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A b s t r a c t

Introduction: This study aimed to develop an immune escape-related gene 
signature for prognostic prediction and clarification of the immune microen-
vironment in osteosarcoma, a predominant malignant bone tumor in pedi-
atric and adolescent populations.
Material and methods: This study used transcriptomic and genomic data 
from various databases (Therapeutically Applicable Research to Generate Ef-
fective Treatments and Gene Expression Omnibus). A prognostic model was 
established using the least absolute shrinkage and selection operator meth-
od, followed by rigorous statistical analysis. Additionally, the study involved 
the investigation of differential pathways and single-cell data analysis to 
understand the immune escape mechanisms in osteosarcoma.
Results: The study successfully developed an immune escape-related gene 
model that stratifies patients with osteosarcoma into different prognostic 
groups with significant survival differences. It indicated that higher immune 
escape-related gene scores were associated with poor survival outcomes. 
Additionally, the model demonstrated efficacy in predicting the complexity 
and variability of the immune microenvironment in osteosarcoma, correlat-
ing with different immune cell infiltrations and immunotherapy responses. 
Furthermore, single-cell analysis revealed distinct molecular signatures and 
pathways associated with immune escape, emphasizing potential therapeu-
tic targets in osteosarcoma management.
Conclusions: The immune escape-related gene model provides a novel ap-
proach to understanding and predicting osteosarcoma prognosis. This mod-
el serves as a valuable tool for determining potential therapeutic targets and 
developing personalized treatment strategies. It emphasizes the importance 
of immune escape mechanisms in osteosarcoma progression and treatment.

Key words: osteosarcoma, immune escape, immune microenvironment, 
single-cell analysis.

Introduction

Not only is osteosarcoma the most prevalent primary malignant bone 
tumor in children and adolescents, but its highly aggressive nature and 
rapid growth also contribute to a poor prognosis and a high rate of me-
tastasis [1]. Studies have revealed that the lungs are the most predomi-
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nant metastasis site in osteosarcoma, which fur-
ther complicates treatment and reduces survival 
rates [2, 3]. The overall survival rate for osteosar-
coma has shown limited improvement in recent 
years, especially in patients with advanced or re-
current disease, despite the use of neoadjuvant 
chemotherapy and extensive surgical resection [4, 
5]. Therefore, establishing new methods for early 
diagnosis and prognostic indicators is crucial for 
improving the survival rates of patients with os-
teosarcoma. Research indicates that tumor cells 
evade the immune system’s surveillance through 
mechanisms such as altering antigen presenta-
tion, producing immunosuppressive factors, or 
modifying the tumor microenvironment, in terms 
of tumor immune evasion [6, 7]. Initially, the mu-
tation and evasion mechanisms of the tumor cells 
themselves were widely believed to be the main 
factors in tumor immune evasion. However, with 
further research, increasing evidence indicates 
that the tumor microenvironment, including im-
mune cells, stromal cells, and cytokines, plays a vi-
tal role in this process [8]. Therefore, the present 
study uses cutting-edge transcriptomic and sin-
gle-cell genomic technologies to develop a  gene 
model pertinent to immune evasion [9]. This re-
search not only investigates the role of immune 
evasion-related genes in osteosarcoma prognosis 
but also assesses their predictive value within the 
immune microenvironment by analyzing samples 
of patients with osteosarcoma, thereby providing 
novel insights and strategies for osteosarcoma 
treatment [10].

This investigation helps in deepening the un-
derstanding of tumor immune evasion’s role in 
osteosarcoma progression, thereby providing 
a theoretical foundation for developing new ther-
apeutic approaches. As this tumor demonstrates 
significant genetic heterogeneity, which limits the 
efficacy of standardized treatment approaches 
and potentially causes substantial variability in 
individual treatment responses, we explore more 
deeply the background and challenges of osteo-
sarcoma [9]. Moreover, the success rates of stan-
dard treatments are further diminished for recur-
rent or refractory osteosarcoma, emphasizing the 
need for more personalized and targeted thera-
peutic strategies [11]. This is partly caused by the 
complex and variable immune microenvironment 
of osteosarcoma, characterized by immune cell 
type and cytokine diversity, whose interactions 
and effects on tumor growth remain unclear [12]. 
This study aims to determine the complexity 
and dynamic changes of the immune microenvi-
ronment in osteosarcoma by developing a  gene 
model associated with immune evasion, consid-
ering the aforementioned challenges. This study 
aims to identify and characterize those immune 

evasion-related genes that play a  pivotal role in 
osteosarcoma through the integrated application 
of transcriptomics and single-cell genomics. This 
approach not only facilitates an understanding 
of key regulatory factors in the osteosarcoma 
immune microenvironment but also reveals new 
biomarkers and therapeutic targets, thereby sup-
porting the development of more effective person-
alized treatment strategies [13].

In summary, this study provides a  novel per-
spective by examining the role of immune evasion 
mechanisms in osteosarcoma, potentially provid-
ing new strategies and directions for treating this 
complex and challenging malignancy.

Material and methods

Dataset download and processing

We collected clinical information and RNA se-
quencing data for patients with osteosarcoma 
from the Therapeutically Applicable Research to 
Generate Effective Treatments (TARGET, [https://
ocg.cancer.gov/programs/target]) database. Fol-
lowing meticulous curation, the final training 
dataset comprised exclusively 84 osteosarcoma 
samples with comprehensive records of age, gen-
der, and metastatic status. Moreover, we sourced 
additional datasets from the Gene Expression Om-
nibus (GEO, [https://www.ncbi.nlm.nih.gov/geo/]) 
database, specifically GSE16091 and GSE162454. 
The GSE16091 dataset comprises 34 osteosarco-
ma samples, processed with the Affymetrix Hu-
man Genome U133A Array sequencing platform. 
We downloaded scRNA-seq data for three osteo-
sarcoma samples (GSM4952363, GSM4952364, 
and GSM4952365) from GSE162454 for sin-
gle-cell analysis. In this process, we determined 
182 genes associated with immune escape, which 
are detailed in Supplementary Table SI.

Construction and validation of a prognostic 
model

Initially, a  prognostic model was developed 
using the TARGET dataset as the training set. 
We utilized the “glmnet” package in R to apply 
the least absolute shrinkage and selection oper-
ator (LASSO) method for refining the preliminary 
selection of prognostic immune escape-relat-
ed genes. The developed prognostic model was 
succinctly represented by the following formula:  
riskScore = Sn

j
 (COEF

i
 × X

i
), where X signifies 

the expression level of each gene and Coef  
denotes the respective regression coefficient as-
signed to each gene after applying LASSO regres-
sion. We used this prognostic model to calculate 
the risk score for each patient with osteosarcoma. 
Patients were then categorized into high- and low-
risk groups based on their median scores. Addi-
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tionally, the sample collection from GSE16091 was 
used as an external validation cohort, enabling us 
to confirm the predictive precision of our model.

Prognostic value of the immune  
escape-related gene model

We illustrated the survival durations of the two 
patient groups with Kaplan-Meier curves. We ap-
plied the log-rank test to evaluate the disparities 
in survival times between these groups. Addition-
ally, the efficacy of the prognostic model in predict-
ing outcomes was assessed with time-dependent 
receiver operating characteristic (ROC) analysis.

Differential gene analysis

Differential gene expression was analyzed 
using the limma package in R [14], focusing on 
genes that demonstrate a logarithmic fold change  
(Log2FC) absolute value of > 0.5 and a p-value of 
< 0.05.

Comparison of immune infiltration levels 
among immune escape-related gene groups

The tumor immune microenvironment (TIME) 
is crucial in affecting tumor progression and the 
effectiveness of chemotherapy. We initially com-
puted stromal, immune, and Estimation of Stro-
mal and Immune cells in Malignant Tumor tissues 
using Expression data (ESTIMATE) scores with the 
ESTIMATE algorithm [15] to analyze immune infil-
tration differences among subtypes. We then used 
the ssGSEA method to ascertain the enrichment 
scores for 28 immune cell types based on the gene 
expression profiles in osteosarcoma samples. Fur-
thermore, we established 29 immune-related gene 
sets to facilitate the analysis of immune cells and 
their functions in the high- and low-risk groups.

Functional enrichment analysis of the 
immune escape-related gene model

We pinpointed genes with differential expres-
sion (DEGs) between the high- and low-risk groups 
related to immune escape. These were then visu-
alized using the “pheatmap” package in R. We 
sourced the gene sets “c2.cp.kegg.v7.4.symbols” 
and “c5.go.bp.v7.4.symbols” from the MSigDB 
database (https://www.gsea-msigdb.org/gsea/
msigdb) for gene set variation analysis (GSVA). 
Furthermore, we conducted Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses, employing the “clus-
terProfiler” and “org.Hs.eg.db” packages in R.

Single-cell data analysis

Single-cell data were processed with the Seur-
at package in R [16] to obtain single-cell gene 

expression profiles. Low-quality cells (minimum 
expressed genes of ≥ 10 and gene count of ≥ 200) 
were excluded, with the remaining cells used for 
bioinformatics analysis. The “NormalizedData” 
function was used for normalizing scRNA-seq 
data, and the FindVariableFeatures function de-
termined the 5,000 most variable genes. Principal 
component analysis (PCA) was conducted with 
the “RunPCA” function. Unsupervised clustering 
of major cell subtypes was conducted with Seur-
at’s FindClusters function and visualized using 
Uniform Manifold Approximation and Projection. 
Cell annotation was based on the Cellmarker da-
tabase, and differential genes in high- and low-im-
mune escape-scoring groups were determined 
with Seurat’s FindMarkers function. GO and KEGG 
enrichment analyses were conducted using the 
“clusterProfiler” and “org.Hs.eg.db” R packages. 
The iTALK R package [17] was used for investigat-
ing cell communication maps.

Immunofluorescence assay

The human osteosarcoma cell line U-2 OS and 
osteoblast cells were employed to validate the 
expression levels of proteins encoded by immune 
escape-related genes autophagy related 7 (ATG7), 
suppressor of cytokine signaling 1 (SOCS1), and 
TNF receptor superfamily member 1A (TNFRSF1A). 
Cells were cultured on coverslips at 37°C with 5% 
CO2, and the culture process was terminated when 
the cell density approached approximately 90%. 
Following cultivation, the cells were washed with 
phosphate-buffered saline (PBS) and fixed with 
4% paraformaldehyde for 20 min. Subsequently, 
a  0.5% solution of Triton X-100 was applied to 
the cells for cell permeabilization for a duration of  
20 min, followed by three washes with PBS. The 
cells were blocked with 5% bovine serum albumin 
(BSA) for 2 h and were incubated with primary 
antibodies at 4°C overnight. On the following day, 
the primary antibodies were removed and the cells 
were subjected to three washes with PBS. Fluores-
cently labeled secondary antibody was provided 
and incubated with the cells at 37°C for 1 h in 
the dark. Following the incubation, the cells were 
washed three times, and the nuclei were stained 
with DAPI for 5 min. Subsequently, the slides con-
taining the cells were sealed using a solution that 
included anti-fluorescence quenching agents and 
observed utilizing a fluorescence microscope.

Statistical analysis

We conducted statistical analyses using R soft-
ware (version 4.3.1). Univariate Cox regression 
analysis was used to determine prognostic genes. 
The Wilcoxon rank-sum test was utilized to com-
pare the immune enrichment scores across differ-
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ent groups. A  p-value of < 0.05 was considered 
indicative of statistical significance.

Results

Establishment of immune escape-related 
gene model in osteosarcoma

Supplementary Figure S1 presents a schematic 
diagram of the overall analytical procedures for 
this study.

A univariate Cox regression analysis was con-
ducted using the gene expression values of 182 
immune escape (IE)-related genes as continuous 
variables in the TARGET cohort of patients with os-
teosarcoma having complete clinical survival data. 
This analysis calculated the hazard ratio for each 
gene. A p-value threshold of < 0.05 was set for se-
lection, resulting in 47 genes meeting this criteri-
on (Figure 1 A). Subsequent LASSO Cox regression 

analysis of these 47 genes determined the opti-
mal number of genes based on lambda values cor-
responding to different gene counts. The analysis 
identified the most suitable number of genes as 
three: suppressor of cytokine signaling 1 (SOCS1), 
TNF receptor superfamily member 1A (TNFRSF1A), 
and autophagy related 7 (ATG7), demonstrat-
ing the minimum lambda values (Figures 1 B, C).  
The risk score model that predicts patient sur-
vival was then established by weighting the ex-
pression levels of these genes with their corre-
sponding LASSO Cox regression coefficients: Risk  
score = (–0.2052093) × expression value of SOCS1 
+ (–0.1840314) × expression value of TNFRSF1A 
+ (–0.1019449) × expression value of ATG7. We 
computed the risk score for each patient, reveal-
ing that the highest risk score was –3.526, the 
lowest was –5.968, and the median was –4.981. 
Utilizing this median risk score, we stratified the 

 Hazard ratio (95% CI)  P-value
SOCS1 0.57 (0.43–0.77) 2.00E–04
TNFRSF1A 0.52 (0.37–0.74) 0.00028
ACTB 0.55 (0.39–0.79) 0.0012
FAS 0.69 (0.54–0.88) 0.0026
TMEM127 0.6 (0.43–0.85) 0.0042
ATG7 0.54 (0.35–0.83) 0.0048
PCED1B 0.7 (0.55–0.9) 0.0052
IFNGR 0.6 (0.41–0.87) 0.0065
PIGK 0.59 (0.4–0.87) 0.0074
HIRA 0.61 (0.42–0.88) 0.0082
PIGU 0.58 (0.38–0.87) 0.0084
TAP2 0.61 (0.42–0.89) 0.0094
IFNAR2 0.59 (0.39–0.89) 0.011
TGFBR2 0.7 (0.37–0.92) 0.011
TAPBP 0.61 (0.42–0.9) 0.012
HEXIM1 0.56 (0.36–0.88) 0.012
CHIC2 0.64 (0.45–0.91) 0.013
PIGS 0.65 (0.46–0.91) 0.013
TAP1 0.66 (0.48–0.93) 0.016
IFNGR2 0.59 (0.39–0.91) 0.016
MAPK1 0.63 (0.44–0.92) 0.016
PSMB9 0.75 (0.59–0.95) 0.017
NUP188 0.54 (0.33–0.9) 0.018
WDR7 0.62 (0.41–0.92) 0.018
DPH5 0.65 (0.45–0.93) 0.019
FNTB 0.57 (0.36–0.92) 0.02
TNFRSF1B 0.72 (0.54–0.95) 0.022
VPS35 0.61 (0.4–0.94) 0.024
STAT2 0.67 (0.487–0.95) 0.025
IST1 0.64 (0.43–0.95) 0.025
DNTTIP1 0.62 (0.4–0.95) 0.028
EMC8 0.67 (0.47–0.96) 0.028
PSMB8 0.76 (0.59–0.97) 0.031
DCP1A 0.58 (0.35–0.95) 0.031
PDCD6IP 0.61 (0.39–0.96) 0.031
RBCK1 0.69 (0.49–0.97) 0.033
FITM2 0.63 (0.41–0.97) 0.035
EMC3 0.64 (0.42–0.97) 0.037
B2M 0.75 (0.57–0.99) 0.039
ATXN7L3 0.57 (0.34–0.97) 0.039
NCBP1 0.65 (0.44–0.98) 0.039
PDSS2 0.62 (0.4–0.98) 0.04
ZC3H3 0.66 (0.44–0.99) 0.042
CREBBP 0.63 (0.41–0.99) 0.045
MED16 0.73 (0.53–1) 0.046
ATG12 0.59 (0.36–0.99) 0.047
USP7  0.65 (0.43–0.99) 0.047

 0.3 1 1.3

Figure 1. Prognostic prediction of patients with osteosarcoma using the immune escape-related gene model.  
A – Univariate Cox regression analysis results

LASSO – least absolute shrinkage, and selection operator, ROC – receiver operating characteristic, TARGET – Therapeutically 
Applicable Research to Generate Effective Treatments.
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Figure 1. Cont. B, C – Lambda values from LASSO Cox regression analysis. D – Kaplan–Meier (K–M) survival curve 
for the TARGET dataset. E – K–M survival curve for GSE16091 dataset. F – ROC curve analysis for TARGET dataset. 
G – ROC curve analysis for the GSE16091 dataset

LASSO – least absolute shrinkage, and selection operator, ROC – receiver operating characteristic, TARGET – Therapeutically 
Applicable Research to Generate Effective Treatments.
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osteosarcoma samples from the TARGET training 
set into high- and low-risk groups, with 42 sam-
ples in each group (Supplementary Table SII). Sur-
vival analysis emphasized a notably lower overall 
survival rate in the high-risk group compared to 
the low-risk group (Figure 1 D). The validity of this 
model was further reinforced by the GSE16091 
dataset, which mirrored these results, indicating 
reduced overall survival in the high-risk group 
(Figure 1 E). Time-dependent ROC analysis under-
scored the model’s predictive capability, with area 
under the curve values of 0.57, 0.76, and 0.77 in 
the training set (Figure 1 F) and 0.54, 0.60, and 
0.57 in the validation set at 1, 3, and 5 years (Fig-
ure 1 G), affirming the model’s effectiveness in 
forecasting the prognosis of patients with osteo-
sarcoma based on TARGET data.

Prognostic value of the immune escape-
related gene model in osteosarcoma

We analyzed its variation across different clin-
ical characteristics (age, gender, and metastatic 
status) to investigate the clinical significance of 
the risk score. The analysis revealed no significant 
differences in risk scores between genders or be-
tween metastatic and nonmetastatic groups (Fig-
ures 2 A, B). However, the risk score was signifi-
cantly higher in the < 18 age group compared to 
the ≥ 18 age group (p < 0.05) (Figure 2 C). Further, 
the prognostic relevance of the risk score in dif-
ferent clinical characteristics was evaluated. The 
results indicated that in the < 18 age group, osteo-
sarcoma samples in the high-risk category exhib-
ited poorer overall survival compared to those in 
the low-risk group (p < 0.001) (Figure 2 D). Similar-
ly, high-risk osteosarcoma samples demonstrated 
worse overall survival than those in the low-risk 
group in the female group (p < 0.001) (Figure 2 E).  
Additionally, the high-risk category showed poorer 
overall survival outcomes compared to the low-
risk group in the nonmetastatic group (p < 0.001) 
(Figure 2 F). This evidence indicates the use of the 
risk score as a  differential prognostic indicator 
across various clinical demographics in osteosar-
coma.

Predictive value of the immune escape-
related gene model in the immune 
microenvironment of osteosarcoma

Our investigation focused on the association 
between the risk score and the prevalence of 28 
distinct immune cell types within the TARGET co-
hort. The results revealed a  substantial negative 
correlation of the risk score with central memory 
CD8 T cells, myeloid-derived suppressor cells, and 
macrophages. Conversely, a  significant positive 
correlation was observed with gamma delta T 

cells, plasmacytoid dendritic cells, type 17 T helper 
cells, and eosinophils, among other immune cells, 
totaling 12 in number (Figures 3 A, B, Supplemen-
tary Table SIII). Furthermore, immune cell and 
functional analysis of high- and low-score groups 
revealed significant differences in aDCs, CCR, CD8 
T cells, and Tregs among these groups (Figure 3 C).  
We calculated immune scores for the samples 
and categorized the osteosarcoma samples into 
high- and low-risk groups based on the median 
risk score using the TARGET cohort. The ESTIMATE 
Score, Immune Score, and Stromal Score were sig-
nificantly higher in the low-risk group compared 
to the high-risk group (Figure 3 D). Additional 
correlation analyses between the risk score and 
the ESTIMATE Score, Immune Score, and Stromal 
Score revealed significant negative correlations 
(Figures 3 E–G). This emphasizes the robustness 
of the risk score as a predictive marker in the im-
mune microenvironment of osteosarcoma, provid-
ing insights into the tumor’s interaction with its 
immune milieu.

Differential pathways in samples with 
varying immune escape-related gene scores

The samples from the TARGET cohort were 
stratified into high- and low-risk groups based 
on the median risk score. We then conducted 
a  differential gene expression analysis between 
these groups, focusing on genes with a p-value of  
< 0.05 and an absolute logFC of > 0.5. This iden-
tified 13,242 differentially expressed genes, com-
prising 82 that were upregulated and 13,160 that 
were downregulated (Figures 4 A, B). Significant 
insights emerged from the GO and KEGG enrich-
ment analyses of these genes. The high-risk score 
group demonstrated notable enrichment in path-
ways such as Phototransduction, Various types of 
N-glycan biosynthesis, N-glycan biosynthesis, and 
Arachidonic acid metabolism, in the KEGG analysis. 
Conversely, 165 pathways, including those related 
to Salmonella infection, Autophagy – animal, and 
Alzheimer’s disease, were significantly enriched in 
the low-risk score group (Figure 4 C). Similarly, the 
GO enrichment analysis revealed that pathways 
such as fibroblast growth factor receptor signaling, 
midbrain development, and cellular response to fi-
broblast growth factor stimulus were significantly 
enriched in the high-risk score group. In contrast, 
the low-risk score group demonstrated predomi-
nant enrichment in 3,194 pathways, including pro-
teasome-mediated ubiquitin-dependent protein 
catabolic process, macroautophagy, and protein 
localization to organelle establishment (Figure 4 D).  
Additionally, GSVA results indicated significant 
enrichment in 74 pathways, including GOBP_IN-
TERLEUKIN_2_MEDIATED_SIGNALING_PATHWAY 
and GOCC_DEATH_INDUCING_SIGNALING_COM-
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Figure 2. Prognostic potential of the immune escape-related gene model in osteosarcoma. A – Variation of risk 
score by gender. B – Variation of the risk score in metastatic versus nonmetastatic groups. C – Variation of risk 
score across different age groups. D – K–M survival curve for the < 18 age group. E – K–M survival curve for the 
female gender group. F – K–M survival curve for the nonmetastatic group
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Figure 3. Predictive potential of the immune escape-related gene model in the tumor immune microenvironment 
of osteosarcoma. A – Heatmap demonstrating immune infiltration of 28 specific immune cell types. B – Correlation 
plot depicting the association between risk score and the 28 immune cell types. C – Differences in 29 types of 
immune cells and functions between the high- and low-risk score groups
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Figure 3. Cont. D – Violin plots indicating differences in StromalScore, ImmuneScore, and ESTIMATEScore between 
the high- and low-risk score groups. Scatter plots denoting the correlation of risk score with StromalScore (E), 
ImmuneScore (F), and ESTIMATEScore (G)
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PLEX (Figure 4 E). Supplementary Table SIV pres-
ents detailed results of all enrichment analyses. 
This comprehensive pathway analysis emphasizes 
the complex molecular interactions and biological 
processes associated with varying immune escape 
levels in osteosarcoma.

Predictive value of immune escape-related 
gene scores in osteosarcoma treatment 
response

Drug sensitivity prediction in the TARGET 
cohort was performed with the “oncoPredict” 
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Figure 4. Pathway enrichment analysis in the high- and low-risk score groups. A – Volcano plot illustrating differen-
tially expressed genes. B – Heatmap of differentially expressed genes. Results of KEGG (C) and GO (D) enrichment 
analyses comparing the high- and low-risk score groups

KEGG – Kyoto Encyclopedia of Genes and Genomes, GO – Gene Ontology, GSVA – gene set variation analysis, OS – overall 
survival.
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package in R [18]. We analyzed the correlation 
between the risk score and the IC50 of various 
drugs. The results revealed that the risk score 
had a  significant positive correlation with 175 
drugs, including XAV939_1268, AZ960_1250, and 
AZD1332_1463 (Figure 5 A). Conversely, a signifi-
cant negative correlation was found with 3 drugs, 

including SB505124_1194, BI.2536_1086, and 
ABT737_1910 (p < 0.05, Figure 5 B, Supplementa-
ry Table SV). This result indicates that the immune 
escape-related gene score is a potential biomarker 
for predicting the efficacy of specific therapeutic 
agents in osteosarcoma, thereby helping in treat-
ment strategy customization.
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Figure 5. Cont. Scatter plots showing positive  
(A) and negative (B) correlations between risk 
score and various drugs

PCA – principal component analysis, KEGG – Kyoto 
Encyclopedia of Genes and Genomes, GO – Gene 
Ontology.
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Analysis of immune escape-related gene 
scores in single-cell data of osteosarcoma

We obtained single-cell gene expression pro-
files using three samples from the GSE162454 
single-cell sequencing dataset. These profiles 
were used for subsequent analyses after data 
processing and filtration. PCA was conducted 
(Figure 6 A) with 5,000 variable genes to reduce 
dimensionality, and 19 cell clusters were deter-
mined with Seurat (Supplementary Figure S2). 
Figure 6 B shows cell annotation results. The 
levels of immune escape-related gene scores in 
identified cells were determined (Figure 6 C), and 

Supplementary Figure S3 shows sample distribu-
tion results.

Differential expression genes between high- 
and low-scoring groups of immune escape-re-
lated gene scores were determined based on 
the FindMarkers results, using the criteria of an 
avg_log2FC absolute value of > 0.5 and a p-value 
of < 0.05. Enrichment analysis for these differen-
tially expressed genes was conducted with GO 
and KEGG pathways. KEGG enrichment results 
indicated significant enrichment in pathways 
such as rheumatoid arthritis, interleukin-17 sig-
naling pathway, lysosome, osteoclast differenti-
ation, bladder cancer, arginine, and proline me-
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Figure 6. Cont. D – KEGG enrichment analysis results for the high- and low-risk score groups in single-cell data. 
E – GO enrichment analysis results for the high- and low-risk score groups in single-cell data
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tabolism in the high-scoring group. In contrast, 
pathways such as pertussis, Chagas disease, al-
coholic liver disease, and 29 others, were signifi-
cantly enriched in the low-scoring group (Figure 
6 D). GO enrichment results revealed significant 
enrichment in 224 pathways, including collagen 
catabolic process, apoptotic signaling pathway 
regulation, inflammatory response regulation in 
the high-scoring group, and 250 pathways, such 
as synapse pruning, collagen trimer, and cell 
junction disassembly, in the low-scoring group 
(Figure 6 E). Supplementary Table SVI shows de-
tailed results of these enrichment analyses. This 
comprehensive analysis emphasizes the intricate 
molecular mechanisms at play in the immune 
escape landscape of osteosarcoma at the sin-
gle-cell level.

Cell communication landscape associated 
with immune escape-related gene scores in 
osteosarcoma

We analyzed intercellular communication 
among subgroups of immune escape-related 
genes using iTALK, focusing on checkpoints, cyto-
kines, and growth factors. Among growth factors, 
immune escape-related genes, such as platelet 
derived growth factor C (PDGFC), transforming 
growth factor β1 (TGFB1), and syndecan 2 (SDC2), 
were the most abundant, indicating active signal-
ing pathways in osteosarcoma (Figure 7 A, B). The 
immune escape-related gene interleukin 1 recep-
tor (IL1R) was highly expressed in osteosarcoma in 
the realm of cytokines, representing another active 
signaling pathway (Figures 7 C, D). Within check-
points, CD24 molecule (CD24) and TNF superfamily 
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Figure 7. Cell communication analysis based on immune escape-related gene scores in osteosarcoma. A, B – Cell 
communications between growth factors and subgroups of immune escape-related gene scores. C, D – Cell com-
munications between cytokines and subgroups of immune escape-related gene scores. E, F – Cell communications 
between checkpoints and subgroups of immune escape-related gene scores. G, H – Cell communications between 
other and subgroups of immune escape-related gene scores
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Figure 8. Immunofluorescence images depicting the expression of proteins encoded by immune escape-related 
genes in osteosarcoma cells. A – Immunofluorescence images of ATG7 protein. B – Immunofluorescence images of 
SOCS1 protein. C – Immunofluorescence images of TNFRSF1A protein. Scale bar: 200 μm
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member 9 (TNFSF9), associated with high immune 
escape-related gene scores, were determined 
as active signaling pathways in osteosarcoma 
(Figures 7 E, F). CD63 molecule (CD63) and TIMP 
metallopeptidase inhibitor (TIMP) in the “other” 
module were highly expressed and interacted with 
other immune escape-related genes such as TGFB1 
and SDC2 (Figures 7 G, H). Overall, these results 
indicate the intricate interplay between immune 
escape-related genes through growth factors and 
checkpoint signaling pathways in osteosarcoma, 
verifying the complex communication networks 
within the tumor microenvironment.

Expression of proteins encoded by immune 
escape-related genes in osteosarcoma

To experimentally validate the expression lev-
els of immune escape-related genes in osteosarco-
ma cells, we further conducted an immunofluores-
cence staining analysis. As illustrated in Figures 8 
A–C, the protein expression levels of ATG7, SOCS1, 
and TNFRSF1A were all significantly upregulated 
in the osteosarcoma cell line U-2 OS compared to 
those in osteoblast cells. The findings from the ex-
perimental validation conducted via immunofluo-
rescence assays substantiate the accuracy of the 
osteosarcoma risk score model developed through 
the machine learning technique.

Discussion

Osteosarcoma, as a prevalent malignant bone 
tumor, is known for its complex immune micro-
environment and mechanisms of immune escape, 
which have long been focal points in cancer re-
search [19]. This study introduces an immune 
escape-related gene model developed to predict 
the prognosis of patients with osteosarcoma and 
investigate the characteristics of their immune 
microenvironment [20]. Our research focuses on 
identifying genes that are significantly associated 
with the survival prognosis of patients with os-
teosarcoma and constructing a risk-scoring model 
based on these genes. We have successfully devel-
oped an immune escape-related gene model for 
predicting the prognosis of patients with osteo-
sarcoma and analyzed its role in the immune mi-
croenvironment. This is congruent with the study 
of Alexander et al., who determined the key role of 
SOCS1 in regulating immune responses [21]. Addi-
tionally, the roles of TNFRSF1A and ATG7 in tumor 
immune escape are supported by another study 
[9], emphasizing the importance of determining 
key immune escape genes in osteosarcoma. Stud-
ies have revealed that TNFRSF1A plays a  role in 
tumor cell survival and immune surveillance eva-
sion through its interaction with tumor necrosis 
factor-α (TNF-α). TNF-α is a proinflammatory cyto-

kine that activates the nuclear factor kappa-light-
chain-enhancer of the activated B-cell signaling 
pathway in tumor cells, thereby promoting tumor 
growth and immune escape [6, 8].

Our research, based on a  risk score model 
derived from these genes, reveals that patients 
in the high-risk group demonstrated a  poorer 
survival prognosis. This result is congruent with 
other studies that have revealed the significance 
of immune gene signatures in predicting the sur-
vival of patients with cancer [22]. Further anal-
ysis of the immune microenvironment revealed 
a correlation between the risk score and specif-
ic immune cell types. Additionally, several stud-
ies have determined the role of immune cells 
within the tumor microenvironment [23]. These 
results emphasize the importance of immune 
cells in osteosarcoma progression. Differential 
pathway analysis revealed significant molecular 
distinctions between the high-risk and low-risk 
groups. Similarly, other studies have determined 
comparable molecular pathway differences in 
osteosarcoma [24]. These discoveries regarding 
differential pathways provide new perspectives 
in understanding the molecular mechanisms of 
osteosarcoma. Moreover, our study investigates 
the potential value of immune escape-related 
gene scoring in predicting treatment responses, 
indicating potential biomarkers for personalized 
treatment strategies. Our study provides a com-
prehensive understanding of the immune evasion 
mechanisms of osteosarcoma at the single-cell 
level. We determined patterns of immune eva-
sion through single-cell analysis, demonstrating 
that immune cells play a  pivotal role in either 
suppressing or promoting tumor growth. This in-
volvement may include specific types of T cells, 
macrophages, or other immune cells [25]. More-
over, our results expose alterations in intracellular 
signaling pathways within tumor cells that may 
facilitate their survival and proliferation while 
evading the immune system’s assault. Recent 
research supported these discoveries. In partic-
ular, one study, using single-cell transcriptomics, 
revealed the complexity of the untreated osteo-
sarcoma tumor microenvironment, further em-
phasizing the diversity and intricacy of immune 
cells within the tumor milieu [26]. Another study 
focused on the immunosuppressive function of 
regulatory T cells in osteosarcoma, demonstrat-
ing their significant role in tumor immune evasion 
[27]. Additionally, research using single-cell RNA 
sequencing techniques has disclosed the identity 
and heterogeneity of malignant osteoblasts and 
the tumor microenvironment in osteosarcoma, 
helping in the understanding of how tumor cells 
survive and proliferate under immune attack [9]. 
These research results not only resonate with our 
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conclusions but also enrich the understanding of 
the immune evasion mechanisms in osteosarco-
ma, particularly in the single-cell analysis context.

Our study has limitations despite providing 
valuable information. First, our results warrant 
validation in a  broader population due to sam-
ple size and data source constraints. Second, our 
study predominantly relies on retrospective data, 
and prospective studies are required to further 
validate these results.

Overall, our research provides new information 
for prognostic prediction and immune microenvi-
ronment analysis in osteosarcoma by developing 
a risk-scoring model based on immune escape-re-
lated genes. Our results not only reveal the cru-
cial role of immune escape genes in osteosarcoma 
progression but also indicate potential biomark-
ers for future personalized treatment strategies. 
Additionally, the single-cell analysis deepens our 
understanding of osteosarcoma’s immune es-
cape mechanisms. Our study provides essential 
insights, but further research is warranted to vali-
date these results and explore their clinical appli-
cation potential.

In conclusion, the present study developed 
a  risk scoring model for osteosarcoma based on 
immune escape-related genes. Its capacities of 
prognostic prediction, immune microenviron-
ment assessment, and drug treatment response 
prediction were examined, thereby confirming 
its robust predictive performance. Moreover, the 
model was further validated through the utiliza-
tion of single-cell sequencing data. The model we 
established can effectively predict the prognosis, 
immune status, and drug response of osteosar-
coma patients by thoroughly investigating the 
immune escape mechanisms. Consequently, it 
provides a valuable tool for predicting the overall 
characteristics of osteosarcoma and establishes 
a theoretical framework for personalized precision 
treatment of this malignant tumor.
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