
hepatocellular carcinoma (HCC) cells, has shown 
upregulation in various cancers such as non-small 
cell lung cancer (NSCLC), osteosarcoma, breast, 
colorectal, gastric, pancreatic, cervical, ovarian, 
and prostate cancers [25–34]. Its overexpression 
has been shown to promote tumor growth and 
proliferation, invasion and metastasis [35–37]. It 
exerts its oncogenic effects via autophagy initia-
tion and inhibition of apoptosis [35, 38, 39]. Anoth-
er risk gene, ADP-ribosylation factor 4 (ARF4), was 
identified as a novel anti-apoptotic gene in human 
glioblastoma-derived U373MG cells [40]. ARF4 was 
also shown to promote cancer proliferation and 
migration in lung adenocarcinoma, ovarian cancer 
and breast cancer [41–43]. The tubulin β class I   
gene (TUBB) is overexpressed in several cancers 
with diverse roles in tumorigenesis [44]. TUBB acts 
as a structural component of microtubules, which 
are an essential component of cell division and 
transport, by forming a dimer with α-tubulin [45, 
46]. The MRPS high-risk subgroup had higher tu-
mor components and was enriched in cell division 
activity, indicating the oncogenic role of TUBB in 
sarcoma development and prognosis. 

A constituent of the MARCKS family, MARCKS 
like 1 (MARCKSL1) functions as a protein kinase C  
(PKC) substrate and actin binding protein [47]. 
MARCKSL1 modulates cytoskeletal actin dynam-
ics and vesicular trafficking after being translo-
cated to the cytosol upon phosphorylation by 
PKC or binding to calcium-dependent calmodulin. 
MARCKSL1 is significantly upregulated in various 
cancers including breast cancer, lung adenocarci-
noma, esophageal squamous cell carcinoma, mus-
cle-derived cancer, and uterine cancer [48–51]. It 
has been reported to be mainly involved in cancer 
cell invasion and migration [48, 49, 51]. 

SERBP1 (plasminogen activator inhibitor 1  
RNA-binding protein) is a  member of the 
RNA-binding proteins (RBPs) which serve as 
master regulators of gene expression. SERBP1 
has been identified as a new oncogenic factor in 
glioblastoma with a significant impact on the pro-
duction of methionine levels linking epigenetics 
and cancer metabolism [52]. It has also been 
demonstrated to promote EMT transformation 

and metastasis in HCC and prostate cancer [53, 
54]. Special AT-rich sequence binding protein 1 
(SATB1), a chromatin organizer and transcription 
factor, acts as an oncogene by regulating essen-
tial cellular processes (such as differentiation, 
proliferation and apoptosis) through gene expres-
sion, and its increased expression is consistently 
associated with poor prognosis across various 
cancers [55, 56]. Its overexpression in cancer-as-
sociated dendritic cells was demonstrated to 
drive tumor-promoting activities [57]. Our single 
cell analysis indicated that its expression might 
be limited to macrophages in sarcoma and could 
be targeted as a direct macrophage-related target 
for further investigation.

Tumor-associated macrophages (TAMs) play 
a  pivotal role in the TME of various cancers in-
cluding sarcoma, where they promote cancer 
progression by enhancing cell proliferation, angio-
genesis, metastasis, immune evasion, and thera-
py resistance [58–61]. This is primarily driven by 
their polarization into an immunosuppressive, 
M2-like phenotype. However, TAMs also possess 
antitumor capabilities, including phagocytosis and 
immune activation, making them dual players in 
cancer biology and valuable targets for therapeu-
tic strategies [62, 63]. Approaches to modulate 
TAMs include reprogramming their polarization, 
blocking their recruitment, and targeting critical 
pathways [64, 65]. For example, miRNA-loaded 
extracellular vesicles (iEV-214) have been shown 
to suppress X-box binding protein 1 (XBP1), 
a  regulator of immune dysregulation, effective-
ly reducing TAM-mediated immunosuppression 
[66]. Additionally, TAMs contribute to resistance 
against immune checkpoint therapy by express-
ing molecules such as PDL1, PDL2, and VISTA, 
which suppress CD8+ T cell and NK cell activity 
[67]. Targeting these checkpoints can restore im-
mune function and enhance antitumor responses. 
Our results reveal that macrophages are a promi-
nent TME component in sarcoma, with M0 mac-
rophages correlating with poor prognosis [60, 
61]. A six-gene prognostic signature (MRPS) was 
identified in our study, highlighting its prognos-
tic relevance. MRPS risk genes are predominantly 
enriched in malignant cells and M0 macrophages, 
suggesting a  crosstalk that hinders polarization 
toward the pro-inflammatory M1 phenotype. 
Targeting these genes holds potential for restor-
ing macrophage polarization and enhancing an-
ti-cancer immunotherapy. Notably, our evaluation 
also suggested that the MRPS high-risk subgroup 
could benefit from immune checkpoint blockade, 
further supporting its clinical significance.

In general, the individual characterization of 
MRPS risk genes suggests their participation in 
the growth of cancer cells by directly influencing 
oncogenic pathways such as autophagy and apop-
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tosis. These genes also contribute to metastasis 
through the mediation of structural regulators. 
Additionally, there is evidence of gene expression 
regulation, either promoting metastasis through 
enhanced metabolism or suppressing anti-can-
cer immunity by inhibiting antigen presentation. 
Further investigations into their molecular inter-
actions and potential therapeutic interventions 
may pave the way for more targeted and effective 
treatments in the ongoing battle against cancer.

In conclusion, infiltration of immune cells in 
the TME of sarcoma patients was associated with 
better prognosis, except in the case of M0 macro-
phages. A  six-gene prognostic signature, termed 
MRPS, was identified that was significantly pos-
itively correlated with M0 macrophages. These 
genes may exert a significant impact on the polar-
ization of macrophages, particularly the classically 
activated M1 polarization, which needs further ex-
ploration. The MRPS-stratified high-risk subgroup 
showed enriched tumor content as demonstrated 
by upregulation of oncogenic pathways and gly-
colysis and high frequency of mutations.

Robustness of the MRPS was demonstrated in 
external soft-tissue sarcoma patients. A  nomo-
gram based on the MRPS was developed, serv-
ing as a  reliable and practical predictive tool for 
identifying high-risk sarcoma patients with lower 
survival probabilities. Additionally, the MRPS sig-
nature exhibited promising potential in predicting 
the immunotherapy response, suggesting its util-
ity in enhancing the effectiveness of personalized 
immunotherapy for sarcoma patients.
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