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A b s t r a c t

Introduction: Osteonecrosis is a  debilitating disease caused by impaired 
blood supply leading to bone tissue death, and drug-related osteonecrosis 
is a significant clinical issue. The role of inflammation and metabolic disor-
ders in the pathogenesis of osteonecrosis has garnered widespread atten-
tion, but the exact causal relationships remain unclear. This study aims to 
explore the causal link between inflammatory cytokines and drug-related 
osteonecrosis, while also investigating how metabolites might mediate this 
relationship.
Material and methods: We employed two-sample Mendelian randomization 
(MR) analysis to examine the causal links between 91 inflammatory cyto-
kines, 1,400 blood metabolites, and drug-related osteonecrosis. Single nu-
cleotide polymorphisms (SNPs) associated with inflammatory cytokines and 
metabolites were used as instrumental variables (IVs) to assess their poten-
tial relationship with drug-related osteonecrosis risk. We further conducted 
mediation MR analysis to explore the role of metabolites in mediating the 
impact of inflammatory cytokines on drug-related osteonecrosis.
Results: MR analysis demonstrated notable causal relationships between 
four inflammatory cytokines and drug-related osteonecrosis. Specifically, in-
terleukin-4 (IL-4) and C-X-C motif chemokine 6 (CXCL6) showed a negative 
correlation with the risk of drug-related osteonecrosis, while interleukin-6 
(IL-6) and glial cell line-derived neurotrophic factor (GDNF) exhibited a pos-
itive correlation with the risk. Furthermore, mediation analysis revealed 
that IL-4 affects the development of drug-related osteonecrosis via blood 
metabolites. Key metabolites identified as significant mediators included 
mannitol/sorbitol levels, the mannose-to-mannitol-to-sorbitol ratio, and the 
glucose-to-mannitol-to-sorbitol ratio.
Conclusions: This study presents new evidence connecting inflammatory 
cytokines to drug-related osteonecrosis and highlights the mediating role 
of metabolites. These results help us understand the pathogenesis of the 
disease and provide new insights for its prevention and treatment.

Key words: nucleotide polymorphism, pro-inflammatory mediators, 
metabolites, drug-related osteonecrosis, Mendelian randomization.
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Introduction

Osteonecrosis is a condition marked by the de-
struction of bone tissue caused by an inadequate 
blood supply to bone cells [1]. Factors such as trau-
ma, medications, alcohol, or metabolic disorders 
can trigger an immune response that interferes 
with bone repair, ultimately resulting in osteone-
crosis [2–5]. Although osteonecrosis primarily oc-
curs in the femoral head, it can also involve other 
regions [6]. Once diagnosed, it leads to a high rate 
of disability, severely diminishing patients’ quality 
of life and imposing a substantial burden on fam-
ilies and society [7].

Inflammation is a  key factor in the develop-
ment of steroid-induced osteonecrosis, particu-
larly through the macrophage polarization process 
driven by tumor necrosis factor-α (TNF-α) [8, 9]. 
Dysregulated inflammation not only hinders bone 
repair but also aggravates tissue damage by pro-
ducing reactive oxygen species and proteases, 
underscoring the complex interplay between in-
flammation and bone loss [10–12]. Furthermore, 
recent research has revealed links between os-
teonecrosis and various metabolic abnormalities, 
such as lipid metabolism disruptions, coagulation 
pathway irregularities, and alterations in linoleic 
acid metabolism, offering new perspectives for 
diagnosis and treatment [13, 14]. However, the 
precise interaction between inflammation and 
metabolic disturbances in the progression of os-
teonecrosis remains insufficiently understood.

In this study, we adopted a mediation Mende-
lian randomization (MR) framework to examine 
the potential role of metabolites in the caus-
al pathway linking inflammatory cytokines to 
drug-related osteonecrosis. Our objective was to 
unravel the mechanistic pathways connecting in-
flammation, metabolism, and drug-related osteo-
necrosis. Additionally, we aimed to identify inno-
vative targets and strategies for the prevention, 
early diagnosis, and treatment of this condition. 

The outcomes of this research may offer fresh in-
sights into the underlying causes of drug-related 
osteonecrosis and support the development of 
precision medicine solutions for managing this 
challenging disease.

Material and methods

Study design

MR analysis relies on three fundamental as-
sumptions: relevance, independence, and exclu-
sivity [15]. This study was conducted in two stag-
es. In the first stage, a  two-sample MR method 
was applied, with inflammatory cytokines as the 
exposure and drug-related osteonecrosis as the 
outcome, to examine their causal relationship. 
Subsequently, reverse MR analysis was performed. 
The second stage focused on evaluating the me-
diating role of metabolites in the causal pathway 
between inflammatory cytokines and drug-related 
osteonecrosis. Inflammatory cytokines identified 
as significant in the first stage were used as ex-
posure variables. Initially, the causal link between 
these inflammatory cytokines and potential medi-
ators was tested, followed by an evaluation of the 
causal association between these mediators and 
drug-related osteonecrosis (Figure 1).

Data sources

All the data utilized in this study were obtained 
from publicly available genome-wide association 
study (GWAS) datasets; thus, no new ethics re-
view board approval was necessary. The genetic 
data for inflammatory cytokines were derived 
from an earlier GWAS that included 91 plasma 
inflammatory cytokines, involving 14,824 individ-
uals of European descent [16]. The genetic data 
for blood metabolites, which encompass 1,091 se-
rum metabolites and 309 metabolite ratios, were 
sourced from the most recent GWAS summary 
dataset, which contained whole-genome geno-
typing data from 8,096 participants [17]. The data 
on drug-related osteonecrosis were obtained from 
the FinnGen R11 GWAS summary dataset (GWAS 
ID: finn-b-OSTEON_DRUGS), which comprised 348 
cases and 453,385 control samples, available at 
this link: https://www.finngen.fi/en. To minimize 
potential bias arising from population heteroge-
neity, we specifically restricted the genetic com-
position of the study cohort to individuals of Eu-
ropean ancestry.

Selection of tool variables

In MR analysis, SNPs are chosen as instrumental 
variables due to their strong association with the 
exposure variable. To address the potential lim-
itation of obtaining too few SNPs with a p-value  Figure 1. Flowchart of the MR analysis process
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threshold of 5 × 10–8, which may hinder further 
analysis, we relaxed the threshold to p < 1 × 10–5 
[18, 19]. To ensure the selected SNPs are indepen-
dent, a linkage disequilibrium test was performed 
using an R² threshold of 0.001 and a physical dis-
tance threshold of 1,000 kb, filtering out SNPs 
that exhibit linkage disequilibrium [20]. By apply-
ing these stringent criteria, we identified a robust 
set of instrumental variables that are strongly as-
sociated with blood metabolites or inflammatory 
factors and are mutually independent, minimizing 
the risk of violating the MR assumptions of inde-
pendence and exclusivity. Furthermore, to validate 
the strength of the instrumental variables, we 
calculated the F-statistic for each SNP, excluding 
those with an F-statistic below 10 [21]. To enhance 
the reliability and accuracy of the analysis, we also 
excluded instrumental variables that could poten-
tially affect the results through pleiotropy.

Statistical analysis

This study employed multiple MR approaches, in-
cluding inverse variance weighted (IVW), MR-Egger 
regression, weighted median (WM), simple mode, 
and weighted mode methods. Given the robust-
ness of the IVW approach for inferring causality, it 
was chosen as the primary method for estimating 
causal relationships [22]. A p-value below 0.05 was 
considered indicative of a significant causal associ-
ation between the exposure and the outcome.

To ensure the robustness and reliability of the 
findings, several sensitivity analyses were per-
formed. First, heterogeneity and pleiotropy in the 

causal estimates were examined using Cochran’s 
Q test and the MR-Egger intercept [23, 24]. Second, 
the MR-PRESSO method was employed to detect 
pleiotropic bias, with a  p-value exceeding 0.05 
indicating no substantial evidence of horizontal 
pleiotropy [24]. Additionally, a leave-one-out anal-
ysis was conducted to assess the influence of in-
dividual SNPs on the overall causal estimate [25].

To explore the causal pathways among blood 
inflammatory cytokines, metabolites, and drug-re-
lated osteonecrosis, a  two-step MR analysis was 
conducted to evaluate whether metabolites medi-
ate the relationship between inflammatory factors 
and osteonecrosis. Initially, a two-sample MR anal-
ysis was used to estimate the total causal effect 
of inflammatory factors on osteonecrosis, primar-
ily relying on the IVW method while incorporat-
ing sensitivity analyses with MR-Egger regression 
and the WM approach [24]. Subsequently, two 
independent two-sample MR analyses were per-
formed: the first estimated the causal relationship 
between inflammatory factors and metabolites, 
yielding the causal effect estimate beta1 [26], 
while the second assessed the relationship be-
tween metabolites and drug-related osteonecro-
sis, resulting in the causal effect estimate beta2 
[26]. The mediating effects were calculated using 
the two-step MR approach as follows: mediation 
effect = beta1 * beta2. The direct effect was de-
termined by subtracting the mediation effect from 
the total effect [26]. All MR analyses were imple-
mented using R software (version 4.4.1) along 
with relevant packages such as “TwoSampleMR” 
and “MRInstruments.”

Figure 2. Forest plot of MR results for inflammatory cytokines and drug-related osteonecrosis

	 0	 1	 2	 3

Trails 	 Method 	 nsnp 	 P-val 	 OR (95% CI) 

C–X–C motif chemokine 6 levels 	 MR Egger 	 5 	 0.1398 	 0.5835 (0.3439–0.9901) �

	 Weighted median 	 5 	 < 0.05 	 0.7027 (0.4965–0.9946) �

	 Inverse variance weighted 	 5 	 < 0.05 	 0.6966 (0.4982–0.9739) �

	 Simple mode 	 5 	 0.9828 	 0.9902 (0.4254–2.3050) �

	 Weighted mode 	 5 	 0.1258 	 0.7039 (0.4928–1.0054) �

Glial cell line–derived neurotrophic 	 MR Egger 	 24 	 < 0.05 	 2.2946 (1.1017–4.7793) �
factor levels

	 Weighted median 	 24 	 < 0.05 	 2.0251 (1.0900–3.7625) �

	 Inverse variance weighted 	 24 	 < 0.05 	 1.5613 (1.0200–2.3899) �

	 Simple mode 	 24 	 0.2272 	 1.9626 (0.6764–5.6946) �

	 Weighted mode 	 24 	 < 0.05 	 2.1069 (1.1484–3.8653) �

Interleukin–4 levels 	 MR Egger 	 21 	 0.5902 	 0.7016 (0.1974–2.4935) �

	 Weighted median 	 21 	 0.4233 	 0.7456 (0.3635–1.5294) �

	 Inverse variance weighted 	 21 	 < 0.05 	 0.5628 (0.3344–0.9473) �

	 Simple mode 	 21 	 0.7956 	 0.8438 (0.2375–2.9985) �

	 Weighted mode 	 21 	 0.8189 	 0.8666 (0.2586–2.9043) �

Interleukin-6 levels 	 MR Egger 	 13 	 0.2530 	 2.1897 (0.6127–7.8252) �

	 Weighted median 	 13 	 0.3934 	 1.4148 (0.6378–3.1384) �

	 Inverse variance weighted 	 13 	 < 0.05 	 2.2123 (1.1812–4.1433) �

	 Simple mode 	 13 	 0.6413 	 1.4041 (0.3491–5.6477) �

	 Weighted mode 	 13 	 0.5053 	 1.3698 (0.5580–3.3629) �
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Results

The causal relationship between 
inflammatory cytokines and drug-related 
osteonecrosis

Using the IVW method as the primary analyt-
ical tool, the MR results indicated a  significant 
causal relationship between the genetically pre-
dicted levels of four specific inflammatory cyto-
kines and the risk of drug-related osteonecrosis. 
Notably, IL-4 (OR = 0.562; 95% CI: 0.334–0.947;  
p = 0.030) and CXCL6 (OR = 0.696; 95% CI: 0.498–
0.973; p = 0.034) were identified as protective 
factors against drug-related osteonecrosis, while 
IL-6 (OR = 2.212; 95% CI: 1.181–4.143; p = 0.013) 
and GDNF (OR = 1.561; 95% CI: 1.019–2.389;  
p = 0.040) were found to be risk factors (Fig-
ure 2). Further sensitivity analysis showed no 
evidence of heterogeneity or pleiotropic bias 
among these four factors (Supplementary Table 
SI). Additionally, leave-one-out analysis further 
confirmed the reliability and stability of the re-
sults (Supplementary Figure S1). Subsequent-
ly, a  reverse MR analysis was conducted, with 
drug-related osteonecrosis as the exposure vari-
able and these four inflammatory cytokines as 
the outcomes. The results of the IVW method in 
the reverse analysis showed no causal relation-
ship between drug-related osteonecrosis and 
these inflammatory cytokines, suggesting the 
feasibility of further research (Supplementary 
Table SII).

The causal relationship between 
metabolites and drug-related osteonecrosis

To verify the robustness of the MR analysis 
results, we performed cross-validation using five 
statistical approaches: IVW, MR-Egger regression, 
WM, simple mode, and weighted mode. Metabo-
lites considered significant had to meet the fol-

lowing inclusion criterion: the OR values from all 
five methods consistently being either greater 
than 1 or less than 1. Additionally, pleiotropy was 
assessed (p > 0.05) to rule out the possibility of 
pleiotropic bias. Ultimately, 16 metabolites show-
ing the strongest associations with drug-related 
osteonecrosis were identified, including 8 individ-
ual metabolites and 8 metabolite ratios (Figure 3). 
Sensitivity analysis revealed no evidence of hor-
izontal pleiotropy or heterogeneity in the results 
(Supplementary Table SIII).

The causal relationship between 
inflammatory cytokines and metabolites

To investigate the mechanisms driving the on-
set and progression of drug-related osteonecrosis, 
we performed a  mediation analysis to uncover 
pathways through which metabolites mediate the 
effects of inflammatory cytokines. Specifically, we 
analyzed the causal links between IL-4 and three 
metabolites and their subsequent influence on 
drug-related osteonecrosis. Our findings demon-
strated a  significant positive causal relationship 
between IL-4 and mannitol/sorbitol levels (OR = 
1.128, 95% CI: 1.013–1.256, p = 0.026), indicat-
ing that elevated IL-4 levels may lead to increased 
mannitol/sorbitol levels. Furthermore, mannitol/
sorbitol levels were significantly negatively asso-
ciated with the risk of drug-related osteonecrosis 
(OR = 0.609, 95% CI: 0.424–0.876, p = 0.007), sug-
gesting that these levels mediate IL-4’s protective 
effect on osteonecrosis.

We also identified a  significant negative rela-
tionship between IL-4 and the mannose-to-man-
nitol-to-sorbitol ratio (OR = 0.881, 95% CI: 0.791–
0.981, p = 0.021), while this ratio was positively 
associated with an increased risk of osteonecro-
sis (OR = 1.861, 95% CI: 1.172–2.953, p = 0.008). 
These results suggest that elevated IL-4 may lower 
the mannose-to-mannitol-to-sorbitol ratio, there-

Figure 3. Forest plot of MR analysis for metabolites most strongly associated with drug-related osteonecrosis

	 0	 1	 2	 3

Reported Trait  	 Method 	 nsnp 	 P-val 	 OR (95% CI) 
Taurine to glutamate ratio 	 Inverse variance weighted 	 19 	 0.0060 	2.0282 (1.2242–3.3602) 
X-18886 levels 	 Inverse variance weighted 	 16 	 0.0030 	1.9802 (1.2617–3.1079) 
Mannose to mannitol to sorbitol ratio 	 Inverse variance weighted 	 21 	 0.0084 	1.8612 (1.1729–2.9534) 
X-12026 levels 	 Inverse variance weighted 	 27 	 0.0021 	1.8578 (1.2523–2.7561) 
Glucose to mannitol to sorbitol ratio 	 Inverse variance weighted 	 26 	 0.0064 	1.6663 (1.1541–2.4058) 
Inosine to theophylline ratio 	 Inverse variance weighted 	 20 	 0.0062 	1.6449 (1.1520–2.3488) 
Adenosine 5’–diphosphate (ADP) to
N–palmitoyl–sphingosine (d18:1 to 16:0) ratio	 Inverse variance weighted 	 23 	 < 0.001 	1.6303 (1.2317–2.1578) 
Cinnamoylglycine levels 	 Inverse variance weighted 	 33 	 0.0033 	1.5605 (1.1596–2.1000) 
Methionine sulfone levels 	 Inverse variance weighted 	 33 	 0.0094 	1.4185 (1.0894–1 8471) 
X–16935 levels 	 Inverse variance weighted 	 25 	 0.0059 	0.6672 (0.5002–0.8901) 
Mannitol/sorbitol levels 	 Inverse variance weighted 	 27 	 0.0075 	0.6099 (0.4246–0.8761)
Gamma-glutamylhistidine levels 	 Inverse variance weighted 	 22 	 0.0047 	0.6090 (0.4319–0.8588)
4-hydroxyphenylacetate levels 	 Inverse variance weighted 	 22 	 0.0050 	0.5879 (0.4057–0.8519)
Glutamate to pyruvate ratio 	 Inverse variance weighted 	 26 	 0.0039 	0.5455 (0.3616–0.8230) 
Glutamate to 5-oxoproline ratio 	 Inverse variance weighted 	 23 	 0.0056 	0.4816 (0.2871–0.8079) 
Aspartate to citrate ratio 	 Inverse variance weighted 	 19 	 0.0046 	0.4762 (0.2853–0.7951) 
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by reducing osteonecrosis risk. Similarly, a signif-
icant negative causal relationship was observed 
between IL-4 and the glucose-to-mannitol-to-sor-
bitol ratio (OR = 0.876, 95% CI: 0.787–0.974, p = 
0.015). Conversely, this ratio was positively asso-
ciated with the risk of drug-related osteonecrosis 
(OR = 1.666, 95% CI: 1.154–2.405, p = 0.006). 
These findings suggest that higher IL-4 levels may 
reduce the glucose-to-mannitol-to-sorbitol ratio, 
further mitigating osteonecrosis risk (Figure 4). 
Sensitivity analyses confirmed the absence of hor-

izontal pleiotropy and heterogeneity (Supplemen-
tary Table SIV). Finally, the mediation effects of 
the three metabolites – mannitol/sorbitol levels, 
the mannose-to-mannitol-to-sorbitol ratio, and 
the glucose-to-mannitol-to-sorbitol ratio – were 
assessed in the causal pathway between IL-4 and 
drug-related osteonecrosis. The estimated me-
diation effects were –0.0598 (95% CI: [–0.1290, 
0.0089]), –0.0785 (95% CI: [–0.1600, 0.0103]), and 
–0.0674 (95% CI: [–0.1400, 0.0054]), respectively 
(Table I).

Figure 4. Forest plot of MR analysis of the causal effects of IL-4 on mannitol/sorbitol levels, mannose to mannitol 
to sorbitol ratio, and glucose to mannitol to sorbitol ratio in drug-related osteonecrosis

Exposure Trait 	 Outcome Trait 	 nsnp 	 Method 	 P-val 	 OR (95% CI) 

Mannitol/sorbitol levels 	 Osteonecrosis 	 27 	 MR Egger 	 0.064 	 0.546 (0.296 to 1.007) 

		  27 	 Weighted median 	 0.284 	 0.728 (0.407 to 1.302) 

		  27 	 Inverse variance weighted 	0.007 	 0.610 (0.425 to 0.876) 

		  27 	 Simple mode 	 0.093 	 0.436 (0.172 to 1.108) 

		  27 	 Weighted mode 	 0.176 	 0.642 (0.344 to 1.199) 

Interleukin-4 levels 	 Mannitol/sorbitol levels 	 20 	 MR Egger 	 0.820 	 1.031 (0.794 to 1.339) 

		  20 	 Weighted median 	 0.094 	 1.130 (0.979 to 1.303) 

		  20 	 Inverse variance weighted 	0.027 	 1.129 (1.014 to 1.256) 

		  20 	 Simple mode 	 0.125 	 1.231 (0.955 to 1.586) 

		  20 	 Weighted mode 	 0.144 	 1.224 (0.944 to 1.587) 

Interleukin-4 levels 	 Osteonecrosis 	 21 	 MR Egger 	 0.590 	 0.702 (0.197 to 2.493) 

		  21 	 Weighted median 	 0.430 	 0.746 (0.360 to 1.545) 

		  21 	 Inverse variance weighted 	0.030 	 0.563 (0.334 to 0.947) 

		  21 	 Simple mode 	 0.787	 0.844 (0.250 to 2.848) 

		  21 	 Weighted mode 	 0.831 	 0.867 (0.237 to 3.169) 

1

1

1

Exposure Trait 	 Outcome Trait 	 nsnp 	 Method 	 P-val 	 OR (95% CI) 
Mannose to mannitol 
to sorbitol ratio	 Osteonecrosis 	 21 	 MR Egger 	 0.246 	 2.314 (0.586 to 9.135) 
		  21 	 Weighted median 	 0.063 	 1 902 (0.967 to 3.742) 
		  21 	 Inverse variance weighted 	 0.008 	 1.861 (1.173 to 2.953) 
		  21 	 Simple mode 	 0.151 	 2.335 (0.767 to 7.109) 
		  21 	 Weighted mode 	 0.198 	 2.020 (0.718 to 5.684) 
Interleukin-4 levels 	 Mannose to mannitol to sorbitol ratio 	 20 	 MR Egger 	 0.687 	 0.947 (0.728 to 1.231) 
		  20 	 Weighted median 	 0.064 	 0.866 (0.744 to 1.008) 
		  20 	 Inverse variance weighted 	 0.022 	 0.881 (0.791 to 0.982) 
		  20 	 Simple mode 	 0.270 	 0.856 (0.655 to 1.119) 
		  20 	 Weighted mode 	 0.269 	 0.865 (0.674 to 1.110) 
Interleultin-4 levels 	 Osteonecrosis 	 21 	 MR Egger 	 0.590 	 0.702 (0.197 to 2.493) 
		  21 	 Weighted median 	 0.430 	 0.746 (0.360 to 1.545) 
		  21 	 Inverse variance weighted 	 0.030 	 0.563 (0.334 to 0.947) 
		  21 	 Simple mode 	 0.787 	 0.844 (0.250 to 2.848) 
		  21 	 Weighted mode 	 0.831 	 0.867 (0.237 to 3.169) 

Exposure Trait 	 Outcome Trait 	 nsnp 	 Method 	 P-val 	 OR (95% CI) 
Glucose to mannitol 
to sorbitol ratio 	 Osteonecrosis 	 26 	 MR Egger 	 0.286 	 1.496 (0.725 to 3.085) 
		  26 	 Weighted median 	 0.093 	 1.617 (0.922 to 2.836) 
		  26 	 Inverse variance weighted 	 0.006 	 1.666 (1.154 to 2.406) 
		  26 	 Simple mode 	 0.130 	 2.144 (0.826 to 5.562) 
		  26 	 Weighted mode 	 0.170 	 1.622 (0.830 to 3.173) 
Interleukin-4 levels 	 Glucose to mannitol to sorbitol ratio 	20 	 MR Egger 	 0.983 	 1.003 (0.773 to 1.300) 
		  20 	 Weighted median 	 0.104 	 0.882 (0.759 to 1.026) 
		  20 	 Inverse variance weighted 	 0.015 	 0.876 (0.788 to 0.975) 
		  20 	 Simple mode 	 0.171 	 0.827 (0.637 to 1.074) 
		  20 	 Weighted mode 	 0.178 	 0.838 (0.654 to 1.074) 
Interleukin-4 levels 	 Osteonecrosis 	 21 	 MR Egger 	 0.590 	 0.702 (0.197 to 2.493) 
		  21 	 Weighted median 	 0.430 	 0.746 (0.360 to 1.545) 
		  21 	 Inverse variance weighted 	 0.030 	 0.563 (0.334 to 0.947) 
		  21 	 Simple mode 	 0.787 	 0.844 (0.250 to 2.848) 
		  21 	 Weighted mode 	 0.831 	 0.867 (0.237 to 3.169) 
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Discussion

We explored the causal impact of inflamma-
tory cytokines on drug-related osteonecrosis and 
examined possible mediators. The findings con-
firm that metabolites play a mediating role in the 
inflammatory cytokine-driven pathogenesis of 
drug-related osteonecrosis.

IL-4 is a versatile cytokine that plays a crucial 
role in regulating macrophage activity. It primarily 
promotes the polarization of macrophages to the 
M2 phenotype, which is vital in processes such as 
anti-inflammatory responses, tissue repair, and fi-
brosis. In particular, IL-4 functions by suppressing 
the expression of CD14 and inhibiting the release 
of pro-inflammatory cytokines such as IL-6 and 
tumor necrosis factor (TNF) [27]. We propose that 
in the context of drug-induced osteonecrosis, IL-4 
may reduce tissue damage by limiting the secre-
tion of key pro-inflammatory mediators. CXCL6, 
a  member of the chemokine ligand family, has 
been found to be overexpressed in tissues affect-
ed by diabetic nephropathy. Research indicates 
that miR-20a targets CXCL6, thereby inhibiting the 
JAK/STAT3 pathway, promoting the proliferation of 
HK-2 cells treated with high glucose, and reducing 
both cell apoptosis and inflammation [28]. These 
findings have led us to further explore whether 
CXCL6 may similarly affect drug-related osteone-
crosis through comparable molecular mechanisms 
and pathways.

Cytokines are pivotal in regulating immune re-
sponses, and their imbalance or excessive produc-
tion is often linked to tissue damage and the pro-
gression of various diseases [29]. For instance, IL-6, 
a cytokine involved in inflammation, immune ho-
meostasis, and bone metabolism regulation [30], 
demonstrates a minimal effect on bone remodel-
ing under normal conditions. However, its expres-
sion significantly increases in pathological states, 
which may contribute to greater bone resorption, 
aggravated inflammation, and metabolic distur-
bances [31]. These findings highlight the intricate 
relationship between IL-6 and bone-related disor-
ders. GDNF, a member of the transforming growth 
factor-β family, has been found to be elevated in 
degenerated intervertebral disc tissues, which 
have a  pro-inflammatory microenvironment. This 

cytokine may play a pivotal role in the onset and 
spread of discogenic pain [32]. Building on these 
findings, we propose that inflammatory factors 
might regulate GDNF expression in drug-induced 
osteonecrosis cells. Additionally, the upregulation 
of GDNF could potentially enhance the transmis-
sion of inflammatory pain sensitivity. However, 
further research is necessary to better understand 
the underlying pathological mechanisms.

Mannitol and sorbitol are produced through the 
metabolism of fructose, mannose, and galactose, 
while glucose is converted to sorbitol through 
glycolysis and gluconeogenesis, and further oxi-
dized into fructose [33, 34]. Under high glucose 
conditions, sorbitol dehydrogenase plays a crucial 
role in converting sorbitol into fructose. These me-
tabolites can then form advanced glycation end 
products, which trigger liver metabolic changes, 
enhance de novo lipogenesis, and influence blood 
lipid levels, increasing cardiovascular disease risk 
[35, 36]. Our findings suggest that the levels of 
mannitol/sorbitol and related metabolites medi-
ate IL-4’s role in osteonecrosis development. This 
is a significant discovery, as research on these me-
tabolites is limited, and their mechanisms remain 
unclear. Future studies should explore how these 
metabolites mediate the interaction between in-
flammatory cytokines and drug-related osteone-
crosis, offering new insights into disease mecha-
nisms and therapeutic strategies.

This study investigates the causal link be-
tween inflammatory cytokines, metabolites, and 
the risk of drug-related osteonecrosis using MR 
analysis. However, there are limitations to con-
sider. The GWAS data primarily come from Eu-
ropean populations, which raises concerns about 
whether the findings can be generalized to other 
ethnic groups. The reliance on European cohorts 
may introduce population stratification bias, lim-
iting the broader applicability of the results. Fu-
ture research should include data from diverse 
ethnic groups to address this issue. Furthermore, 
while several metabolites linked to drug-related 
osteonecrosis have been identified, their precise 
role in disease development remains unclear, 
which limits the full interpretation of the study’s 
findings.

Table I. The mediation effect of IL-4 on drug-related osteonecrosis through mannitol/sorbitol levels, mannose to 
mannitol to sorbitol ratio, and glucose to mannitol to sorbitol ratio

Exposure β1 Mediation β2 Outcome Mediation effect 
[95% CI]

Total 
effect 

IL-4 0.1210 Mannitol/sorbitol levels –0.4945 Drug-related 
osteonecrosis 

–0.0598  
(–0.1290, 0.0089) 

–0.5748 

–0.1263 Mannose to mannitol to sorbitol 
ratio 

0.6212 –0.0785  
(–0.1600, 0.0103) 

–0.0674 

–0.1320 Glucose to mannitol to sorbitol 
ratio 

0.5106 –0.0674  
(–0.1400, 0.0054) 
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In conclusion, this study used MR to investigate 
the causal relationship between inflammatory cy-
tokines and drug-related osteonecrosis, as well as 
the mediating role of metabolites. Four inflamma-
tory cytokines were identified as causally linked 
to drug-related osteonecrosis. Mediation analysis 
further revealed that three blood metabolites, reg-
ulated through the IL-4 pathway, affect the risk 
of this condition. These findings provide valuable 
insights for prevention and treatment strategies.
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