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 Abstract
Background: Early diagnosis is crucial for improving lung cancer prognosis, a leading cause of cancer-
related deaths. Lung cancer includes small cell lung cancer (SCLC, ~15% of cases) and non-small cell
lung cancer (NSCLC, ~80–85%). Prognosis depends on the stage at diagnosis; the 5-year survival
rate is 65% for localized NSCLC but only 9% for distant-stage disease. Radiologists face challenges
distinguishing benign from malignant pulmonary nodules on CT scans.
Aims/Methods: This review explores deep learning (DL) methods, including multi-view Convolutional
Neural Networks (CNNs) and 3D models for nodule segmentation, emphasizing volumetric
assessments for malignancy prediction.
Results: CNNs effectively analyze CT data, achieving 94.2% sensitivity with 1.0 false positives per
scan in lung nodule detection.
Conclusion: DL enhances diagnostic accuracy, reduces radiologist workload, and enables earlier lung
cancer detection. Further research is needed to improve model adaptability across diverse clinical
settings.
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Abstract: 19 

Background: Early diagnosis is crucial for improving lung cancer prognosis, a leading cause of 20 

cancer-related deaths. Lung cancer includes small cell lung cancer (SCLC, ~15% of cases) and 21 

non-small cell lung cancer (NSCLC, ~80–85%). Prognosis depends on the stage at diagnosis; the 22 

5-year survival rate is 65% for localized NSCLC but only 9% for distant-stage disease. 23 

Radiologists face challenges distinguishing benign from malignant pulmonary nodules on CT 24 

scans. 25 

Aims/Methods: This review explores deep learning (DL) methods, including multi-view 26 

Convolutional Neural Networks (CNNs) and 3D models for nodule segmentation, emphasizing 27 

volumetric assessments for malignancy prediction. 28 

Results: CNNs effectively analyze CT data, achieving 94.2% sensitivity with 1.0 false positives 29 

per scan in lung nodule detection. 30 

Conclusion: DL enhances diagnostic accuracy, reduces radiologist workload, and enables earlier 31 

lung cancer detection. Further research is needed to improve model adaptability across diverse 32 

clinical settings. 33 

Keywords: malignant tumor/pathology/morphological detection /radiology and oncology  34 
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 Introduction 37 

Lung cancer is one of the most deadly malignancies that can endanger a person's life or health[1]. 38 

Many nations have seen lung cancer incidence and death rise during the last 50 years [2].  The 39 

American Cancer Society (ACS) projected 608,570 fatalities and 1,898,160 new cases in 2021 [3].  40 

As a prominent radiological signal, lung nodules are used to diagnose lung cancer early. Diameter 41 

determines nodule malignancy[4]. Nodules in the pulmonary interstitium, which consists of the 42 

basement membrane, pulmonary capillary endothelium, alveolar epithelium, and perilymphatic 43 

and perivascular tissues, are typically small, spherical, and circumscribed [5, 6]. Lung nodules 44 

vary in size, shape, and kind[7]. Nodules can vary in size from less than 2 mm to 30 mm, and some 45 

of them are hard to spot because of their complex circulatory connections in places with plenty of 46 

vessels [8]. There are certain solid and sub-solid nodules (SSNs) with densities that are marginally 47 

greater than those of the parenchyma of the lung [9]. SNs are the most common nodules and 48 

comprise the core functioning lung tissues, while SSNs are lung cancer with minimal transparency 49 

in the ground glass. SSNs may be part-solid or pure ground glass [10]. These nodules do not block 50 

bronchovascular networks, but their opacifications are denser than those of the surrounding tissues 51 

[7].  52 

Accurate nodule diameter measurements are essential for diagnosis since nodule size is correlated 53 

with malignancy. Several studies [5, 11, 12] offer valuable insights[13]. The End-Use Load and 54 

Consumer Assessment Program (ELCAP) database [3] reports a 1% malignancy risk for nodules 55 

under 5 mm, 24% for 6–10 mm, 33% for 11–20 mm, and 80% for 20+ mm [14]. However, 56 

measuring the diameters of extremely small nodules may result in errors. The therapy for cancer 57 

of the lung nodules is complicated. Almost 70% of individuals with lung cancer require radiation 58 

treatment, however radiation-induced lung damage may reduce treatment rates and raise morbidity 59 

Prep
rin

t



4 
 

and death. Radiologists need computer-aided diagnostic (CAD) technologies to extract more 60 

information from nodules and enhance classification accuracy. CAD systems minimize 61 

observational errors, false-negative rates, and medical image interpretation and diagnostic second 62 

opinions [15, 16]. Numerous studies indicate that CAD systems improve image diagnosis and 63 

lower inter-observer variance. [17]. CAD systems can also quantify clinical decisions like biopsy 64 

recommendations [18], help diagnostic checks, minimize thoracotomies and false-positive 65 

biopsies [16, 19], and distinguish tumor malignancies [20, 21]. Clinical success has led to the 66 

introduction of CAD models for lung cancer diagnosis. Early diagnosis of lung nodules may 67 

improve survival using such devices. Current CT (Computed tomography) CAD applications 68 

search for spherically distributed lung nodule-like pulmonary densities [15]. Thus, lung nodule 69 

screening by CT CAD is a hot topic.  Lung nodule detection initially was based on non-machine 70 

learning techniques [22-28]. Later, data-driven machine learning-based algorithms [29-34] built 71 

the ideal border [35]. Deep learning (DL) inspired algorithms have recently attracted interest 72 

because of their precise predictions. Unlike traditional CAD systems, DL-based models might be 73 

optimized and applied to vast volumes of data [36]. DL using CNNs has improved pulmonary 74 

nodule diagnosis and treatment [37-40]. Three modules of DL are used to recognize, segment, and 75 

categorize lung nodules. Detection identifies the nodule, segmentation delineates its voxels, and 76 

classification determines whether it is benign or malignant [35].  77 

Lung cancer often remains asymptomatic in its early stages, leading to delayed diagnoses. When 78 

symptoms appear, they frequently include shortness of breath, wheezing, hoarseness, chest pain, 79 

coughing up blood, and a persistent cough. Additional signs may involve recurrent respiratory 80 

infections, unexplained weight loss, and fatigue. Moreover, these symptoms might differ from 81 

person to person and can mimic those of other respiratory disorders [41].  82 
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Regarding mortality, lung cancer remains a leading cause of cancer-related deaths globally. For 83 

instance, in the United States, an estimated 124,730 lung cancer-related deaths are anticipated for 84 

2025. The mortality rate is significantly higher in older populations, with three-quarters of lung 85 

cancer deaths occurring among those aged 65 and older. Increasing survival rates requires early 86 

detection through screening programs since lung cancer can often be identified at an advanced 87 

stage when there are few available treatment choices [41]. 88 

Previous studies have explored the detection approaches for pulmonary nodules [35, 36, 42-48] 89 

with various goals. The primary aim of this article is to provide a comprehensive review of deep 90 

learning (DL) methodologies employed for pulmonary nodule identification and classification in 91 

computed tomography (CT) images. This study aims to explore the effectiveness of various DL 92 

models, including multi-view convolutional neural networks (CNNs) and 3D architectures, in 93 

improving diagnostic accuracy and efficiency in lung cancer screening. Further, it aims to identify 94 

current challenges, such as data variability and the need for external validation, and suggest 95 

directions for future research to facilitate the integration of these advanced technologies into 96 

routine clinical practice. This study introduces a novel deep learning-based system using two 3D 97 

models for automated pulmonary nodule detection, aiming to enhance diagnostic accuracy and 98 

reduce false positives.  99 

Detection Nodule  100 

Identifying microscopic pulmonary nodules is challenging yet important for lung cancer diagnosis. 101 

Chest volumetric CT images exceed 9 million voxels. Five-mm lung nodules occupy 130 voxels, 102 

or 1.4 10 5 lung volume[49]. Radiologists may be able to detect these nodules based on their shape, 103 

size, density, location, and closeness to adjacent structures.16e18 Early CT screening missed 8.9% 104 
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of malignancies in the NLST CT screening arm [50]. The pathological analysis of biopsy samples 105 

is still the most reliable method for identifying and defining pulmonary nodules, even though 106 

imaging approaches are significant for their detection. Although reading a scan simultaneously by 107 

two observers improves diagnostic sensitivity, performing it repeatedly is time-consuming and 108 

impracticable [51]. This emphasizes the significance of machine-learning technology to assist 109 

radiologists detect nodules, one of the most studied CAD applications that reduce the time needed 110 

to interpret scans [52]. Several studies have demonstrated that deep learning may improve nodule 111 

detection sensitivity. Figure 1 shows the steps in the lung nodule treatment route using AI.  112 

 113 

Figure 1: Steps in the lung nodule treatment route, where AI might have a role.  114 

This CAD application has been extensively investigated and has been demonstrated to minimize 115 

scan interpretation time [52]. Various studies have reported that deep learning can enhance the 116 

sensitivity of nodule identification. [53]. 117 

Nodule segmentation 118 
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Malignancy is highly predicted by nodule size; in the NELSON trial, those with nodules  <100 119 

mm3 had the same baseline cancer risk (0.5%) as those without nodules [54]. Traditional nodule 120 

size assessment involves manual 2D caliper measurement of the biggest transverse diameter. 121 

Current screening studies and national and worldwide guidelines on nodule treatment have 122 

recommended evaluating volume rather than diameter because it is less susceptible to intra- and 123 

interobserver variability [55] better incorporates the three-dimensional (3D) character of a lung 124 

nodule [56], is more susceptible to size change, and detects malignancy sooner than 2D diameter 125 

measures [57]. Nodule segmentation is essential for volumetric measurements. Numerous CAD 126 

methods for nodule segmentation have been developed since the 1980s [44]. Detecting 127 

microscopic pulmonary nodules is challenging yet significant for lung cancer diagnosis. Chest 128 

volumetric CT images exceed 9 million voxels. Five-mm lung nodules occupy 130 voxels or 1.4 129 

10 5 lung volume. These nodules may be detectable by radiologists depending on their shape, size, 130 

density, location, and proximity to other structures.16e18 Early CT screening missed 8.9% of 131 

malignancies in the NLST CT screening arm [58].  132 

Subsolid nodules are more challenging to segment than solid lesions because there is less 133 

attenuation difference between the tumor and the surrounding parenchyma. It is also more 134 

challenging to distinguish the solid component of these very big nodules from nearby vessels. 135 

However, current research indicates that these problems can be addressed [59].  Multiple manual, 136 

semi-automatic, and automated volumetric analysis software programs have been reported in 137 

recent years. Software tools have different size measurements, however, these packages provide 138 

reliable repeat measurements. The variance is larger in irregular and juxta-pleural nodules [60]. 139 

The British Thoracic Society's pulmonary nodule management guidelines suggest reducing 140 

variability in nodule volumetry [61].  141 
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Research has demonstrated that deep learning can improve nodule segmentation. A single click 142 

can volumetrically segment 7,927 NLST nodules using a deep learning model. These parameters 143 

were used to evaluate the Brock University Cancer Prediction Model's malignancy prediction 144 

accuracy. The AUC for volumetric analysis was 88.17, compared to 85.96 for NLST radiologists' 145 

2D measurements, demonstrating a 2.21% enhancement in predictive value. As CNN algorithms 146 

implicitly segment nodules, deep learning may eliminate nodule segmentation [38, 62].  147 

The issue of detecting lung nodules in daily clinical practice 148 

Lung cancer is the leading cause of cancer death worldwide [63]. Symptoms typically appear after 149 

cancer has spread, thus late diagnosis is usual [64].To detect malignancies early, the US, China, 150 

and Korea have implemented nationwide lung tumor screening programs. High-risk individuals 151 

(older smokers) are invited for a low-dose CT lung scan in a screening program [65]. Lung cancer 152 

may manifest as a "nodule" or spot. Trials show that low-dose CT screening decreases lung 153 

carcinoma mortality [66, 67], but Europe and other nations have been sluggish in embracing it.  154 

Therefore, early-stage lung cancer is often identified incidentally through nodules observed in CT 155 

scans carried out for unrelated medical reasons [68, 69]. It's challenging to see lung nodules. CT 156 

scans are highly varied and not specifically intended to identify lung cancer because of the growing 157 

diversity of scanning methods and patients [49]. Nodule detection and treatment will become more 158 

crucial because radiologists' workload has increased significantly over the past 15 years, primarily 159 

due to the demand for CT imaging [70].  160 

Artificial Intelligence for radiological support 161 

AI software may help radiologists find lung lesions in CT images. The use of AI software as an 162 

auxiliary reader enhances radiologists' reading time, management recommendation uniformity, 163 
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and detection sensitivity [71-74]. A few studies have tried AI solutions in non-screening 164 

environments. The generalization performance of the AI software was tested using a multi-center 165 

study approach to expand this research area and address three common issues. Second, we used 166 

five qualified thoracic radiologists rather than one or two to establish the reference standard 167 

because nodule detection varies greatly. Third, and perhaps most importantly, we examined 168 

whether an AI system could identify the important nodules using reliable nodule-level malignancy 169 

labels. Research on AI has either looked at all nodules (regardless of malignancy) or scan-level 170 

cancer detection. Therefore, our effort aims to connect AI investigations for nodule identification 171 

and lung malignancy. 172 

Connecting the gap between nodule detection and lung cancer AI studies 173 

The DL-based technique was retrospectively tested for identifying actionable benign nodules 174 

(requiring follow-up), minor lung cancers, and metastases in CT images from two Dutch hospitals' 175 

typical clinical contexts. Moreover, the nodule detection method locates a specific lung region 176 

slice by slice using a CT scan. Five-slice overlapping CT volumes yield nodule candidates. Finally, 177 

09 slices from a 3D area around each nodule candidate are inspected for nodules. Nodules from 178 

lung arteries and other structures can be promptly identified in CT scans using the 2.5D 179 

identification method (Figure 2).  180 Prep
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 181 

Figure 2. An overview of the planned lung nodule detecting system 182 

DL Strategies for Detecting Lung Cancer 183 

Automation has the potential to assist in diagnosing various diseases through CAD [75]. This 184 

method employs software to identify, predict, and classify symptoms, assisting in identifying the 185 

presence and severity of a disease. This study reviews CAD approaches for lung CT nodule 186 

detection. CT scans can identify nodules of lung cancer, especially large ones in the advanced 187 

stages [76]. The nodules need to be identified early because they are often little before a lung tumor 188 

the size of a golf ball grows. Figure 3 shows that manually distinguishing and segmenting nodules 189 

is challenging. 190 
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 191 

Figure 3. Methods for lung tumor detection. 192 

CNNs are great for image classification. Human visual brain function inspired this architecture. 193 

CNN filters assess a small portion of the image by simulating neurons with receptive zones. Deeper 194 

layers of these neurons may learn and detect more complicated hierarchical patterns due to their 195 

larger receptive fields. CNNs appear to be many sliding windows with small neural networks 196 

spread around the image [77].  197 

CNNs can learn patterns regardless of location due to their location invariance. The filter can learn 198 

image designs using sliding windows. Since CNNs are hierarchical, they can automatically 199 

identify more abstract patterns [78]. Boundaries and structures may be occupied by the initial 200 

layers, followed by forms in the intermediate layers and overall object shapes in the higher layers. 201 

CNNs are capable of analyzing 3D images rather than slices from CT scans. A sliding cube, instead 202 

of a movable pane, can be employed to develop 3D CNNs for feature extraction at each stage [79].  203 
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Computer-Assisted Lung Cancer Detection Utilizing CT Pictures 204 

CT-based lung tumor identification and detection employing DL algorithms has been the subject 205 

of numerous studies. Healthy and unhealthy CT scans have different image attenuation patterns. 206 

To separate the lungs from the nearby tissues, numerical, grey-level thresholding, and shape-based 207 

methods have been employed [80]. Brown and coworkers introduced an automatic, knowledge-208 

based chest segmentation approach [81]. This approach requires organ volume, relative location, 209 

shape, and X-ray attenuation. To extract useful CT image data, Brown et al., developed a 210 

knowledge-based automatic segmentation method [82]. They automatically created indirect 211 

quantitative values of single lung activities that routine pulmonary function tests cannot. Hu and 212 

his coworkers created a completely automated pulmonary segmentation approach from 3-D lung 213 

X-ray photographs [83]. The technique was tested employing 3-D CT information sets from 8 214 

healthy individuals. Computer and human analysis showed a 0.8-pixel root mean square 215 

difference. A pixel-value threshold was based on slices, together with 02 sets of categorization 216 

criteria that incorporate size, circularity, and position data were used to completely automate lung 217 

segmentation [84]. They achieved 94.0% segmentation precision with 2969 thick slice images and 218 

97.6% with 1161 thin slice images based on 101 CT cases [85]. The lung volume was segmented 219 

and visualized using anisotropic filtering and wavelet transform-based interpolation. The 220 

robustness and application of the approach were demonstrated using single-detector CT scans, 221 

which showed improvements in volume overlap and volume difference percentages.  222 

Swierczynski and his team devised a level-set-based segmentation approach that combined 223 

traditional segmentation with active dense displaced field prediction [86]. The developed approach 224 

performed better than registration and segmentation independent. A substitutional level set 225 

technique for CT scan lung nodule segmentation was developed using a global lung nodule form 226 

Prep
rin

t



13 
 

model. [87]. Nodule kind or position did not affect the proposed technique. Moreover, to improve 227 

lung nodule detection, a parameter-free segmentation method was developed that focused on 228 

juxtapleural lesions [88]. LIDC's 403 juxtapleural nodules indicated a 92.6% re-inclusion rate. 229 

Zhang et al. [89] developed an automated lung segmentation approach and a global optimum 230 

hybrid geometric active contour model. Incorporating global region and edge information 231 

increased algorithm performance in places with narrow bands or weak boundaries. Furthermore, 232 

in another study, [90], a sphere was placed within the segmented lung target and deformed in 233 

response to forces applied to the lung boundaries. The system was tested on 40 CT images, 234 

achieving an average F-measure of 99.22%. 235 

 236 

Researchers have been examining CNNs' durability in computer vision for ten years. Multiple 237 

CNN-based methods have been reported for medical and natural image processing. Several 238 

methods have been proposed using AI and CT images for the detection of lung cancer [91]. Lung 239 

nodule classification was carried out using a three-dimensional CNN with three modules.  This 240 

technique outperformed manual evaluation with 84.4% sensitivity. Nasser and Naser [92] used an 241 

ANN to diagnose lung cancer with 96.67% accuracy. Cifci et al. [93] reported that DL, combined 242 

with Instantaneously Trained Neural Networks (DITNN) and Increased Profuse Clustering 243 

(IPCT), improved lung image quality and lung cancer detection, achieving an accuracy of 98.42%. 244 

Moreover,  in another study [94], a double convolutional deep neural network (CDNN) and a 245 

regular CDNN were employed to identify lung nodules, achieving an accuracy of 0.909 and 0.872. 246 

Wang et al. [95] developed a CAD system with low false negative and positive rates as well as 247 

high nodule detection precision. In another approach [96], the deep model achieved 95.41% 248 

sensitivity in lung image detection using inception-v3 transfer learning instead of randomized 249 
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initialization. Finally, a multi-group patch-based learning system was reported, revealing an 250 

80.06% sensitivity with 4.7 false positives per scan or a 94% sensitivity with 15.1 false positives 251 

per scan. Further, a dense convolutional binary-tree network (DenseBTNet) was developed which 252 

showed high parameter effectiveness and extracted features at several scales [97]. Li et al. found 253 

that early detection reduces the death rate from lung cancer [98]. They developed a DL-CAD 254 

system that could recognize and classify lung nodules under 3 mm and estimate their malignancy 255 

risk. The system demonstrated an accuracy of 86.2% in sensitivity testing carried out on the LIDC-256 

IDRI and NLST datasets.  257 

Similarly, a deep 3D residual CNN was employed to decrease false positives for automated lung 258 

nodule diagnosis in CT images [99]. A spatial pooling and cropping (SPC) layer gathered multi-259 

level contextual information, and their 27-layer network achieved 98.3% sensitivity using the 260 

LUNA-16 dataset. Teramoto et al. [100] developed a DCNN comprising convolutional, 261 

completely linked, and pooling layers to automatically classify lung cancer. DCNN training 262 

employed 76 cancer cases and achieved 71% classification accuracy. In a study, a 3D 263 

convolutional neural network was employed for volumetric CT-based computer-aided lung nodule 264 

identification [101]. They used the LUNA16 dataset to test their model, which had 3D 265 

convolutional, max-pooling, completely linked, and softmax layers. Their findings suggested that 266 

3D CNNs significantly improved detection accuracy, achieving a sensitivity of 94.4%.  267 

Similarly, DL algorithms were employed to predict lung cancer survival, determine EGFR 268 

mutation status, and classify subtypes based on CT scans [102, 103]. Several studies have explored 269 

the use of DL algorithms for CT imaging pulmonary nodule segmentation and categorization [35]. 270 

A 3-D deep-learning model and low-dose chest CT images were employed to develop an end-to-271 

end lung tumor detection system [104]. Shao et al. [105] employed DL algorithms to screen mobile 272 
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low-dose CT images for lung tumors in resource-constrained areas. Moreover, a model [106] was 273 

designed that identified the EGFR mutations and expression of PD-L1 status in non-small-cell 274 

lung tumors using CT images. A study [107] provided an in-depth analysis of different DL 275 

approaches for identifying and diagnosing lung nodules in CT scans.  276 

Deep neural networks were employed to segment lung CT images [11] in addition to 277 

categorization. Lakshmanaprabu et al. [108] determined that the DL model achieved the highest 278 

classification accuracy of 96.3% for lung tumors using CT data. The application of DL models in 279 

chest radiography and lung tumor identification using CT images was investigated by Lee et al. 280 

[109], who observed that these models may increase clinical efficacy and accuracy. To identify 281 

lung cancer, Bhatia et al., [110] proposed a DL technique with 93.55% sensitivity and 91.5% 282 

specificity. Moreover,  another model [111] was designed using DL on CT scans to detect 283 

expression of PD-L1 in non-small cell lung tumors and predict immune checkpoint suppressor 284 

responses for a smaller nodule. Hu and his colleague [112] proposed a DL system for lung cancer 285 

stage extraction from CT data with an F1 score of 0.848. A machine learning strategy that can 286 

detect preinvasive, benign, and invasive lung nodules on 1-mm-thick CT scans was proposed  [74, 287 

113] to demonstrate the efficacy of a DL-enhanced CAD system in recognizing them. Deep 288 

learning was also used to predict lung cancer with an accuracy of 87.63% [114].  289 

Vani and his coworkers [115] developed six DL models (CNN GD, CNN, Inception V3, VGG-16, 290 

Resnet-50, and VGG-19) that efficiently identified lung tumors by employing CT scans and 291 

histopathology images. CNN-GD outperforms other models in precision, F-score, sensitivity, 292 

accuracy, and specificity, achieving 97.86%, 96.39%, 96.79%, and 97.40%, respectively. Shalini 293 

et al. [116] presented a 3D-CNN and RNN approach that achieved 95% accuracy in classifying 294 

malignant lung nodules. Efficiency can be improved using big-data analytics and cascade 295 
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classifiers. Abunajm et al. [117] proposed a CNN-based model for primary lung cancer prediction 296 

and recognition using CT scan imaging, distinguishing malignant, benign, and normal cases. Initial 297 

lung cancer detection improves survival and timing of therapy. The model reduced false positives 298 

and achieved an accuracy of 99.45%.  299 

In a study [118], radiomics and deep learning were employed for lung cancer identification and 300 

treatment. Experts explain that radiomics enables the quantification of medical images, enhancing 301 

cancer diagnosis and prognosis. Deep learning systems can be used for data analysis. Deep 302 

learning was used to forecast the risk of cardiovascular disorders from low-dose CT scans used to 303 

test for lung tumors [119]. The researchers used a massive cardiovascular risk dataset to train a 304 

DL system to predict heart disease risk from lung CT images. Moreover, in a study [120], dense 305 

clustering and DL were combined to immediately train neural networks to improve lung tumor 306 

detection from CT images. They demonstrated the efficiency of their lung nodule detection 307 

approach by comparing it with existing lung cancer detection methods. A newly developed DCNN 308 

was assessed on a large dataset of CT scans to detect and classify lung nodules in 3D CT images 309 

[121]. Zhao et al. [122] proposed a weighted discriminatory extreme learning machine for 310 

electronic nasal system lung tumor detection. They were able to differentiate between the two 311 

groups by using an electronic nasal device to examine breath samples from lung tumor patients 312 

and healthy controls. Chen et al. [123] developed a multimodality attention-guided 3D detection 313 

system for non-small cell lung cancer using 18 F-FDG PET/CT images. The accuracy of PET/CT 314 

lung cancer detection was improved by the researchers using deep learning algorithms, which 315 

could help in early diagnosis and treatment. Table 1 lists the uses, advantages, and drawbacks of 316 

lung imaging technologies, whereas Table 2 lists the studied models from 2018–2022.  317 

Table 1. Uses, Advantages, and Drawbacks of Lung Imaging Technologies. 318 
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Technology 
 

Uses 
 

Advantages 
 

Drawbacks 
 

CT Imaging 

Primary detection of 

lung tumors; 

segmentation of lung 

nodules. 

High-resolution 

imaging; clear 

separation of lung vs. 

non‐lung areas due to 

attenuation 

differences. 

Susceptible to 

heterogeneity, poor 

contrast variations, 

noise, and difficulty 

distinguishing benign 

from malignant 

nodules. 

MRI Imaging 

Delineation of 

organ/lesion 

boundaries; 

morphological 

assessment. 

Improved soft tissue 

contrast. 

Lower spatial 

resolution for lung 

structures; higher 

sensitivity to motion 

artifacts; less 

commonly used for 

lung nodule detection. 

EBUS 

(Endobronchial 

Ultrasound) 
 

Visualization of 

internal lung 

structures; assisting 

in tumor 

characterization. 
 

Minimally invasive; 

provides real-time 

imaging. 
 

Limited research on 

CNN interpretation; 

challenges in 

differentiating 

benign from 

malignant lesions. 
 

Traditional CADx 

Systems 
 

Automated analysis 

using hand-crafted 

features. 
 

Established 

methodology; less 

computationally 

intensive. 
 

Lower accuracy 

compared to DL-

based methods; 

reliance on manually 

engineered features 

that are less robust 

and adaptable. 

 

 319 
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 320 

 321 

Table 2. Studied Models for Lung Image Segmentation and Nodule Detection (2018–2022). 322 

Model / Study Architecture / Method Key Features / 

Performance 

Basic CNN Model for 

Lung Segmentation 

Single convolution layer (6 

kernels), max pooling, 2 fully 

connected layers; clustering-based 

training dataset. 

Utilizes k-means clustering 

for dataset creation; 

evaluated via eightfold 

cross-validation. 

Automated Lung 

Segmentation via Image 

Decomposition & 

Filtering 

Combination of image 

decomposition-based filtering, 

wavelet transformation, and 

morphological methods with 

contour correction. 

Denoises CT images while 

preserving lung outlines. 

Residual U-Net for 

Lung CT Segmentation 

Residual U-Net incorporating 

residual units. 

Designed to reduce false 

positives and extract robust 

segmentation features. 

U-Net vs. E-Net 

Comparison for 

Pulmonary Fibrosis 

Segmentation 

Comparative study between U-Net 

and E-Net architectures. 

Achieves fast and effective 

segmentation of pulmonary 

fibrosis parenchyma. 

U-Net-Based Lung 

Segmentation with Dual 

Paths 

U-Net variant featuring an 

expanding path for high-level and 

contracting path for low-level 

information. 

High segmentation accuracy 

with a Dice coefficient of 

0.9502. 

Mask R-CNN-Based 

Lung Segmentation 

Mask R-CNN integrated with 

supervised and unsupervised 

machine learning. 

Rapid segmentation (11.2 s) 

with high precision 

(97.68%). 

Multi-View 

Convolutional Network 

for Nodule Recognition 

Integration of several 2D ConvNet 

streams with a reliable 

classification algorithm. 

Targets solid, subsolid, and 

large nodules; 85.4% 

detection sensitivity with 4 

false positives per scan. 

3D CNN and FCN for 

Autonomous Nodule 

Identification 

3D CNN combined with a fully 

convolutional network (FCN). 

Rapid generation of volume 

score maps; autonomous 

detection of candidate 

regions. 

Deep Learning with 

Shape-Driven Level 

Sets 

Combination of deep learning and 

level set methods for segmentation. 

Automatic fine segmentation 

is initialized by seed points 

from coarse segmentation. 

 323 
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 325 

Developing Techniques for Detecting Lung Cancer 326 
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Lung cancer is one type of fatal cancer. Identifying cases is challenging because they typically 327 

manifest in the terminal stage. However, mortality can be decreased by early disease detection and 328 

treatment. CT imaging is a reliable diagnostic method since it can detect all predicted and 329 

unexpected lung tumor nodules [124]. However, medical practitioners and radiologists can 330 

misunderstand CT scan intensity and anatomical structure, making malignant cell identification 331 

difficult [125]. Therefore, computer-aided diagnostic methods are being employed by radiologists 332 

and physicians to diagnose cancer [126]. Numerous technologies have been established, and 333 

research into lung cancer detection is still ongoing. Certain systems need to be improved to achieve 334 

100% detection accuracy. 335 

Lung cancer may be cured with the correct medications, early detection, and a precise etiology. 336 

Early lung tumor detection is therefore essential, especially when screening high-risk populations 337 

such as oil field workers, smokers, fume exposers, and others, for whom new biomarkers are 338 

required. The precision of the diagnosis also affects the best course of treatment for lung cancer. 339 

Therefore, finding sensitive and precise biomarkers is essential for primary diagnosis. Low-dose 340 

CT is used in recent lung cancer screening methods. Compared to cases without screening, 341 

NELSON [127] reported that this screening method provides 85% sensitivity and 99% specificity. 342 

A recent study [128] demonstrated a false-positive rate of less than 81%, necessitating further 343 

imaging or testing due to the high incidence. 344 

To explain the lung cancer stage and screening schedule, a brief overview is given here. SCLC and 345 

NSCLC are the primary lung cancer subtypes. SCLCs are central tumors that form airway 346 

submucosal perihilar masses. Histological studies show that basal bronchial epithelial 347 

neuroendocrine cells cause this malignancy. Most cells in this scenario are spindle-shaped, 348 

rounded, or small with minimal granular chromatin, cytoplasm, and necrosis [129]. Unlike pure 349 
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and mixed NSCLC, which may include liver, brain, and bone metastases [130], SCLC has limited 350 

or extensive phases [131].  351 

This malignancy [132] may be characterized by metastases to the brain, liver, and bones, with its 352 

stages classified as either confined or extensive [133]. Limited SCLC includes the ipsilateral 353 

mediastinum, mediastinal, or supraclavicular lymph nodes at a single radiation site. It is a 354 

supraclavicular lymph node if it is located on the same side as the cancerous chest. However, broad 355 

SCLC can extend to the 2nd lung lobe, bone marrow, and lymph nodes. Chest radiography produces 356 

more detailed images than a chest CT scan, but it is less sensitive. With these characteristics, a 357 

computer-aided diagnostic (CAD) model for chest radiographs would improve detection 358 

sensitivity while preserving low false-positive (FP) rates [134]. 359 

Cytological analysis of sputum, especially many samples, may help diagnose lung cancer and find 360 

a core tumor in the larger bronchi. Sputum samples seldom included tiny adenocarcinomas under 361 

2 cm that originate from airway ramifications like tiny bronchi, bronchioles, and alveoli [135]. As 362 

cigarette exposure has increased and decreased squamous cell carcinomas and adenocarcinomas, 363 

this information has become more and more crucial. Several screening investigations found that 364 

sputum cytology had a 20–30% sensitivity for primary lung tumors. Early studies found that the 365 

quantity and form of cells in deeper airways can alter pre-malignant detection [136]. It was 366 

reported [137] that, regular sputum cytology is neither sensitive nor precise for lung cancer 367 

screening. White light bronchoscopy is the most common histological lung cancer diagnosis 368 

procedure. Bronchoscopy can detect pre-malignant lesions. Tissue biopsies are the recognized 369 

method for detecting cancer in general hospitals. The size of lung tissue biopsy specimens is 370 

necessary for the histopathological detection of lung cancer subtypes. The first biopsy needs to 371 

confirm the diagnosis to avoid recurrent operations that can cause difficulties and delay therapy. 372 
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Fiber optic bronchoscopy, image-guided trans-thoracic needle aspiration, endobronchial 373 

ultrasound, pleural fluid examination (thoracentesis), mediastinoscopy, thoracoscopy, and 374 

operation are employed to diagnose lung tumors. These methods are expensive, error-prone, and 375 

need numerous samples [138]. 376 

Spiral CT images enhance peripherally small tumor diagnosis. However, these images show 377 

significantly reduced sensitivity for central tumor identification (primarily squamous cell 378 

carcinoma) than peripheral tumors [139]. In the National Lung Screening Trial (NLST) using 379 

LDCT, 96% of positive screenings were false positives, with over 40% of participants, 380 

experiencing at least one positive result [66]. The high frequency of false positive screening results 381 

in expensive and intrusive therapies for smokers without malignancies. For diagnosis, screening 382 

for lung cancer with low-cost, non-invasive methods is essential. 383 

CNN, a kind of DL, has advanced radiology [140, 141]. In chest radiography, DL-based models 384 

have also demonstrated success in detecting masses and nodules, with mFPIs of 0.02–0.34 and 385 

sensitivities of 0.51–0.84. Moreover, radiologists were able to identify nodules more accurately 386 

with CAD models than with screening procedures without them. It might be difficult for 387 

radiologists to identify and differentiate between benign and malignant nodules [142, 143]. 388 

Radiologists also need to monitor nodule form and marginal features as typical anatomical 389 

structures mimic healthy nodules. Even the most skilled radiologists may make diagnostic 390 

mistakes due to circumstances rather than radiologists [144, 145]. The main DL methods for lesion 391 

identification are segmentation and detection. The detection approach labels an area, unlike the 392 

segmentation method, which labels pixels. Segmentation provides more exact pixel labels than 393 

detection. Pixel-level lesion size categorization enhances clinical diagnosis. Lesion size and form 394 

variations are easier to monitor using pixel-level classification because the shape may affect 395 
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detection. As part of the evaluation of management effectiveness, it also displays lesion size and 396 

long and short diameters [146].  397 

Investigation Gaps and Limitations 398 

Better survival rates depend on the primary detection of lung tumors, however, this is difficult 399 

because of factors such as heterogeneity, low contrast fluctuations, and visual similarities between 400 

benign and malignant nodules in CT images [147].  Identifying lung nodules with medical imaging 401 

is challenging owing to the complex architecture and time-consuming acquisition of labeled 402 

samples [148]. Deep learning algorithms are frequently compared to traditional CADx systems 403 

that employ manually created features, even though they can automatically identify features in 404 

lung nodule CT scans [149]. There is limited research on employing CNNs to analyze EBUS 405 

images, which makes it challenging to distinguish benign from potentially malignant tumors [150]. 406 

While some studies have employed CT scans to predict mortality risks in NSCLC patients, they 407 

have not identified primary-stage lung or lobe-related malignancies [151]. The mechanism by 408 

which CNNs predict nodule malignancy and the influence of area or contextual information on 409 

their output remains unclear [152]. Computer-assisted lung disease detection is crucial owing to 410 

noise signals affecting cancer image quality during acquisition [153].  Training DCNNs is 411 

challenging because of the various kinds of lung nodules and few positive samples inaccessible 412 

datasets [154].  413 

Process of Segmentation  414 

Image segmentation shows organ or structural outlines. DL techniques improve semantic 415 

segmentation, which makes them useful for medical diagnosis. This method evaluates the sizes 416 

and shapes of organs or lesions using MRI or CT scans [155, 156]. Many researchers have 417 

proposed automated segmentation methods. However, pre-processing typically involves edge 418 
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detection and the application of mathematical filters. Further, deep machine learning extracted 419 

complex traits. Creating and extracting hand-crafted features was the biggest challenge for such a 420 

system, limiting deployment. Medical researchers segmented images using 2D, 2.5D, and 3D CNN 421 

[157, 158].  422 

A CT scan can easily separate the lung and non-lung areas in a typical lung due to their different 423 

image attenuation. Early lung segmentation approaches encompassed numerical methods, gray-424 

level thresholding, and shape-based approaches to distinguish lung regions from non-lung areas.    425 

Various CNN-based methods have been established for both medical and natural image 426 

processing. Early research focused on lung nodule segmentation [156]. In a study [159], a basic 427 

CNN model for lung segmentation was developed employing a clustering algorithm-based training 428 

dataset. The k-means clustering technique divided CT slices into two groups using the image 429 

patch's mean and minimum intensity. Cross-shaped confirmation, volume intersection, linked 430 

component analysis, and patch expansion were used to construct the dataset. The CNN design 431 

comprised a single layer of convolution with 6 kernels, one maximally pooled layer, and 02 fully 432 

connected layers. An eightfold cross-validation method was employed to evaluate CNN models 433 

trained on the produced datasets. The researchers designed automated lung segmentation 434 

techniques to denoise lung CT images without affecting lung outlines using an image 435 

decomposition-based filtering technique [160]. The lungs were segmented using wavelet 436 

transformation and morphological methods. Finally, contour correction was used to smooth the 437 

lung outlines during segmentation refinement.  438 

Khanna et al. [161] developed a false-positive-reducing Residual U-Net for lung CT segmentation. 439 

The more complex network with residual units in the suggested model makes it easier to extract 440 

lung segmentation information. However, the performance of U-Net and E-Net was compared 441 
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[162]. These models partition pulmonary fibrosis parenchyma quickly and effectively.  442 

Furthermore, a U-net-based lung segmentation approach was developed that had an expanding 443 

route for high-level information and a contracting route for low-level information [163].  The dice 444 

coefficient performance was 0.9502 in experiments. Mask R-CNN and supervised and 445 

unsupervised machine learning were used to produce another automated lung segmentation 446 

method [164]. The benchmarked methods were slower and less precise than our approach, which 447 

achieved a segmentation precision of 97.68% and was completed in 11.2 s.  448 

Setio et al. presented a multi-view convolution network to recognize lung nodules using training 449 

data's discriminative features [165]. The three-nodule potential detectors target solid, subsolid, and 450 

large nodules. The proposed method integrates several 2-D ConvNet streams with a reliable 451 

classification algorithm. The LIDC-IDRI dataset shows four false positives per scan and 85.4% 452 

detection sensitivity. Similarly, a 3D CNN was trained using LIDC dataset volumes of interest to 453 

autonomously identify lung nodules [166]. Furthermore, a 3D CNN was employed to quickly 454 

produce the volume score map in a single run by generating a 3D fully convolutional network 455 

(FCN). Candidate regions of interest were quickly generated by the discriminating CNN using the 456 

FCN-based architecture.  457 

In another study [167], DL and shape-driven level sets were employed to produce another 458 

automatic lung nodule segmentation system. The invention of shape-driven level sets was the first 459 

step toward fine segmentation. Similarly, the model was automatically initialized by the level sets 460 

using seed points from the deep network's coarse segmentation. 461 

Conclusion and recommendation  462 

This study highlights the significant progress made in pulmonary nodule diagnosis and 463 

segmentation through deep learning (DL) techniques. The study addresses issues including 464 
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heterogeneity, low contrast variations, and the visual similarities between benign and malignant 465 

formations in CT imaging by utilizing convolutional neural networks (CNNs) and transfers 466 

learning techniques to improve the accuracy of lung nodule identification and delineation. The 467 

integration of DL approaches has shown superiority over traditional computer-aided diagnosis 468 

(CAD) systems that rely on hand-crafted features, offering a more robust and automated solution 469 

for early lung cancer detection. 470 

For future research, a deeper exploration of DL model interpretability is crucial to clarify the 471 

specific features and contextual information these networks use to distinguish between benign and 472 

malignant nodules. Further, expanding the diversity and size of annotated datasets will enhance 473 

the generalizability and performance of DL models. Collaborative efforts between 474 

multidisciplinary teams, including radiologists, data scientists, and clinicians, are essential to 475 

translate these technological advancements into clinical practice, ultimately improving patient 476 

outcomes through early and accurate lung cancer diagnosis. 477 
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