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A b s t r a c t

Introduction: Early diagnosis is crucial for improving the prognosis of lung 
cancer, one of the leading causes of cancer-related deaths. Lung cancer in-
cludes small cell lung cancer (SCLC, ~15% of cases) and non-small cell lung 
cancer (NSCLC, ~80–85%). Prognosis depends on the stage at diagnosis: the 
5-year survival rate is 65% for localized NSCLC but only 9% for distant-stage 
disease. Radiologists face challenges distinguishing benign from malignant 
pulmonary nodules on computed tomography scans.
Methods: This review explores deep learning (DL) methods, including multi-
view convolutional neural networks (CNNs) and 3D models for nodule seg-
mentation, emphasizing volumetric assessments for malignancy prediction.
Results: CNNs effectively analyze CT data, achieving 94.2% sensitivity with 
1.0 false positives per scan in lung nodule detection.
Conclusions: DL enhances diagnostic accuracy, reduces radiologist work-
load, and enables earlier lung cancer detection. Further research is needed 
to improve model adaptability across diverse clinical settings.

Key words: malignant tumor, pathology, morphological detection, radiology 
and oncology.

Introduction

Lung cancer is one of the most deadly malignancies that can endan-
ger a  person’s life or health [1]. Many nations have seen lung cancer 
incidence and death rise during the last 50 years [2]. The American Can-
cer Society (ACS) projected 608,570 fatalities and 1,898,160 new cases 
in 2021 [3]. As a prominent radiological signal, lung nodules are used 
to diagnose lung cancer early. Diameter determines nodule malignancy 
[4]. Nodules in the pulmonary interstitium, which consists of the base-
ment membrane, pulmonary capillary endothelium, alveolar epithelium, 
and perilymphatic and perivascular tissues, are typically small, spherical, 
and circumscribed [5, 6]. Lung nodules vary in size, shape, and kind [7]. 
Nodules can vary in size from less than 2 mm to 30 mm, and some are 
difficult to detect because of their complex circulatory connections in 
places with numerous vessels [8]. There are certain solid and sub-solid 
nodules (SSNs) with densities that are marginally greater than those of 
the parenchyma of the lung [9]. Solid nodules (SNs) are the most com-
mon nodules and comprise the core functioning lung tissues, while SSNs 
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often represent early-stage lung cancers appear-
ing as areas of partial ground-glass opacity. SSNs 
may be part-solid or pure ground-glass nodules 
[10]. These nodules do not obscure the broncho-
vascular structures, but their opacities are denser 
than those of the surrounding tissues [7]. 

Accurate nodule diameter measurements are 
essential for diagnosis since nodule size is cor-
related with malignancy. Several studies [5, 11, 
12] offer valuable insights [13]. The End-Use Load 
and Consumer Assessment Program (ELCAP) da-
tabase [3] reports a 1% malignancy risk for nod-
ules under 5 mm, 24% for 6–10 mm, 33% for 
11–20 mm, and 80% for 20+ mm [14]. However, 
measuring the diameters of extremely small nod-
ules may result in errors. The therapy for cancer 
of the lung nodules is complicated. Almost 70% 
of individuals with lung cancer require radiation 
treatment; however, radiation-induced lung dam-
age may reduce treatment  rates and raise mor-
bidity and death. Radiologists rely on comput-
er-aided diagnostic (CAD) technologies to extract 
more information from nodules and enhance 
classification accuracy. CAD systems minimize ob-
servational errors, false-negative rates, and med-
ical image interpretation and diagnostic second 
opinions [15, 16]. Numerous studies indicate that 
CAD systems improve image diagnosis, with low-
er inter-observer variance [17]. CAD systems can 
also quantify clinical decisions such as biopsy rec-
ommendations [18], facilitate diagnostic checks, 
minimize thoracotomies and false-positive biop-
sies [16, 19], and distinguish tumor malignancies 
[20, 21]. Clinical success has led to the introduc-
tion of CAD models for lung cancer diagnosis. Ear-
ly diagnosis of lung nodules may improve survival 
using such devices. Current computed tomogra-
phy (CT) CAD applications search for spherically 
distributed lung nodule-like pulmonary densities 
[15]. Thus, lung nodule screening by CT CAD has 
become a prominent area of research. Lung nod-
ule detection initially was based on non-machine 
learning techniques [22–28]. Later, data-driven 
machine learning-based algorithms [29–34] were 
developed to delineate the ideal nodule border 
[35]. Deep learning (DL) inspired algorithms have 
recently attracted interest because of their pre-
cise predictions. Unlike traditional CAD systems, 
DL-based models can be optimized and applied 
to vast volumes of data [36]. DL using CNNs has 
improved pulmonary nodule diagnosis and treat-
ment [37–40]. Three modules of DL are used to 
recognize, segment, and categorize lung nodules. 
Detection identifies the nodule, segmentation de-
lineates its voxels, and classification determines 
whether it is benign or malignant [35]. 

Lung cancer often remains asymptomatic in 
its early stages, leading to delayed diagnoses. 

When symptoms appear, they frequently include 
shortness of breath, wheezing, hoarseness, chest 
pain, coughing up blood, and a persistent cough. 
Additional signs may involve recurrent respiratory 
infections, unexplained weight loss, and fatigue. 
Moreover, these symptoms might differ from per-
son to person and can mimic those of other respi-
ratory disorders [41]. 

Regarding mortality, lung cancer remains 
a leading cause of cancer-related deaths globally. 
For instance, in the United States, an estimated 
124,730 lung cancer-related deaths are antici-
pated for 2025. The mortality rate is significantly 
higher in older populations, with three-quarters 
of lung cancer deaths occurring among those 
aged 65 and older. Increasing survival rates re-
quire early detection through screening programs, 
since lung cancer can often be identified at an ad-
vanced stage when there are few available treat-
ment choices [41].

Previous studies have explored the detec-
tion  approaches for pulmonary nodules [35, 36, 
42–48] with various goals. The primary aim of 
this article is to provide a comprehensive review 
of deep learning (DL) methodologies employed 
for pulmonary nodule identification and classifi-
cation in CT images. This study aims to explore 
the effectiveness of various DL models, including 
multi-view convolutional neural networks (CNNs) 
and 3D architectures, in improving diagnostic ac-
curacy and efficiency in lung cancer screening. 
Furthermore, it aims to identify current challeng-
es, such as data variability and the need for ex-
ternal validation, and suggest directions for future 
research to facilitate the integration of these ad-
vanced technologies into routine clinical practice. 
This study introduces a novel deep learning-based 
system using two 3D models for automated pul-
monary nodule detection, aiming to enhance di-
agnostic accuracy and reduce false positives. 

Nodule detection 

Identifying microscopic pulmonary nodules is 
challenging yet important for lung cancer diagno-
sis. Chest volumetric CT images exceed 9 million 
voxels. Five-mm lung nodules occupy 130 vox-
els, corresponding to about 1.4 × 10–5 of the lung 
volume [49]. Radiologists may be able to detect 
these nodules based on their shape, size, densi-
ty, location, and closeness to adjacent structures. 
Early CT screening missed 8.9% of malignancies in 
the NLST CT screening arm [50]. The pathological 
analysis of biopsy samples is still the most reliable 
method for identifying and defining pulmonary 
nodules, even though imaging approaches are sig-
nificant for their detection. Although having two 
observers simultaneously read a  scan improves 
diagnostic sensitivity, performing it repeatedly 
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is time-consuming and impracticable [51]. This 
emphasizes the significance of machine-learning 
technology to assist radiologists detect nodules, 
one of the most studied CAD applications that 
reduce  the time needed to interpret scans [52]. 
Several studies have demonstrated that deep 
learning may improve nodule detection sensitiv-
ity. Figure 1 shows the steps in the lung nodule 
treatment route using AI. 

This CAD application has been extensively in-
vestigated and has been demonstrated to mini-
mize scan interpretation time [52]. Various studies 
have reported that deep learning can enhance the 
sensitivity of nodule identification [53].

Nodule segmentation

Malignancy is strongly predicted by nodule 
size; in the NELSON trial, those with nodules 
< 100 mm3 had the same baseline cancer risk 
(0.5%) as those without nodules [54]. Traditional 
nodule size assessment involves manual 2D cali-
per measurement of the largest transverse diam-
eter. Current screening studies and national and 
worldwide guidelines on nodule treatment have 
recommended evaluating volume rather than di-
ameter because it is less susceptible to intra- and 
interobserver variability [55], better incorporates 
the three-dimensional (3D)  character of a  lung 
nodule [56], is more susceptible to size change, 
and detects malignancy sooner than 2D diam-
eter measures [57]. Nodule segmentation is es-
sential for volumetric measurements. Numerous 
CAD methods for nodule segmentation have been 
developed since the 1980s [44]. Detecting micro-
scopic pulmonary nodules is challenging yet sig-
nificant for lung cancer diagnosis. Chest volumet-
ric CT images exceed 9 million voxels. Five-mm 
lung nodules occupy 130 voxels, corresponding to 
about 1.4 × 10–5 of the lung volume. These nod-
ules may be detectable by radiologists depending 
on their shape, size, density, location, and prox-
imity to other structures.16e18 Early CT screen-
ing missed 8.9% of malignancies in the NLST CT 
screening arm [58].

Subsolid nodules are more challenging to seg-
ment than solid lesions because there is less at-
tenuation difference between the tumor and the 
surrounding parenchyma. It is also more challeng-
ing to distinguish the solid component of these 
very large nodules from nearby vessels. However, 
current research indicates that these problems 
can be addressed [59]. Multiple manual, semi-au-
tomatic, and automated volumetric analysis 
software programs have been reported in recent 
years. Although these software tools may produce 
slightly different size measurements, they provide 
reliable repeat measurements. The variance is 
larger in irregular and juxta-pleural nodules [60]. 

The British Thoracic Society’s pulmonary nodule 
management guidelines suggest reducing vari-
ability in nodule volumetry [61]. 

Research has demonstrated that deep learning 
can improve nodule segmentation. A single click 
can volumetrically segment 7,927 NLST nodules 
using a  deep learning model. These parameters 
were used to evaluate the Brock University Cancer 
Prediction Model’s malignancy prediction accu-
racy. The AUC for volumetric analysis was 88.17, 
compared to 85.96 for NLST radiologists’ 2D mea-
surements, demonstrating a 2.21% enhancement 
in predictive value. As CNN algorithms implicitly 
segment nodules, deep learning may eliminate 
nodule segmentation [38, 62]. 

The issue of detecting lung nodules in daily 
clinical practice

Lung cancer is the leading cause of cancer 
death worldwide [63]. Symptoms typically appear 
after cancer has spread, and therefore late diag-
nosis is usual [64]. To detect malignancies early, 
the US, China, and Korea have implemented na-
tionwide lung tumor screening programs. High-
risk individuals (older smokers) are invited for 
a low-dose CT lung scan in a screening program 
[65]. Lung cancer may manifest as a  “nodule” 
or spot. Trials show that low-dose CT screening 
reduces lung carcinoma mortality [66, 67], but 
Europe and other nations have been sluggish in 
embracing it. Therefore, early-stage lung cancer 
is often identified incidentally through nodules 
observed in CT scans carried out for unrelated 
medical reasons [68, 69]. It can be challenging 
to detect lung nodules. CT scans are highly het-
erogeneous and not optimized to identify lung 
cancer due to the growing diversity of scanning 
methods and patients [49]. Nodule detection and 
treatment will become more crucial because ra-
diologists’ workload has increased significantly 
over the past 15 years, primarily due to the de-
mand for CT imaging [70]. 

Figure 1. Steps in the lung nodule treatment route, 
where AI might have a role
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Artificial intelligence for radiological support

AI software may help radiologists find lung le-
sions in CT images. The use of AI software as an 
auxiliary reader enhances radiologists’ reading 
time, management recommendation uniformity, 
and detection sensitivity [71–74]. A  few studies 
have explored AI solutions in non-screening envi-
ronments. The generalization performance of the 
AI software was tested using a multi-center study 
approach to expand this research area and ad-
dress three common issues. Second, we used five 
qualified thoracic radiologists rather than one or 
two to establish the reference standard, because 
nodule detection varies greatly. Third, and per-
haps most importantly, we examined whether 
an AI system could identify the important nod-
ules using reliable nodule-level malignancy labels. 
Research on AI has either looked at all nodules 
(regardless of malignancy) or scan-level cancer 
detection. Therefore, our effort aims to connect AI 
investigations for nodule identification and lung 
malignancy.

Connecting the gap between nodule 
detection and lung cancer AI studies

The DL-based technique was retrospectively 
tested for identifying actionable benign nodules 
(requiring follow-up), minor lung cancers, and me-
tastases in CT images from two Dutch hospitals’ 
typical clinical contexts. Moreover, the nodule de-
tection method locates a specific lung region slice 
by slice using a CT scan. Five-slice overlapping CT 
volumes yield nodule candidates. Finally, nine slic-
es from a 3D area around each nodule candidate 
are inspected for nodules. Nodules from lung ar-
teries and other structures can be promptly iden-
tified in CT scans using the 2.5D identification 
method (Figure 2). 

DL strategies for detecting lung cancer

Automation has the potential to assist in di-
agnosing various diseases through CAD [75]. This 
method employs software to identify, predict, and 
classify symptoms, assisting in identifying the pres-
ence and severity of a disease. This study reviews 
CAD approaches for lung CT nodule detection. CT 
scans can identify nodules of lung cancer, espe-
cially large ones in the advanced stages [76]. The 
nodules need to be identified early because they 
are often very small before a lung tumor the size of 
a golf ball grows. Figure 3 shows that manually dis-
tinguishing and segmenting nodules is challenging.

CNNs are highly effective for image classifica-
tion. Their architecture is inspired by the human 
visual system. CNN filters assess a small portion 
of the image by simulating neurons with receptive 
zones. Deeper layers of these neurons may learn 
and detect more complicated hierarchical pat-
terns due to their larger receptive fields. CNNs can 
be thought of as a collection of sliding windows 
with small neural networks spread around the im-
age [77]. 

CT volume

Model pipeline

Lung detection Nodule candidate 
detection False positive 

reduction

Final prediction

Figure 2. Overview of the planned lung nodule detecting system

Figure 3. Methods for lung tumor detection
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CNNs can  learn patterns regardless of loca-
tion due to their location invariance. The filter 
can  learn image designs using sliding windows. 
Since CNNs are hierarchical, they can automati-
cally identify more abstract patterns [78]. Bound-
aries and structures may be occupied by the initial 
layers, followed by forms in the intermediate lay-
ers and overall object shapes in the higher layers. 
CNNs are capable of analyzing 3D images rather 
than slices from CT scans. A sliding cube, instead 
of a movable pane, can be employed to develop 
3D CNNs for feature extraction at each stage [79]. 

Computer-assisted lung cancer detection 
using CT images

CT-based lung tumor identification and de-
tection employing DL algorithms has been the 
subject of numerous studies. Healthy and un-
healthy CT scans have different image attenuation 
patterns. To separate the lungs from the nearby 
tissues, numerical, grey-level thresholding, and 
shape-based methods have been employed [80]. 
Brown and coworkers introduced an automatic, 
knowledge-based chest segmentation approach 
[81]. This approach requires organ volume, rel-
ative location, shape, and X-ray attenuation. To 
extract useful CT image data, Brown et al. devel-
oped a  knowledge-based automatic segmenta-
tion method [82]. They automatically created in-
direct quantitative values of single lung activities 
that routine pulmonary function tests cannot. Hu 
et al. created a completely automated pulmonary 
segmentation approach from 3D  lung X-ray im-
ages [83]. The technique was tested employing 
3D CT information sets from 8 healthy individuals. 
Computer and human analysis showed a 0.8-pixel 
root mean square difference. Lung segmentation 
was fully automated using a pixel-value threshold 
based on slices, together with two sets of cate-
gorization criteria that incorporate size, circularity, 
and position data [84]. They achieved 94.0% seg-
mentation precision with 2969 thick slice imag-
es and 97.6% with 1161 thin slice images based 
on 101 CT cases [85]. The lung volume was seg-
mented and visualized using anisotropic filtering 
and wavelet transform-based interpolation. The 
robustness and application of the approach were 
demonstrated using single-detector CT scans, 
which showed improvements in volume overlap 
and volume difference percentages. 

Swierczynski et al. devised a  level-set-based 
segmentation approach that combined tradition-
al segmentation with active dense displaced field 
prediction [86]. The developed approach outper-
formed methods that performed registration and 
segmentation independently. A  substitutional 
level set technique for CT scan lung nodule seg-
mentation was developed using a global lung nod-

ule form model [87]. Nodule kind or position did 
not affect the proposed technique. Moreover, to 
improve lung nodule detection, a parameter-free 
segmentation method was developed that fo-
cused on juxtapleural lesions [88]. LIDC’s 403 jux-
tapleural nodules indicated a  92.6% re-inclusion 
rate. Zhang et al. [89] developed an automated 
lung segmentation approach and a  global opti-
mum hybrid geometric active contour model. In-
corporating global region and edge information 
increased algorithm performance in places with 
narrow bands or weak boundaries. Furthermore, 
in another study [90], a sphere was placed within 
the segmented lung target and deformed in re-
sponse to forces applied to the lung boundaries. 
The system was tested on 40 CT images, achiev-
ing an average F-measure of 99.22%.

Researchers have been examining CNNs’ du-
rability in computer vision for 10 years. Multi-
ple CNN-based methods have been reported for 
medical and natural image processing. Sever-
al methods have been proposed using AI and 
CT images for the detection of lung cancer [91]. 
Lung nodule classification was carried out using 
a three-dimensional CNN with three modules. This 
technique outperformed manual evaluation with 
84.4% sensitivity. Nasser and Naser [92] used an 
ANN to diagnose lung cancer with 96.67% accu-
racy. Cifci [93] reported that DL, combined with 
Instantaneously Trained Neural Networks (DITNN) 
and Increased Profuse Clustering (IPCT), improved 
lung image quality and lung cancer detection, 
achieving an accuracy of 98.42%. Moreover, in 
another study [94], a  double convolutional deep 
neural network (CDNN) and a regular CDNN were 
employed to identify lung nodules, achieving an 
accuracy of 0.909 and 0.872.

Wang et al. [95] developed a CAD system with 
low false negative and positive rates as well as high 
nodule detection precision. In another approach 
[96], the deep model achieved 95.41% sensitivity 
in lung image detection using inception-v3 trans-
fer learning instead of randomized initialization. 
Finally, a  multi-group patch-based learning sys-
tem was reported, revealing an 80.06% sensitivity 
with 4.7 false positives per scan or a 94% sensi-
tivity with 15.1 false positives per scan. Further-
more, a dense convolutional binary-tree network 
(DenseBTNet) was developed which showed high 
parameter effectiveness and extracted features at 
several scales [97]. Li et al. found that early de-
tection reduces the death rate from lung cancer 
[98]. They developed a DL-CAD system that could 
recognize and classify lung nodules under 3 mm 
and estimate their malignancy risk. The system 
demonstrated an accuracy of 86.2% in sensitivi-
ty testing carried out on the LIDC-IDRI and NLST 
datasets. 
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Similarly, a  deep 3D residual CNN was em-
ployed to reduce false positives for automated 
lung nodule diagnosis in CT images [99]. A  spa-
tial pooling and cropping (SPC) layer gathered 
multi-level contextual information, and their 
27-layer network achieved 98.3% sensitivity using 
the LUNA-16 dataset. Teramoto et al. [100] devel-
oped a deep convolutional neural network (DCNN) 
comprising convolutional, completely linked, and 
pooling layers to automatically classify lung can-
cer. DCNN training employed 76 cancer cases and 
achieved 71% classification accuracy. In a  study, 
a 3D convolutional neural network was employed 
for volumetric CT-based computer-aided lung nod-
ule identification [101]. They used the LUNA16 
dataset to test their model, which had 3D con-
volutional, max-pooling, completely linked, and 
softmax layers. Their findings suggested that 3D 
CNNs significantly improved detection accuracy, 
achieving a sensitivity of 94.4%. 

Similarly, DL algorithms were employed to pre-
dict lung cancer survival, determine EGFR mutation 
status, and classify subtypes based on CT scans 
[102, 103]. Several studies have explored the use 
of DL algorithms for pulmonary nodule segmenta-
tion and categorization in CT imaging [35]. A 3D 
deep-learning model and low-dose chest CT imag-
es were employed to develop an end-to-end lung 
tumor detection system [104]. Shao et al. [105] 
employed DL algorithms to screen mobile low-dose 
CT images for lung tumors in resource-constrained 
areas. Moreover, a model [106] was designed that 
identified the EGFR mutations and expression of 
PD-L1 status in non-small-cell lung tumors using 
CT images. A  study [107] provided an in-depth 
analysis of different DL approaches for identifying 
and diagnosing lung nodules in CT scans. 

Deep neural networks were employed to seg-
ment lung CT images [11] in addition to catego-
rization. Lakshmanaprabu et al. [108] determined 
that the DL model achieved the highest classifi-
cation accuracy of 96.3% for lung tumors using 
CT data. The application of DL models in chest ra-
diography and lung tumor identification using CT 
images was investigated by Lee et al. [109], who 
observed that these models may increase clini-
cal efficacy and accuracy. To identify lung cancer, 
Bhatia et al. [110] proposed a DL technique with 
93.55% sensitivity and 91.5% specificity. More-
over, another model [111] was designed using DL 
on CT scans to detect expression of PD-L1 in non-
small cell lung tumors and predict immune check-
point suppressor responses for a smaller nodule. 
Hu et al. [112] proposed a  DL system for lung 
cancer stage extraction from CT data with an F1 
score of 0.848. A machine learning strategy that 
can detect preinvasive, benign, and invasive lung 
nodules on 1-mm-thick CT scans was proposed 

[74, 113] to demonstrate the efficacy of a DL-en-
hanced CAD system in recognizing them. Deep 
learning was also used to predict lung cancer with 
an accuracy of 87.63% [114]. 

Rajasekar et al. [115] developed six DL models 
(CNN GD, CNN, Inception V3, VGG-16, Resnet-50, 
and VGG-19) that efficiently identified lung tu-
mors by employing CT scans and histopathology 
images. CNN-GD outperformed other models in 
precision, F-score, sensitivity, accuracy, and spec-
ificity, achieving 97.86%, 96.39%, 96.79%, and 
97.40%, respectively. Wankhade et al. [116] pre-
sented a  3D-CNN and recurrent neural network 
(RNN) approach that achieved 95% accuracy in 
classifying malignant lung nodules. Efficiency can 
be improved using big-data analytics and cascade 
classifiers. Abunajm et al. [117] proposed a CNN-
based model for primary lung cancer prediction 
and recognition using CT scan imaging, distin-
guishing malignant, benign, and normal cases. 
Initial lung cancer detection improves survival and 
timing of therapy. The model reduced false posi-
tives and achieved an accuracy of 99.45%. 

In a study [118], radiomics and deep learning 
were employed for lung cancer identification and 
treatment. Experts explain that radiomics enables 
the quantification of medical images, enhanc-
ing cancer diagnosis and prognosis. Deep learn-
ing systems can be used for data analysis. Deep 
learning was used to forecast the risk of cardio-
vascular disorders from low-dose CT scans used to 
test for lung tumors [119]. The researchers used 
a massive cardiovascular risk dataset to train a DL 
system to predict heart disease risk from lung CT 
images. Moreover, in a study [120], dense cluster-
ing and DL were combined to immediately train 
neural networks to improve lung tumor detection 
from CT images. They demonstrated the efficien-
cy of their lung nodule detection approach by 
comparing it with existing lung cancer detection 
methods. A newly developed DCNN was assessed 
on a large dataset of CT scans to detect and classi-
fy lung nodules in 3D CT images [121]. Zhao et al. 
[122] proposed a weighted discriminatory extreme 
learning machine for electronic nasal system lung 
tumor detection. They were able to differentiate 
between the two groups by using an electronic na-
sal device to examine breath samples from lung 
tumor patients and healthy controls. Chen et al. 
[123] developed a multimodality attention-guided 
3D detection system for non-small cell lung can-
cer using 18 F-FDG PET/CT images. The accuracy 
of PET/CT lung cancer detection was improved by 
the researchers using deep learning algorithms, 
which could help in early diagnosis and treatment. 
Table I lists the uses, advantages, and drawbacks 
of lung imaging technologies, while Table II lists 
the models studied between 2018 and 2022. 



Clinical applications of deep learning in distinguishing benign from malignant pulmonary nodules in computed tomography scans

Arch Med Sci� 7

Table I. Uses, advantages, and drawbacks of lung imaging technologies

Technology Uses Advantages Drawbacks

CT Imaging Primary detection of lung 
tumors; segmentation of 

lung nodules.

High-resolution imaging; 
clear separation of lung 

vs. non-lung areas due to 
attenuation differences.

Susceptible to heterogeneity, 
poor contrast variations, 

noise, and difficulty 
distinguishing benign from 

malignant nodules.

MRI Imaging Delineation of organ/lesion 
boundaries; morphological 

assessment.

Improved soft tissue 
contrast.

Lower spatial resolution 
for lung structures; higher 

sensitivity to motion 
artifacts; less commonly 

used for lung nodule 
detection.

EBUS (Endobronchial 
Ultrasound)

Visualization of internal 
lung structures; assisting in 

tumor characterization.

Minimally invasive; provides 
real-time imaging.

Limited research on CNN 
interpretation; challenges in 
differentiating benign from 

malignant lesions.

Traditional CADx 
Systems

Automated analysis using 
hand-crafted features.

Established methodology; 
less computationally 

intensive.

Lower accuracy compared to 
DL-based methods; reliance 

on manually engineered 
features that are less robust 

and adaptable.

Table II. Studied models for lung image segmentation and nodule detection (2018–2022)

Model/study Architecture/method Key features/performance

Basic CNN Model for Lung 
Segmentation

Single convolution layer (6 kernels), 
max pooling, 2 fully connected layers; 

clustering-based training dataset.

Utilizes k-means clustering for dataset 
creation; evaluated via eightfold cross-

validation.

Automated Lung 
Segmentation via Image 
Decomposition & Filtering

Combination of image decomposition-
based filtering, wavelet transformation, 

and morphological methods with contour 
correction.

Denoises CT images while preserving lung 
outlines.

Residual U-Net for Lung 
CT Segmentation

Residual U-Net incorporating residual 
units.

Designed to reduce false positives and 
extract robust segmentation features.

U-Net vs. E-Net 
Comparison for 
Pulmonary Fibrosis 
Segmentation

Comparative study between U-Net and 
E-Net architectures.

Achieves fast and effective segmentation 
of pulmonary fibrosis parenchyma.

U-Net-Based Lung 
Segmentation with Dual 
Paths

U-Net variant featuring an expanding 
path for high-level and contracting path 

for low-level information.

High segmentation accuracy with a Dice 
coefficient of 0.9502.

Mask R-CNN-Based Lung 
Segmentation

Mask R-CNN integrated with supervised 
and unsupervised machine learning.

Rapid segmentation (11.2 s) with high 
precision (97.68%).

Multi-View Convolutional 
Network for Nodule 
Recognition

Integration of several 2D ConvNet 
streams with a reliable classification 

algorithm.

Targets solid, subsolid, and large nodules; 
85.4% detection sensitivity with 4 false 

positives per scan.

3D CNN and FCN for 
Autonomous Nodule 
Identification

3D CNN combined with a fully 
convolutional network (FCN).

Rapid generation of volume score maps; 
autonomous detection of candidate 

regions.

Deep Learning with 
Shape-Driven Level Sets

Combination of deep learning and level 
set methods for segmentation.

Automatic fine segmentation is initialized 
by seed points from coarse segmentation.

Developing techniques for detecting lung 
cancer

Lung cancer is a highly fatal form of cancer. Iden-
tifying cases is challenging because they typically 

manifest in the terminal stage. However, mortali-
ty can be reduced by early disease detection and 
treatment. CT imaging is a reliable diagnostic meth-
od since it can detect all predicted and unexpect-
ed lung tumor nodules [124]. However, medical 
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practitioners and radiologists may misinterpret CT 
scan intensity and anatomical structure, making 
malignant cell identification difficult [125]. There-
fore, computer-aided diagnostic methods are being 
employed by radiologists and physicians to diag-
nose cancer [126]. Numerous technologies have 
been established, and research into lung cancer 
detection is still ongoing. Certain systems need to 
be improved to achieve 100% detection accuracy.

Lung cancer may be cured with the correct 
medications, early detection, and a  precise eti-
ology. Early lung tumor detection is therefore 
essential, especially when screening high-risk 
populations such as oil field workers, smokers, in-
dividuals exposed to fumes, and others, for whom 
new biomarkers are required. The precision of the 
diagnosis also affects the best course of treat-
ment for lung cancer. Therefore, finding sensitive 
and precise biomarkers is essential for primary di-
agnosis. Low-dose CT is used in recent lung cancer 
screening methods. Compared to cases without 
screening, the NELSON trial [127] reported that 
this screening method provides 85% sensitivity 
and 99% specificity. A recent study [128] demon-
strated a false-positive rate of less than 81%, ne-
cessitating further imaging or testing due to the 
high incidence.

To explain the lung cancer stage and screen-
ing schedule, a brief overview is given here. SCLC 
and NSCLC are the primary lung cancer subtypes. 
SCLCs are central tumors that form airway submu-
cosal perihilar masses. Histological studies show 
that basal bronchial epithelial neuroendocrine 
cells cause this malignancy. Most cells in this sce-
nario are spindle-shaped, rounded, or small with 
minimal granular chromatin, cytoplasm, and ne-
crosis [129]. Unlike pure and mixed NSCLC, which 
may include liver, brain, and bone metastases 
[130], SCLC has limited or extensive phases [131]. 

This malignancy [132] may be characterized by 
metastases to the brain, liver, and bones, with its 
stages classified as either confined or extensive 
[133]. Limited SCLC includes the ipsilateral me-
diastinum, mediastinal, or supraclavicular lymph 
nodes at a single radiation site. It is a supraclavic-
ular lymph node if it is located on the same side 
as the cancerous chest. However, broad SCLC can 
extend to the second lung lobe, bone marrow, and 
lymph nodes. Chest radiography produces more 
detailed images than a chest CT scan, but it is less 
sensitive. With these characteristics, a  comput-
er-aided diagnostic (CAD) model for chest radio-
graphs would improve detection sensitivity while 
preserving low false-positive (FP) rates [134].

Cytological analysis of sputum, especially many 
samples, may help diagnose lung cancer and find 
a core tumor in the larger bronchi. Sputum sam-
ples seldom include very small adenocarcinomas 

under 2 cm that originate from airway branch-
es such as the bronchi, bronchioles, and alveoli 
[135]. As cigarette exposure has influenced the 
incidence of squamous cell carcinomas and ade-
nocarcinomas, this information has become more 
and more crucial. Several screening investiga-
tions found that sputum cytology had a 20–30% 
sensitivity for primary lung tumors. Early stud-
ies found that the quantity and form of cells in 
deeper airways can alter pre-malignant detection 
[136]. It was reported [137] that regular sputum 
cytology is neither sensitive nor precise for lung 
cancer screening. White light bronchoscopy is the 
most common histological lung cancer diagnosis 
procedure. Bronchoscopy can detect pre-malig-
nant lesions. Tissue biopsy remains the standard 
method for detecting cancer in general hospitals. 
The size of lung tissue biopsy specimens is crucial 
for the histopathological detection of lung cancer 
subtypes. The first biopsy needs to confirm the 
diagnosis to avoid recurrent operations that may 
cause difficulties and delay therapy. Fiber-optic 
bronchoscopy, image-guided trans-thoracic nee-
dle aspiration, endobronchial ultrasound, pleural 
fluid examination (thoracentesis), mediastinos-
copy, thoracoscopy, and operations are employed 
to diagnose lung tumors. These methods are ex-
pensive, error-prone, and need numerous samples 
[138].

Spiral CT images enhance the performance of 
peripheral small tumor diagnosis. However, these 
images show significantly reduced sensitivity for 
central tumor identification (primarily squamous 
cell carcinoma) than peripheral tumors [139]. In 
the National Lung Screening Trial (NLST) using 
low-dose CT (LDCT), 96% of positive screenings 
were false positives, with over 40% of participants 
experiencing at least one positive result [66]. The 
high frequency of false positive screening results 
in expensive and intrusive therapies for smokers 
without malignancies. For diagnosis, screening for 
lung cancer with low-cost, non-invasive methods 
is essential.

CNN, a  kind of DL, has advanced radiology 
[140, 141]. In chest radiography, DL-based mod-
els have also demonstrated success in detecting 
masses and nodules, with mean false positives 
per image (mFPIs) of 0.02–0.34 and sensitivities 
of 0.51–0.84. Moreover, radiologists were able to 
identify nodules more accurately with CAD mod-
els than with screening procedures without them. 
It can be difficult for radiologists to identify and 
differentiate between benign and malignant nod-
ules [142, 143]. Radiologists also need to monitor 
nodule form and marginal features as typical an-
atomical structures mimic healthy nodules. Even 
the most skilled radiologists may make diagnostic 
mistakes due to circumstances rather than their 
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own shortcomings [144, 145]. The main DL meth-
ods for lesion identification are segmentation and 
detection. The detection approach labels an area, 
unlike the segmentation method, which labels 
pixels. Segmentation provides more exact pixel 
labels than detection. Pixel-level lesion size cate-
gorization enhances clinical diagnosis. Lesion size 
and form variations are easier to monitor using 
pixel-level classification because the shape may 
affect detection. As part of the evaluation of man-
agement effectiveness, it also displays lesion size 
and long and short diameters [146]. 

Investigation gaps and limitations

Better survival rates depend on the primary de-
tection of lung tumors; however, this is difficult 
because of factors such as heterogeneity, low con-
trast fluctuations, and visual similarities between 
benign and malignant nodules in CT images [147]. 
Identifying lung nodules with medical imaging 
is challenging owing to the complex architecture 
and time-consuming acquisition of labeled sam-
ples [148]. Deep learning algorithms are frequent-
ly compared to traditional CAD systems that em-
ploy manually created features, even though they 
can  automatically identify features in lung nod-
ule CT scans [149]. There is limited research on 
employing CNNs to analyze EBUS images, which 
makes it challenging to distinguish benign from 
potentially malignant tumors [150]. While some 
studies have employed CT scans to predict mor-
tality risks in NSCLC patients, they have not identi-
fied primary-stage lung or lobe-related malignan-
cies [151]. The mechanism by which CNNs predict 
nodule malignancy and the influence of area or 
contextual information on their output remains 
unclear [152]. Computer-assisted lung disease 
detection is crucial owing to noise signals affect-
ing cancer image quality during acquisition [153]. 
Training DCNNs is challenging because of the var-
ious kinds of lung nodules and limited availability 
of positive samples in many datasets [154]. 

Segmentation process 

Image segmentation shows organ or structur-
al outlines. DL techniques improve semantic seg-
mentation, which makes them useful for medical 
diagnosis. This method evaluates the sizes and 
shapes of organs or lesions using MRI or CT scans 
[155, 156]. Many researchers have proposed auto-
mated segmentation methods. However, pre-pro-
cessing typically involves edge detection and the 
application of mathematical filters. Further, deep 
machine learning extracted complex traits. Creat-
ing and extracting hand-crafted features was the 
biggest challenge for such a system, limiting de-
ployment. Medical researchers segmented images 

using 2D, 2.5D, and 3D CNN [157, 158]. A CT scan 
can easily separate the lung and non-lung areas in 
a typical lung due to their different image attenua-
tion. Early lung segmentation approaches encom-
passed numerical methods, gray-level threshold-
ing, and shape-based approaches to distinguish 
lung regions from non-lung areas.

Various CNN-based methods have been es-
tablished for both medical and natural image 
processing. Early research focused on lung nod-
ule segmentation [156]. In a study [159], a basic 
CNN model for lung segmentation was developed 
employing a  clustering algorithm-based training 
dataset. The k-means clustering technique divided 
CT slices into two groups using the image patch’s 
mean and minimum intensity. Cross-shaped con-
firmation, volume intersection, linked component 
analysis, and patch expansion were used to con-
struct the dataset. The CNN design comprised 
a single layer of convolution with 6 kernels, one 
maximally pooled layer, and two fully connected 
layers. An eightfold cross-validation method was 
employed to evaluate CNN models trained on 
the produced datasets. The researchers designed 
automated lung segmentation techniques to de-
noise lung CT images without affecting lung out-
lines using an image decomposition-based filter-
ing technique [160]. The lungs were segmented 
using wavelet transformation and morphological 
methods. Finally, contour correction was used to 
smooth the lung outlines during segmentation re-
finement. 

Khanna et al. [161] developed a  false-posi-
tive-reducing Residual U-Net for lung CT segmen-
tation. The more complex network with residual 
units in the suggested model makes it easier to 
extract lung segmentation information. Perfor-
mance comparisons of U-Net and E-Net were also 
performed [162]. These models partition pulmo-
nary fibrosis parenchyma quickly and effectively. 

Furthermore, a U-Net-based lung segmentation 
approach was developed that had an expanding 
route for high-level information and  a  contract-
ing route for low-level information [163]. The 
model achieved a  Dice coefficient of 0.9502 in 
the experiments. Mask R-CNN and supervised 
and unsupervised machine learning were used to 
produce another automated lung segmentation 
method [164]. The benchmarked methods were 
slower and less precise than our approach, which 
achieved a segmentation precision of 97.68% and 
was completed in 11.2 s. 

Setio et al. presented a multi-view convolution 
network to recognize lung nodules using discrimina-
tive features of training data [165]. The three-nod-
ule potential detectors target solid, subsolid, and 
large nodules. The proposed method integrates 
several 2-D ConvNet streams with a  reliable clas-
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sification algorithm. The LIDC-IDRI dataset shows 
four false positives per scan and 85.4% detection 
sensitivity. Similarly, a 3D CNN was trained using 
LIDC dataset volumes of interest to autonomously 
identify lung nodules [166]. Furthermore, a 3D CNN 
was employed to quickly produce the volume score 
map in a single run by generating a 3D fully con-
volutional network (FCN). Candidate regions of in-
terest were quickly generated by the discriminating 
CNN using the FCN-based architecture. 

In another study [167], DL and shape-driv-
en level sets were employed to produce anoth-
er automatic lung nodule segmentation system. 
The invention of shape-driven level sets was the 
first step toward fine segmentation. Similarly, the 
model was automatically initialized by the level 
sets using seed points from the deep network’s 
coarse segmentation.

Conclusion and recommendations 

This study highlights the significant progress 
made in pulmonary nodule diagnosis and seg-
mentation through deep learning (DL) techniques. 
The study addresses issues including heterogene-
ity, low contrast variations, and the visual similar-
ities between benign and malignant formations in 
CT imaging by using CNNs and transfers learning 
techniques to improve the accuracy of lung nod-
ule identification and delineation. The integration 
of DL approaches has shown superiority over tra-
ditional computer-aided diagnostic (CAD) systems 
that rely on hand-crafted features, offering a more 
robust and automated solution for early lung can-
cer detection.

For future research, a deeper exploration of DL 
model interpretability is crucial to clarify the spe-
cific features and contextual information these 
networks use to distinguish between benign and 
malignant nodules. Furthermore, expanding the 
diversity and size of annotated datasets will en-
hance the generalizability and performance of DL 
models. Collaborative efforts between multidis-
ciplinary teams, including radiologists, data sci-
entists, and clinicians, are essential to translate 
these technological advancements into clinical 
practice, ultimately improving patient outcomes 
through early and accurate lung cancer diagnosis.
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