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Abstract

Introduction: Early diagnosis is crucial for improving the prognosis of lung
cancer, one of the leading causes of cancer-related deaths. Lung cancer in-
cludes small cell lung cancer (SCLC, ~15% of cases) and non-small cell lung
cancer (NSCLC, ~80-85%). Prognosis depends on the stage at diagnosis: the
5-year survival rate is 65% for localized NSCLC but only 9% for distant-stage
disease. Radiologists face challenges distinguishing benign from malignant
pulmonary nodules on computed tomography scans.

Methods: This review explores deep learning (DL) methods, including multi-
view convolutional neural networks (CNNs) and 3D models for nodule seg-
mentation, emphasizing volumetric assessments for malignancy prediction.
Results: CNNs effectively analyze CT data, achieving 94.2% sensitivity with
1.0 false positives per scan in lung nodule detection.

Conclusions: DL enhances diagnostic accuracy, reduces radiologist work-
load, and enables earlier lung cancer detection. Further research is needed
to improve model adaptability across diverse clinical settings.

Key words: malignant tumor, pathology, morphological detection, radiology
and oncology.

Introduction

Lung cancer is one of the most deadly malignancies that can endan-
ger a person’s life or health [1]. Many nations have seen lung cancer
incidence and death rise during the last 50 years [2]. The American Can-
cer Society (ACS) projected 608,570 fatalities and 1,898,160 new cases
in 2021 [3]. As a prominent radiological signal, lung nodules are used
to diagnose lung cancer early. Diameter determines nodule malignancy
[4]. Nodules in the pulmonary interstitium, which consists of the base-
ment membrane, pulmonary capillary endothelium, alveolar epithelium,
and perilymphatic and perivascular tissues, are typically small, spherical,
and circumscribed [5, 6]. Lung nodules vary in size, shape, and kind [7].
Nodules can vary in size from less than 2 mm to 30 mm, and some are
difficult to detect because of their complex circulatory connections in
places with numerous vessels [8]. There are certain solid and sub-solid
nodules (SSNs) with densities that are marginally greater than those of
the parenchyma of the lung [9]. Solid nodules (SNs) are the most com-
mon nodules and comprise the core functioning lung tissues, while SSNs
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often represent early-stage lung cancers appear-
ing as areas of partial ground-glass opacity. SSNs
may be part-solid or pure ground-glass nodules
[10]. These nodules do not obscure the broncho-
vascular structures, but their opacities are denser
than those of the surrounding tissues [7].

Accurate nodule diameter measurements are
essential for diagnosis since nodule size is cor-
related with malignancy. Several studies [5, 11,
12] offer valuable insights [13]. The End-Use Load
and Consumer Assessment Program (ELCAP) da-
tabase [3] reports a 1% malignancy risk for nod-
ules under 5 mm, 24% for 6-10 mm, 33% for
11-20 mm, and 80% for 20+ mm [14]. However,
measuring the diameters of extremely small nod-
ules may result in errors. The therapy for cancer
of the lung nodules is complicated. Almost 70%
of individuals with lung cancer require radiation
treatment; however, radiation-induced lung dam-
age may reduce treatment rates and raise mor-
bidity and death. Radiologists rely on comput-
er-aided diagnostic (CAD) technologies to extract
more information from nodules and enhance
classification accuracy. CAD systems minimize ob-
servational errors, false-negative rates, and med-
ical image interpretation and diagnostic second
opinions [15, 16]. Numerous studies indicate that
CAD systems improve image diagnosis, with low-
er inter-observer variance [17]. CAD systems can
also quantify clinical decisions such as biopsy rec-
ommendations [18], facilitate diagnostic checks,
minimize thoracotomies and false-positive biop-
sies [16, 19], and distinguish tumor malignancies
[20, 21]. Clinical success has led to the introduc-
tion of CAD models for lung cancer diagnosis. Ear-
ly diagnosis of lung nodules may improve survival
using such devices. Current computed tomogra-
phy (CT) CAD applications search for spherically
distributed lung nodule-like pulmonary densities
[15]. Thus, lung nodule screening by CT CAD has
become a prominent area of research. Lung nod-
ule detection initially was based on non-machine
learning techniques [22-28]. Later, data-driven
machine learning-based algorithms [29-34] were
developed to delineate the ideal nodule border
[35]. Deep learning (DL) inspired algorithms have
recently attracted interest because of their pre-
cise predictions. Unlike traditional CAD systems,
DL-based models can be optimized and applied
to vast volumes of data [36]. DL using CNNs has
improved pulmonary nodule diagnosis and treat-
ment [37-40]. Three modules of DL are used to
recognize, segment, and categorize lung nodules.
Detection identifies the nodule, segmentation de-
lineates its voxels, and classification determines
whether it is benign or malignant [35].

Lung cancer often remains asymptomatic in
its early stages, leading to delayed diagnoses.

When symptoms appear, they frequently include
shortness of breath, wheezing, hoarseness, chest
pain, coughing up blood, and a persistent cough.
Additional signs may involve recurrent respiratory
infections, unexplained weight loss, and fatigue.
Moreover, these symptoms might differ from per-
son to person and can mimic those of other respi-
ratory disorders [41].

Regarding mortality, lung cancer remains
a leading cause of cancer-related deaths globally.
For instance, in the United States, an estimated
124,730 lung cancer-related deaths are antici-
pated for 2025. The mortality rate is significantly
higher in older populations, with three-quarters
of lung cancer deaths occurring among those
aged 65 and older. Increasing survival rates re-
quire early detection through screening programs,
since lung cancer can often be identified at an ad-
vanced stage when there are few available treat-
ment choices [41].

Previous studies have explored the detec-
tion approaches for pulmonary nodules [35, 36,
42-48] with various goals. The primary aim of
this article is to provide a comprehensive review
of deep learning (DL) methodologies employed
for pulmonary nodule identification and classifi-
cation in CT images. This study aims to explore
the effectiveness of various DL models, including
multi-view convolutional neural networks (CNNs)
and 3D architectures, in improving diagnostic ac-
curacy and efficiency in lung cancer screening.
Furthermore, it aims to identify current challeng-
es, such as data variability and the need for ex-
ternal validation, and suggest directions for future
research to facilitate the integration of these ad-
vanced technologies into routine clinical practice.
This study introduces a novel deep learning-based
system using two 3D models for automated pul-
monary nodule detection, aiming to enhance di-
agnostic accuracy and reduce false positives.

Nodule detection

Identifying microscopic pulmonary nodules is
challenging yet important for lung cancer diagno-
sis. Chest volumetric CT images exceed 9 million
voxels. Five-mm lung nodules occupy 130 vox-
els, corresponding to about 1.4 x 107 of the lung
volume [49]. Radiologists may be able to detect
these nodules based on their shape, size, densi-
ty, location, and closeness to adjacent structures.
Early CT screening missed 8.9% of malignancies in
the NLST CT screening arm [50]. The pathological
analysis of biopsy samples is still the most reliable
method for identifying and defining pulmonary
nodules, even though imaging approaches are sig-
nificant for their detection. Although having two
observers simultaneously read a scan improves
diagnostic sensitivity, performing it repeatedly
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is time-consuming and impracticable [51]. This
emphasizes the significance of machine-learning
technology to assist radiologists detect nodules,
one of the most studied CAD applications that
reduce the time needed to interpret scans [52].
Several studies have demonstrated that deep
learning may improve nodule detection sensitiv-
ity. Figure 1 shows the steps in the lung nodule
treatment route using Al.

This CAD application has been extensively in-
vestigated and has been demonstrated to mini-
mize scan interpretation time [52]. Various studies
have reported that deep learning can enhance the
sensitivity of nodule identification [53].

Nodule segmentation

Malignancy is strongly predicted by nodule
size; in the NELSON trial, those with nodules
< 100 mm? had the same baseline cancer risk
(0.5%) as those without nodules [54]. Traditional
nodule size assessment involves manual 2D cali-
per measurement of the largest transverse diam-
eter. Current screening studies and national and
worldwide guidelines on nodule treatment have
recommended evaluating volume rather than di-
ameter because it is less susceptible to intra- and
interobserver variability [55], better incorporates
the three-dimensional (3D) character of a lung
nodule [56], is more susceptible to size change,
and detects malignancy sooner than 2D diam-
eter measures [57]. Nodule segmentation is es-
sential for volumetric measurements. Numerous
CAD methods for nodule segmentation have been
developed since the 1980s [44]. Detecting micro-
scopic pulmonary nodules is challenging yet sig-
nificant for lung cancer diagnosis. Chest volumet-
ric CT images exceed 9 million voxels. Five-mm
lung nodules occupy 130 voxels, corresponding to
about 1.4 x 107 of the lung volume. These nod-
ules may be detectable by radiologists depending
on their shape, size, density, location, and prox-
imity to other structures.16e18 Early CT screen-
ing missed 8.9% of malignancies in the NLST CT
screening arm [58].

Subsolid nodules are more challenging to seg-
ment than solid lesions because there is less at-
tenuation difference between the tumor and the
surrounding parenchyma. It is also more challeng-
ing to distinguish the solid component of these
very large nodules from nearby vessels. However,
current research indicates that these problems
can be addressed [59]. Multiple manual, semi-au-
tomatic, and automated volumetric analysis
software programs have been reported in recent
years. Although these software tools may produce
slightly different size measurements, they provide
reliable repeat measurements. The variance is
larger in irregular and juxta-pleural nodules [60].

Nodule detection |

Segmentation
and volumetry

Morphological
analysis

Follow-up analysis

Figure 1. Steps in the lung nodule treatment route,
where Al might have a role

The British Thoracic Society’s pulmonary nodule
management guidelines suggest reducing vari-
ability in nodule volumetry [61].

Research has demonstrated that deep learning
can improve nodule segmentation. A single click
can volumetrically segment 7,927 NLST nodules
using a deep learning model. These parameters
were used to evaluate the Brock University Cancer
Prediction Model’s malignancy prediction accu-
racy. The AUC for volumetric analysis was 88.17,
compared to 85.96 for NLST radiologists’ 2D mea-
surements, demonstrating a 2.21% enhancement
in predictive value. As CNN algorithms implicitly
segment nodules, deep learning may eliminate
nodule segmentation [38, 62].

The issue of detecting lung nodules in daily
clinical practice

Lung cancer is the leading cause of cancer
death worldwide [63]. Symptoms typically appear
after cancer has spread, and therefore late diag-
nosis is usual [64]. To detect malignancies early,
the US, China, and Korea have implemented na-
tionwide lung tumor screening programs. High-
risk individuals (older smokers) are invited for
a low-dose CT lung scan in a screening program
[65]. Lung cancer may manifest as a “nodule”
or spot. Trials show that low-dose CT screening
reduces lung carcinoma mortality [66, 67], but
Europe and other nations have been sluggish in
embracing it. Therefore, early-stage lung cancer
is often identified incidentally through nodules
observed in CT scans carried out for unrelated
medical reasons [68, 69]. It can be challenging
to detect lung nodules. CT scans are highly het-
erogeneous and not optimized to identify lung
cancer due to the growing diversity of scanning
methods and patients [49]. Nodule detection and
treatment will become more crucial because ra-
diologists’ workload has increased significantly
over the past 15 years, primarily due to the de-
mand for CT imaging [70].
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Figure 2. Overview of the planned lung nodule detecting system

Artificial intelligence for radiological support

Al software may help radiologists find lung le-
sions in CT images. The use of Al software as an
auxiliary reader enhances radiologists’ reading
time, management recommendation uniformity,
and detection sensitivity [71-74]. A few studies
have explored Al solutions in non-screening envi-
ronments. The generalization performance of the
Al software was tested using a multi-center study
approach to expand this research area and ad-
dress three common issues. Second, we used five
qualified thoracic radiologists rather than one or
two to establish the reference standard, because
nodule detection varies greatly. Third, and per-
haps most importantly, we examined whether
an Al system could identify the important nod-
ules using reliable nodule-level malignancy labels.
Research on Al has either looked at all nodules
(regardless of malignancy) or scan-level cancer
detection. Therefore, our effort aims to connect Al
investigations for nodule identification and lung
malignancy.

Non-invasive

Optimum imaging

Bright light bronchoscopy

Low dose CT

Novel approaches for lung cancer detection

Computer aided diagnosis

Figure 3. Methods for lung tumor detection

Connecting the gap between nodule
detection and lung cancer Al studies

The DL-based technique was retrospectively
tested for identifying actionable benign nodules
(requiring follow-up), minor lung cancers, and me-
tastases in CT images from two Dutch hospitals’
typical clinical contexts. Moreover, the nodule de-
tection method locates a specific lung region slice
by slice using a CT scan. Five-slice overlapping CT
volumes yield nodule candidates. Finally, nine slic-
es from a 3D area around each nodule candidate
are inspected for nodules. Nodules from lung ar-
teries and other structures can be promptly iden-
tified in CT scans using the 2.5D identification
method (Figure 2).

DL strategies for detecting lung cancer

Automation has the potential to assist in di-
agnosing various diseases through CAD [75]. This
method employs software to identify, predict, and
classify symptoms, assisting in identifying the pres-
ence and severity of a disease. This study reviews
CAD approaches for lung CT nodule detection. CT
scans can identify nodules of lung cancer, espe-
cially large ones in the advanced stages [76]. The
nodules need to be identified early because they
are often very small before a lung tumor the size of
a golf ball grows. Figure 3 shows that manually dis-
tinguishing and segmenting nodules is challenging.

CNNs are highly effective for image classifica-
tion. Their architecture is inspired by the human
visual system. CNN filters assess a small portion
of the image by simulating neurons with receptive
zones. Deeper layers of these neurons may learn
and detect more complicated hierarchical pat-
terns due to their larger receptive fields. CNNs can
be thought of as a collection of sliding windows
with small neural networks spread around the im-
age [77].
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CNNs can learn patterns regardless of loca-
tion due to their location invariance. The filter
can learn image designs using sliding windows.
Since CNNs are hierarchical, they can automati-
cally identify more abstract patterns [78]. Bound-
aries and structures may be occupied by the initial
layers, followed by forms in the intermediate lay-
ers and overall object shapes in the higher layers.
CNNs are capable of analyzing 3D images rather
than slices from CT scans. A sliding cube, instead
of a movable pane, can be employed to develop
3D CNNs for feature extraction at each stage [79].

Computer-assisted lung cancer detection
using CT images

CT-based lung tumor identification and de-
tection employing DL algorithms has been the
subject of numerous studies. Healthy and un-
healthy CT scans have different image attenuation
patterns. To separate the lungs from the nearby
tissues, numerical, grey-level thresholding, and
shape-based methods have been employed [80].
Brown and coworkers introduced an automatic,
knowledge-based chest segmentation approach
[81]. This approach requires organ volume, rel-
ative location, shape, and X-ray attenuation. To
extract useful CT image data, Brown et al. devel-
oped a knowledge-based automatic segmenta-
tion method [82]. They automatically created in-
direct quantitative values of single lung activities
that routine pulmonary function tests cannot. Hu
et al. created a completely automated pulmonary
segmentation approach from 3D lung X-ray im-
ages [83]. The technique was tested employing
3D CT information sets from 8 healthy individuals.
Computer and human analysis showed a 0.8-pixel
root mean square difference. Lung segmentation
was fully automated using a pixel-value threshold
based on slices, together with two sets of cate-
gorization criteria that incorporate size, circularity,
and position data [84]. They achieved 94.0% seg-
mentation precision with 2969 thick slice imag-
es and 97.6% with 1161 thin slice images based
on 101 CT cases [85]. The lung volume was seg-
mented and visualized using anisotropic filtering
and wavelet transform-based interpolation. The
robustness and application of the approach were
demonstrated using single-detector CT scans,
which showed improvements in volume overlap
and volume difference percentages.

Swierczynski et al. devised a level-set-based
segmentation approach that combined tradition-
al segmentation with active dense displaced field
prediction [86]. The developed approach outper-
formed methods that performed registration and
segmentation independently. A substitutional
level set technique for CT scan lung nodule seg-
mentation was developed using a global lung nod-

ule form model [87]. Nodule kind or position did
not affect the proposed technique. Moreover, to
improve lung nodule detection, a parameter-free
segmentation method was developed that fo-
cused on juxtapleural lesions [88]. LIDC’s 403 jux-
tapleural nodules indicated a 92.6% re-inclusion
rate. Zhang et al. [89] developed an automated
lung segmentation approach and a global opti-
mum hybrid geometric active contour model. In-
corporating global region and edge information
increased algorithm performance in places with
narrow bands or weak boundaries. Furthermore,
in another study [90], a sphere was placed within
the segmented lung target and deformed in re-
sponse to forces applied to the lung boundaries.
The system was tested on 40 CT images, achiev-
ing an average F-measure of 99.22%.

Researchers have been examining CNNs’ du-
rability in computer vision for 10 years. Multi-
ple CNN-based methods have been reported for
medical and natural image processing. Sever-
al methods have been proposed using Al and
CT images for the detection of lung cancer [91].
Lung nodule classification was carried out using
a three-dimensional CNN with three modules. This
technique outperformed manual evaluation with
84.4% sensitivity. Nasser and Naser [92] used an
ANN to diagnose lung cancer with 96.67% accu-
racy. Cifci [93] reported that DL, combined with
Instantaneously Trained Neural Networks (DITNN)
and Increased Profuse Clustering (IPCT), improved
lung image quality and lung cancer detection,
achieving an accuracy of 98.42%. Moreover, in
another study [94], a double convolutional deep
neural network (CDNN) and a regular CDNN were
employed to identify lung nodules, achieving an
accuracy of 0.909 and 0.872.

Wang et al. [95] developed a CAD system with
low false negative and positive rates as well as high
nodule detection precision. In another approach
[96], the deep model achieved 95.41% sensitivity
in lung image detection using inception-v3 trans-
fer learning instead of randomized initialization.
Finally, a multi-group patch-based learning sys-
tem was reported, revealing an 80.06% sensitivity
with 4.7 false positives per scan or a 94% sensi-
tivity with 15.1 false positives per scan. Further-
more, a dense convolutional binary-tree network
(DenseBTNet) was developed which showed high
parameter effectiveness and extracted features at
several scales [97]. Li et al. found that early de-
tection reduces the death rate from lung cancer
[98]. They developed a DL-CAD system that could
recognize and classify lung nodules under 3 mm
and estimate their malignancy risk. The system
demonstrated an accuracy of 86.2% in sensitivi-
ty testing carried out on the LIDC-IDRI and NLST
datasets.
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Similarly, a deep 3D residual CNN was em-
ployed to reduce false positives for automated
lung nodule diagnosis in CT images [99]. A spa-
tial pooling and cropping (SPC) layer gathered
multi-level contextual information, and their
27-layer network achieved 98.3% sensitivity using
the LUNA-16 dataset. Teramoto et al. [100] devel-
oped a deep convolutional neural network (DCNN)
comprising convolutional, completely linked, and
pooling layers to automatically classify lung can-
cer. DCNN training employed 76 cancer cases and
achieved 71% classification accuracy. In a study,
a 3D convolutional neural network was employed
for volumetric CT-based computer-aided lung nod-
ule identification [101]. They used the LUNA16
dataset to test their model, which had 3D con-
volutional, max-pooling, completely linked, and
softmax layers. Their findings suggested that 3D
CNNs significantly improved detection accuracy,
achieving a sensitivity of 94.4%.

Similarly, DL algorithms were employed to pre-
dict lung cancer survival, determine EGFR mutation
status, and classify subtypes based on CT scans
[102, 103]. Several studies have explored the use
of DL algorithms for pulmonary nodule segmenta-
tion and categorization in CT imaging [35]. A 3D
deep-learning model and low-dose chest CT imag-
es were employed to develop an end-to-end lung
tumor detection system [104]. Shao et al. [105]
employed DL algorithms to screen mobile low-dose
CT images for lung tumors in resource-constrained
areas. Moreover, a model [106] was designed that
identified the EGFR mutations and expression of
PD-L1 status in non-small-cell lung tumors using
CT images. A study [107] provided an in-depth
analysis of different DL approaches for identifying
and diagnosing lung nodules in CT scans.

Deep neural networks were employed to seg-
ment lung CT images [11] in addition to catego-
rization. Lakshmanaprabu et al. [108] determined
that the DL model achieved the highest classifi-
cation accuracy of 96.3% for lung tumors using
CT data. The application of DL models in chest ra-
diography and lung tumor identification using CT
images was investigated by Lee et al. [109], who
observed that these models may increase clini-
cal efficacy and accuracy. To identify lung cancer,
Bhatia et al. [110] proposed a DL technique with
93.55% sensitivity and 91.5% specificity. More-
over, another model [111] was designed using DL
on CT scans to detect expression of PD-L1 in non-
small cell lung tumors and predict immune check-
point suppressor responses for a smaller nodule.
Hu et al. [112] proposed a DL system for lung
cancer stage extraction from CT data with an F1
score of 0.848. A machine learning strategy that
can detect preinvasive, benign, and invasive lung
nodules on 1-mm-thick CT scans was proposed

[74, 113] to demonstrate the efficacy of a DL-en-
hanced CAD system in recognizing them. Deep
learning was also used to predict lung cancer with
an accuracy of 87.63% [114].

Rajasekar et al. [115] developed six DL models
(CNN GD, CNN, Inception V3, VGG-16, Resnet-50,
and VGG-19) that efficiently identified lung tu-
mors by employing CT scans and histopathology
images. CNN-GD outperformed other models in
precision, F-score, sensitivity, accuracy, and spec-
ificity, achieving 97.86%, 96.39%, 96.79%, and
97.40%, respectively. Wankhade et al. [116] pre-
sented a 3D-CNN and recurrent neural network
(RNN) approach that achieved 95% accuracy in
classifying malignant lung nodules. Efficiency can
be improved using big-data analytics and cascade
classifiers. Abunajm et al. [117] proposed a CNN-
based model for primary lung cancer prediction
and recognition using CT scan imaging, distin-
guishing malignant, benign, and normal cases.
Initial lung cancer detection improves survival and
timing of therapy. The model reduced false posi-
tives and achieved an accuracy of 99.45%.

In a study [118], radiomics and deep learning
were employed for lung cancer identification and
treatment. Experts explain that radiomics enables
the quantification of medical images, enhanc-
ing cancer diagnosis and prognosis. Deep learn-
ing systems can be used for data analysis. Deep
learning was used to forecast the risk of cardio-
vascular disorders from low-dose CT scans used to
test for lung tumors [119]. The researchers used
a massive cardiovascular risk dataset to train a DL
system to predict heart disease risk from lung CT
images. Moreover, in a study [120], dense cluster-
ing and DL were combined to immediately train
neural networks to improve lung tumor detection
from CT images. They demonstrated the efficien-
cy of their lung nodule detection approach by
comparing it with existing lung cancer detection
methods. A newly developed DCNN was assessed
on a large dataset of CT scans to detect and classi-
fy lung nodules in 3D CT images [121]. Zhao et al.
[122] proposed a weighted discriminatory extreme
learning machine for electronic nasal system lung
tumor detection. They were able to differentiate
between the two groups by using an electronic na-
sal device to examine breath samples from lung
tumor patients and healthy controls. Chen et al.
[123] developed a multimodality attention-guided
3D detection system for non-small cell lung can-
cer using 18 F-FDG PET/CT images. The accuracy
of PET/CT lung cancer detection was improved by
the researchers using deep learning algorithms,
which could help in early diagnosis and treatment.
Table | lists the uses, advantages, and drawbacks
of lung imaging technologies, while Table Il lists
the models studied between 2018 and 2022.
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Developing techniques for detecting lung

cancer

Lung cancer is a highly fatal form of cancer. Iden-
tifying cases is challenging because they typically

manifest in the terminal stage. However, mortali-
ty can be reduced by early disease detection and
treatment. CT imaging is a reliable diagnostic meth-

Table 1. Uses, advantages, and drawbacks of lung imaging technologies

od since it can detect all predicted and unexpect-
ed lung tumor nodules [124]. However, medical

boundaries; morphological
assessment.

contrast.

Technology Uses Advantages Drawbacks
CT Imaging Primary detection of lung High-resolution imaging; Susceptible to heterogeneity,
tumors; segmentation of clear separation of lung poor contrast variations,
lung nodules. vs. non-lung areas due to noise, and difficulty
attenuation differences. distinguishing benign from
malignant nodules.
MRI Imaging Delineation of organ/lesion Improved soft tissue Lower spatial resolution

for lung structures; higher
sensitivity to motion
artifacts; less commonly
used for lung nodule
detection.

EBUS (Endobronchial
Ultrasound)

Visualization of internal
lung structures; assisting in
tumor characterization.

Minimally invasive; provides
real-time imaging.

Limited research on CNN
interpretation; challenges in
differentiating benign from

malignant lesions.

Traditional CADx
Systems

Automated analysis using
hand-crafted features.

Established methodology;
less computationally
intensive.

Lower accuracy compared to
DL-based methods; reliance
on manually engineered
features that are less robust
and adaptable.

Table Il. Studied models for lung image segmentation and nodule detection (2018-2022)

Model/study

Architecture/method

Key features/performance

Segmentation

Basic CNN Model for Lung

Single convolution layer (6 kernels),
max pooling, 2 fully connected layers;

clustering-based training dataset.

Utilizes k-means clustering for dataset
creation; evaluated via eightfold cross-

validation.

Automated Lung
Segmentation via Image

Decomposition & Filtering

Combination of image decomposition-

based filtering, wavelet transformation,

correction.

and morphological methods with contour

Denoises CT images while preserving lung

outlines.

Residual U-Net for Lung
CT Segmentation

Residual U-Net incorporating residual

units.

Designed to reduce false positives and

extract robust segmentation features.

U-Net vs. E-Net
Comparison for
Pulmonary Fibrosis
Segmentation

Comparative study between U-Net and
E-Net architectures.

Achieves fast and effective segmentation
of pulmonary fibrosis parenchyma.

U-Net-Based Lung

Paths

Segmentation with Dual

U-Net variant featuring an expanding

path for high-level and contracting path
for low-level information.

High segmentation accuracy with a Dice
coefficient of 0.9502.

Segmentation

Mask R-CNN-Based Lung

Mask R-CNN integrated with supervised

and unsupervised machine learning.

Rapid segmentation (11.2 s) with high
precision (97.68%).

Network for Nodule
Recognition

Multi-View Convolutional

algorithm.

Integration of several 2D ConvNet
streams with a reliable classification

Targets solid, subsolid, and large nodules;
85.4% detection sensitivity with 4 false
positives per scan.

3D CNN and FCN for
Autonomous Nodule
Identification

3D CNN combined with a fully
convolutional network (FCN).

Rapid generation of volume score maps;
autonomous detection of candidate

regions.

Deep Learning with
Shape-Driven Level Sets

Combination of deep learning and level
set methods for segmentation.

Automatic fine segmentation is initialized
by seed points from coarse segmentation.
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practitioners and radiologists may misinterpret CT
scan intensity and anatomical structure, making
malignant cell identification difficult [125]. There-
fore, computer-aided diagnostic methods are being
employed by radiologists and physicians to diag-
nose cancer [126]. Numerous technologies have
been established, and research into lung cancer
detection is still ongoing. Certain systems need to
be improved to achieve 100% detection accuracy.

Lung cancer may be cured with the correct
medications, early detection, and a precise eti-
ology. Early lung tumor detection is therefore
essential, especially when screening high-risk
populations such as oil field workers, smokers, in-
dividuals exposed to fumes, and others, for whom
new biomarkers are required. The precision of the
diagnosis also affects the best course of treat-
ment for lung cancer. Therefore, finding sensitive
and precise biomarkers is essential for primary di-
agnosis. Low-dose CT is used in recent lung cancer
screening methods. Compared to cases without
screening, the NELSON trial [127] reported that
this screening method provides 85% sensitivity
and 99% specificity. A recent study [128] demon-
strated a false-positive rate of less than 81%, ne-
cessitating further imaging or testing due to the
high incidence.

To explain the lung cancer stage and screen-
ing schedule, a brief overview is given here. SCLC
and NSCLC are the primary lung cancer subtypes.
SCLCs are central tumors that form airway submu-
cosal perihilar masses. Histological studies show
that basal bronchial epithelial neuroendocrine
cells cause this malignancy. Most cells in this sce-
nario are spindle-shaped, rounded, or small with
minimal granular chromatin, cytoplasm, and ne-
crosis [129]. Unlike pure and mixed NSCLC, which
may include liver, brain, and bone metastases
[130], SCLC has limited or extensive phases [131].

This malignancy [132] may be characterized by
metastases to the brain, liver, and bones, with its
stages classified as either confined or extensive
[133]. Limited SCLC includes the ipsilateral me-
diastinum, mediastinal, or supraclavicular lymph
nodes at a single radiation site. It is a supraclavic-
ular lymph node if it is located on the same side
as the cancerous chest. However, broad SCLC can
extend to the second lung lobe, bone marrow, and
lymph nodes. Chest radiography produces more
detailed images than a chest CT scan, but it is less
sensitive. With these characteristics, a comput-
er-aided diagnostic (CAD) model for chest radio-
graphs would improve detection sensitivity while
preserving low false-positive (FP) rates [134].

Cytological analysis of sputum, especially many
samples, may help diagnose lung cancer and find
a core tumor in the larger bronchi. Sputum sam-
ples seldom include very small adenocarcinomas

under 2 c¢cm that originate from airway branch-
es such as the bronchi, bronchioles, and alveoli
[135]. As cigarette exposure has influenced the
incidence of squamous cell carcinomas and ade-
nocarcinomas, this information has become more
and more crucial. Several screening investiga-
tions found that sputum cytology had a 20-30%
sensitivity for primary lung tumors. Early stud-
ies found that the quantity and form of cells in
deeper airways can alter pre-malignant detection
[136]. It was reported [137] that regular sputum
cytology is neither sensitive nor precise for lung
cancer screening. White light bronchoscopy is the
most common histological lung cancer diagnosis
procedure. Bronchoscopy can detect pre-malig-
nant lesions. Tissue biopsy remains the standard
method for detecting cancer in general hospitals.
The size of lung tissue biopsy specimens is crucial
for the histopathological detection of lung cancer
subtypes. The first biopsy needs to confirm the
diagnosis to avoid recurrent operations that may
cause difficulties and delay therapy. Fiber-optic
bronchoscopy, image-guided trans-thoracic nee-
dle aspiration, endobronchial ultrasound, pleural
fluid examination (thoracentesis), mediastinos-
copy, thoracoscopy, and operations are employed
to diagnose lung tumors. These methods are ex-
pensive, error-prone, and need numerous samples
[138].

Spiral CT images enhance the performance of
peripheral small tumor diagnosis. However, these
images show significantly reduced sensitivity for
central tumor identification (primarily squamous
cell carcinoma) than peripheral tumors [139]. In
the National Lung Screening Trial (NLST) using
low-dose CT (LDCT), 96% of positive screenings
were false positives, with over 40% of participants
experiencing at least one positive result [66]. The
high frequency of false positive screening results
in expensive and intrusive therapies for smokers
without malignancies. For diagnosis, screening for
lung cancer with low-cost, non-invasive methods
is essential.

CNN, a kind of DL, has advanced radiology
[140, 141]. In chest radiography, DL-based mod-
els have also demonstrated success in detecting
masses and nodules, with mean false positives
per image (mFPIs) of 0.02-0.34 and sensitivities
of 0.51-0.84. Moreover, radiologists were able to
identify nodules more accurately with CAD mod-
els than with screening procedures without them.
It can be difficult for radiologists to identify and
differentiate between benign and malignant nod-
ules [142, 143]. Radiologists also need to monitor
nodule form and marginal features as typical an-
atomical structures mimic healthy nodules. Even
the most skilled radiologists may make diagnostic
mistakes due to circumstances rather than their
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own shortcomings [144, 145]. The main DL meth-
ods for lesion identification are segmentation and
detection. The detection approach labels an area,
unlike the segmentation method, which labels
pixels. Segmentation provides more exact pixel
labels than detection. Pixel-level lesion size cate-
gorization enhances clinical diagnosis. Lesion size
and form variations are easier to monitor using
pixel-level classification because the shape may
affect detection. As part of the evaluation of man-
agement effectiveness, it also displays lesion size
and long and short diameters [146].

Investigation gaps and limitations

Better survival rates depend on the primary de-
tection of lung tumors; however, this is difficult
because of factors such as heterogeneity, low con-
trast fluctuations, and visual similarities between
benign and malignant nodules in CT images [147].
Identifying lung nodules with medical imaging
is challenging owing to the complex architecture
and time-consuming acquisition of labeled sam-
ples [148]. Deep learning algorithms are frequent-
ly compared to traditional CAD systems that em-
ploy manually created features, even though they
can automatically identify features in lung nod-
ule CT scans [149]. There is limited research on
employing CNNs to analyze EBUS images, which
makes it challenging to distinguish benign from
potentially malignant tumors [150]. While some
studies have employed CT scans to predict mor-
tality risks in NSCLC patients, they have not identi-
fied primary-stage lung or lobe-related malignan-
cies [151]. The mechanism by which CNNs predict
nodule malignancy and the influence of area or
contextual information on their output remains
unclear [152]. Computer-assisted lung disease
detection is crucial owing to noise signals affect-
ing cancer image quality during acquisition [153].
Training DCNNs is challenging because of the var-
ious kinds of lung nodules and limited availability
of positive samples in many datasets [154].

Segmentation process

Image segmentation shows organ or structur-
al outlines. DL techniques improve semantic seg-
mentation, which makes them useful for medical
diagnosis. This method evaluates the sizes and
shapes of organs or lesions using MRI or CT scans
[155, 156]. Many researchers have proposed auto-
mated segmentation methods. However, pre-pro-
cessing typically involves edge detection and the
application of mathematical filters. Further, deep
machine learning extracted complex traits. Creat-
ing and extracting hand-crafted features was the
biggest challenge for such a system, limiting de-
ployment. Medical researchers segmented images

using 2D, 2.5D, and 3D CNN [157, 158]. A CT scan
can easily separate the lung and non-lung areas in
a typical lung due to their different image attenua-
tion. Early lung segmentation approaches encom-
passed numerical methods, gray-level threshold-
ing, and shape-based approaches to distinguish
lung regions from non-lung areas.

Various CNN-based methods have been es-
tablished for both medical and natural image
processing. Early research focused on lung nod-
ule segmentation [156]. In a study [159], a basic
CNN model for lung segmentation was developed
employing a clustering algorithm-based training
dataset. The k-means clustering technique divided
CT slices into two groups using the image patch’s
mean and minimum intensity. Cross-shaped con-
firmation, volume intersection, linked component
analysis, and patch expansion were used to con-
struct the dataset. The CNN design comprised
a single layer of convolution with 6 kernels, one
maximally pooled layer, and two fully connected
layers. An eightfold cross-validation method was
employed to evaluate CNN models trained on
the produced datasets. The researchers designed
automated lung segmentation techniques to de-
noise lung CT images without affecting lung out-
lines using an image decomposition-based filter-
ing technique [160]. The lungs were segmented
using wavelet transformation and morphological
methods. Finally, contour correction was used to
smooth the lung outlines during segmentation re-
finement.

Khanna et al. [161] developed a false-posi-
tive-reducing Residual U-Net for lung CT segmen-
tation. The more complex network with residual
units in the suggested model makes it easier to
extract lung segmentation information. Perfor-
mance comparisons of U-Net and E-Net were also
performed [162]. These models partition pulmo-
nary fibrosis parenchyma quickly and effectively.

Furthermore, a U-Net-based lung segmentation
approach was developed that had an expanding
route for high-level information and a contract-
ing route for low-level information [163]. The
model achieved a Dice coefficient of 0.9502 in
the experiments. Mask R-CNN and supervised
and unsupervised machine learning were used to
produce another automated lung segmentation
method [164]. The benchmarked methods were
slower and less precise than our approach, which
achieved a segmentation precision of 97.68% and
was completed in 11.2 s.

Setio et al. presented a multi-view convolution
network to recognize lung nodules using discrimina-
tive features of training data [165]. The three-nod-
ule potential detectors target solid, subsolid, and
large nodules. The proposed method integrates
several 2-D ConvNet streams with a reliable clas-

Arch Med Sci



Yongzhong Xu, Yunxin Li, Feng Wang, Yafei Zhang, Delong Huang

sification algorithm. The LIDC-IDRI dataset shows
four false positives per scan and 85.4% detection
sensitivity. Similarly, a 3D CNN was trained using
LIDC dataset volumes of interest to autonomously
identify lung nodules [166]. Furthermore, a 3D CNN
was employed to quickly produce the volume score
map in a single run by generating a 3D fully con-
volutional network (FCN). Candidate regions of in-
terest were quickly generated by the discriminating
CNN using the FCN-based architecture.

In another study [167], DL and shape-driv-
en level sets were employed to produce anoth-
er automatic lung nodule segmentation system.
The invention of shape-driven level sets was the
first step toward fine segmentation. Similarly, the
model was automatically initialized by the level
sets using seed points from the deep network’s
coarse segmentation.

Conclusion and recommendations

This study highlights the significant progress
made in pulmonary nodule diagnosis and seg-
mentation through deep learning (DL) techniques.
The study addresses issues including heterogene-
ity, low contrast variations, and the visual similar-
ities between benign and malignant formations in
CT imaging by using CNNs and transfers learning
techniques to improve the accuracy of lung nod-
ule identification and delineation. The integration
of DL approaches has shown superiority over tra-
ditional computer-aided diagnostic (CAD) systems
that rely on hand-crafted features, offering a more
robust and automated solution for early lung can-
cer detection.

For future research, a deeper exploration of DL
model interpretability is crucial to clarify the spe-
cific features and contextual information these
networks use to distinguish between benign and
malignant nodules. Furthermore, expanding the
diversity and size of annotated datasets will en-
hance the generalizability and performance of DL
models. Collaborative efforts between multidis-
ciplinary teams, including radiologists, data sci-
entists, and clinicians, are essential to translate
these technological advancements into clinical
practice, ultimately improving patient outcomes
through early and accurate lung cancer diagnosis.
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