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immune environment and treatment of breast cancer

Qinghua Zhang1, Guizhen Pan2*, Tingting Wang3, Jiqing Hao1*

A b s t r a c t

Introduction: Breast cancer is the leading cause of cancer-related death in 
women. Disulfidptosis is a recently identified type of cell death that may of-
fer new opportunities for cancer treatment. However, it is uncertain whether 
disulfidptosis-related lncRNAs (DRlncRNAs) are associated with BRCA. 
Material and methods: We first evaluated the expression of disulfidpto-
sis-related genes (DRGs) by RT-PCR. We then identified DRlncRNAs using 
Pearson’s correlation, followed by univariate regression to select progno-
sis-related genes. LASSO regression and multivariate Cox regression were 
used to construct a prognostic model, and ROC curves were used to eval-
uate the model’s predictive performance. We compared infiltration of var-
ious immune cells and expression of immune checkpoint genes between 
risk groups. Maftools was employed to analyze the tumor mutation burden 
(TMB) of patients. Finally, the pRRophetic package was used to analyze the 
sensitivity of patients to anticancer drugs.
Results: We found that OXSM, RPN1, SLC3A2, and SLC7A11 showed in-
creased expression levels in tumor tissues compared to normal tissues. We 
then constructed and validated a prognostic model (AC007996.1, AC004816.2, 
MIR200CHG, AL354920.1). Patients in the high-risk group had significantly re-
duced percentages of naive B cells and CD8+ T cells, and higher expression lev-
els of immune checkpoint-related genes compared to patients in the low-risk 
group, suggesting immune escape ability of the high-risk group. Patients in the 
high-risk group had a higher TMB. Finally, patients in the high-risk group had 
higher IC50 values for many targeted agents, suggesting poor drug sensitivity.
Conclusions: We identified DRG expression in breast cancer, and construct-
ed a prognostic model predicting the prognosis, the immune microenviron-
ment, TMB, and drug sensitivity.

Key words: disulfidptosis, breast cancer, lncRNA, immune checkpoint 
genes, prognostic model.

Introduction

BRCA presents a significant threat to women’s health, as evidenced 
by the latest survey, which reported approximately 287,850 new BRCA 
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diagnoses in 2022 [1]. Over the past few decades, 
the incidence of female BRCA has experienced 
a  steady increase, growing at a  rate of approxi-
mately 0.5% annually since the mid-2000s [2]. 
However, BRCA displays considerable heteroge-
neity in response to therapeutic interventions, 
making accurate prognosis a challenging task. In 
clinical practice, prognostic indicators for BRCA 
patients have traditionally relied on factors such 
as tumor stage, histological grade, and molecular 
subtype [3, 4]. Unfortunately, the predictive accu-
racy of these clinical characteristics remains sub-
optimal. Consequently, there is a pressing need to 
explore the evolving molecular landscape of BRCA, 
identify updated prognostic biomarkers, and de-
velop more advanced therapeutic strategies.

Long non-coding RNAs (lncRNAs) have emerged 
as pivotal regulators of protein-coding genes, with 
increasing evidence suggesting their involvement 
in cancer development and progression [5]. More 
and more studies have constructed lncRNA mod-
els to predict patients with cancers [6, 7]. The rela-
tionship between BRCA and lncRNAs has garnered 
substantial attention in recent years. Notably, sev-
eral lncRNAs, including HOTAIR [8], H19 [9], and  
DSCAM-AS1 [10], have been identified as crucial 
players in predicting treatment outcomes, metas-
tasis, and prognosis in BRCA. Furthermore, lncRNAs 
have been implicated in modulating the immune re-
sponse and influencing the effectiveness of immuno-
therapy by regulating the PD-1/PD-L1 pathway [11]. 
Consequently, lncRNAs hold promise as potential 
prognostic factors and therapeutic targets for BRCA.

Programmed cell death plays a  pivotal role in 
tumorigenesis and is particularly relevant in the 
context of metabolic cancer therapy, such as cu-
proptosis, a  novel cell death mechanism [12], 
which has shown promise in various cancer types. 
A recent study [13] revealed a novel regulated cell 
death process termed “disulfidptosis” in kidney 
cancer cells. This process is characterized by the 
upregulation of solute carrier family 7 member 11 
(SLC7A11), leading to the depletion of cytoplas-
mic nicotinamide adenine dinucleotide phosphate 
(NADPH) under conditions of glucose deprivation. 
Consequently, disulfide molecules accumulate, 
triggering the formation of disulfide bonds be-
tween actin cytoskeleton proteins and causing dis-
integration of the actin filament (F-actin) network. 
This ultimately results in disulfide stress and di-
sulfidptosis. Genome-wide CRISPR-Cas9 screening 
identified ten genes (GYS1, NDHFS1, OXSM, LRP-
PRC, NDUFA11, NUBPL, NCKAP1, RPN1, SLC3A2, 
and SLC7A11) associated with disulfidptosis [13]. 
This groundbreaking study suggests that disulfidp-
tosis may offer a novel target for cancer therapy. 
However, to date, limited research has explored 
the connection between disulfidptosis and BRCA.

In our research, we developed a  prognostic 
model for BRCA based on four differentially ex-
pressed disulfide-related lncRNAs (DRlncRNAs). 
Additionally, we explored the immune landscape of 
the tumor microenvironment (TME), assessed tu-
mor mutation burden (TMB), and predicted medi-
cation therapy responses using various risk scores.

Material and methods

Data acquisition and processing

We collected a total of 940 tumor samples and 
95 normal samples from patients with BRCA from 
the TCGA website (https://portal.gdc.cancer.gov/). 
We also obtained corresponding clinical details 
and somatic mutation data. Using the ‘create-
DataPartition’ function, we randomly divided the 
922 BRCA patients with survival information into 
a  training group (N = 554) and a  testing group  
(N = 368) at a 6 : 4 ratio for subsequent model 
development and validation. A c2 test was con-
ducted to ensure a balanced distribution of clin-
icopathological factors between the training and 
testing cohorts. No significant differences in clin-
ical characteristics were observed between the 
groups, as summarized in Table I. Furthermore, 
research by Liu et al. [13] identified a set of ten 
genes related to disulfidptosis (DRGs), which we 
considered in our study.

Identification of disulfidptosis-related 
genes and creation of subgroups

We utilized the “limma” package to analyze the 
levels of ten DRGs in tumor and normal tissues 
with a screening threshold of p < 0.05. To identify 
molecular subtypes of BRCA associated with di-
sulfidptosis, consensus clustering was performed 
using the k-means method via the ‘Consensus-
ClusterPlus’ package in R software, based on the 
expression of DRGs. Subsequently, expression 
profiles of DRGs between the disulfidptosis-relat-
ed subgroups were compared using differential 
expression analysis of the “limma” package. The 
disparities in the prognosis among groups in the 
Kaplan-Meier (K-M) survival curves were assessed 
using the log rank method. With p < 0.05 and  
| log2(fold change) | > 1 as the screening threshold, 
a differential analysis of subgroups was conducted 
by the “limma” package to identify differential-
ly expressed genes (DEGs). The “clusterProfiler” 
package of R software was then used to conduct 
Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) studies on DEGs  
(p < 0.05). Based on the TCGA-BRCA cohort, 22 im- 
mune cell infiltrations were calculated in each 
BRCA sample using the CIBERSORT method. Final-
ly, the immune score, stromal score, and estimate 
score were determined for each in the TCGA-BRCA 
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cohort using the ESTIMATE method in R software, 
and the differences in these scores between sub-
groups were further assessed by the Wilcoxon test.

Construction of a disulfidptosis-related 
lncRNA model

Using strawberry perl (https://strawberryperl.
com/) software, lncRNAs were screened from 
TCGA-BRCA RNA expression profiles. Disulfidpto-
sis-related lncRNAs (DRlncRNAs) were identified 
using Pearson correlation analysis, with thresh-
olds set at |R| > 0.3 and p < 0.001 between the ten 
DRGs and lncRNAs. These thresholds are widely 
utilized in similar studies exploring gene-gene or 
gene-lncRNA correlations in cancer research, en-
suring both biological relevance and statistical rig-
or [14, 15]. Univariate Cox regression analysis was 
used in the training group to identify DRlncRNAs 
related to prognosis. 

Later on, the least absolute shrinkage and se-
lection operator (LASSO) regression with cross-val-
idation was performed to identify the most pre-
dictive lncRNAs from a  larger dataset, thereby 
enhancing the accuracy and robustness of the 
model. Finally, the lncRNAs identified by LASSO 
were subjected to stepwise multivariate Cox pro-
portional hazards regression analysis to identify 
the optimal candidates and construct a disulfidp-
tosis-related lncRNA prognosis prediction model. 

The risk score formula of the model based on mul-
tivariate Cox regression was as follows: Riskscore 
= expressiongene1 × βgene1 + expressiongene2 × βgene2 + 
expressiongenec × βgenec. 

The risk score for every BRCA patient was cal-
culated using the risk score formula and classified 
BRCA patients into high-risk and low-risk cate-
gories using the median value. Risk score curves, 
survival status point plots, and risk lncRNA heat 
maps were created in the training group, testing 
group, and entire group to examine the link be-
tween the risk score and prognosis. K-M curves of 
overall survival between high and low-risk groups 
were developed to further explore the prognostic 
value of the model. The independent prognostic 
value of the risk score was evaluated through 
univariate and multivariate Cox regression anal-
yses using the “survival” R package. The receiver 
operating characteristic (ROC) curve and the area 
under the curve (AUC) were employed to assess 
the prediction accuracy of the risk model via the 
R “timeROC” package. In addition, the C-index for 
clinicopathological factors and the risk score was 
calculated for the entire group.

Nomogram and principal component 
analysis (PCA)

A nomogram is a graphical tool that is designed 
to approximate complicated calculations quickly 

Table I. Clinical information in the training, testing, and entire groups

Characteristics Type Entire group
(N = 922)

Testing group
(N = 368)

Training group
(N = 554)

P-value

Age ≤ 65 648 (70.28%) 264 (71.74%) 384 (69.31%) 0.474

> 65 274 (29.72%) 104 (28.26%) 170 (30.69%)

Stage Stage I 153 (16.59%) 57 (15.49%) 96 (17.33%) 0.697

Stage II 523 (56.72%) 210 (57.07%) 313 (56.5%)

Stage III 210 (22.78%) 87 (23.64%) 123 (22.2%)

Stage IV 17 (1.84%) 5 (1.36%) 12 (2.17%)

Unknown 19 (2.06%) 9 (2.45%) 10 (1.81%)

T T1 240 (26.03%) 87 (23.64%) 153 (27.62%) 0.314

T2 533 (57.81%) 225 (61.14%) 308 (55.6%)

T3 113 (12.26%) 41 (11.14%) 72 (13%)

T4 33 (3.58%) 15 (4.08%) 18 (3.25%)

Unknown 3 (0.33%) 0 (0%) 3 (0.54%)

M M0 767 (83.19%) 309 (83.97%) 458 (82.67%) 0.948

M1 19 (2.06%) 7 (1.9%) 12 (2.17%)

Unknown 136 (14.75%) 52 (14.13%) 84 (15.16%)

N N0 427 (46.31%) 168 (45.65%) 259 (46.75%) 0.735

N1 313 (33.95%) 126 (34.24%) 187 (33.75%)

N2 101 (10.95%) 38 (10.33%) 63 (11.37%)

N3 63 (6.83%) 29 (7.88%) 34 (6.14%)

Unknown 18 (1.95%) 7 (1.9%) 11 (1.99%)



Qinghua Zhang, Guizhen Pan, Tingting Wang, Jiqing Hao

4� Arch Med Sci

and without a computer or calculator. It has been 
widely used for decades to predict clinical outcomes 
based on statistical models in most types of cancer. 
A nomogram was established using the R package 
‘rms’ based on the risk score and clinical factors. 
Then, the predictive effect of the nomogram was 
validated by the calibration curve. In addition, the 
decision curve analysis (DCA) curve was developed 
to evaluate the clinical applicability of the risk model 
and nomogram via the DCA package in R software. 
PCA is a widely used tool for dimensionality reduc-
tion and feature extraction in the computer vision 
field. PCA based on DRGs, all genes, risk lncRNAs, 
and DRlncRNAs was carried out on all BRCA patients 
using the “scatterplot3d” package to determine the 
capacity of these gene sets to distinguish patients 
with high and low risk scores.

Gene set enrichment analysis

To explore potential biological mechanisms 
that might account for the prognostic difference 
between the two risk groups, the file “c2.cp. Kegg.
symbols.gmt” was obtained from the MSigDB 
database (https://www.gsea-msigdb.org/gsea/
msigdb). Gene set enrichment analysis (GSEA) 
analysis was carried out by applying the “cluster-
Profiler” package of R software (p < 0.05) to obtain 
enriched pathways in high- and low-risk groups.

Immune microenvironment analysis

According to the immune score, stromal 
score, and estimate score of each sample in the  
TCGA-BRCA cohort, differences in these scores be-
tween the two risk groups were analyzed using the 
Wilcoxon test. Using the immune cell infiltration in 
the TCGA-BRCA cohort calculated by the CIBERSORT 
method, between high-risk and low-risk groups, we 
examined the variations in immune cell infiltration. 
Additionally, a differential analysis of common im-
mune checkpoint genes was also performed.

Somatic mutation calculation and drug 
sensitivity analysis

TMB was calculated for BRCA patients by pro-
cessing the BRCA mutation data using Strawberry 

software. The top 15 genes mutated in BRCA were 
analyzed between different risk groups using the 
“maftools” package and visualized by a waterfall 
diagram. Using the “survival” and “survminer” 
packages, further analysis revealed the relation-
ship between TMB and survival. Statistical signifi-
cance was defined as p < 0.05. The “oncoPredict” 
package was used to screen for sensitive drugs 
associated with risk scores at p < 0.001.

qRT-PCR identification of DRG expression in 
tissue samples

We collected a total of 18 samples from Anhui 
Provincial Hospital, comprising 9 BRCA patholog-
ical tissues and 9 para-tumor tissues. To identify 
differentially expressed DRGs at the pathological 
tissue level, we employed quantitative real-time 
PCR (qRT-PCR) technology. The primer sequences 
necessary for gene identification are shown in Ta-
ble II. For RNA extraction, we used TRIzol reagent 
from Invitrogen, USA. Subsequently, qRT-PCR was 
conducted on the CFX96 Real-Time System C1000 
Cycler from Bio-Rad Laboratories in Singapore. 
The qRT-PCR process involved the use of a reverse 
transcription kit from Takara, Japan, and a SYBR-
Green PCR kit, also from Takara, Japan. Data anal-
ysis was performed utilizing the 2–ΔΔCt method, 
and differences between the para-cancerous and 
BRCA samples were assessed through Student’s 
t-test. The studies involving human participants 
were reviewed and approved by Anhui Provincial 
Hospital (2023-ZNW-04).

Statistical analysis

All data were analyzed using the R software 
(R version: 3.6.1), strawberry perl software, and 
GraphPad Prism (version 10.0). The Wilcoxon test 
was used for nonparametric data and Student’s  
t test was used for parametric data in two individ-
ual groups. The chi-square test was used to com-
pare categorical variables. Pearson’s correlation 
test was used to measure the linear association 
between two variables. Survival comparison was 
conducted using the log-rank test and visualized 
with KM curves. “limma”, “survival”, “timeROC”, 
“Rms”, “DCA”, and “scatterplot3d” were used for 

Table II. Primer information of DRGs

Gene name Forward primer Reverse primer

NDUFA11 AGCCTACAGCACCACCAGTATTG TTGTCCAACCTTAGCTCCTTC

LRPPRC CCTTGACACCGGCAAGTATG CCTCTTAAAGCTGCGCCATT

NUBPL TGCTGATGGTGCAAGGAAAAC TTGGCTGGCCTGTATCTGAA

SLC7A11 TCAAATGCAGTGGCAGTGAC AAACACACCACCGTTCATGG

OXSM CACACCATTGGGAGATGCTG CAGCAGATGTCCTGTTGCTC

RPN1 AGCTCCCAGTTGCTCTTGAT CTGACTGGGTGATCTGGGTT

SLC3A2 GGAGGTGGAGCTGAATGAGT TCTTCCGCCACCTTGATCTT

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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differential expression analysis, uni- and multi-
Cox regression analyses, ROC curve construction, 
nomogram development, DCA curve establish-
ment, and PCA, respectively. The CIBERSORT algo-
rithm and ESTIMATE algorithm were employed in 
immune cell infiltration evaluation and TME score 
measurement, respectively. TMB was performed 
by the “maftools” package, and the “oncoPredict” 
package was used in drug sensitivity. Enrichment 
analysis was carried out via the “ClusterProfiler” 
package. A p-value of less than 0.05 was consid-
ered to be statistically significant.

Results 

Classification of BRCA associated with 
disulfidptosis-related genes

Supplementary Figure S1 provides a flow chart 
illustrating the design of the research. Among the 
ten DRGs examined, seven displayed significant 
differences in expression between tumor tissues 
and para-tumor tissues within the TCGA-BRCA 
cohort (p < 0.01). Notably, LRPPRC, OXSM, RPN1, 
SLC3A2, NDUFA11, and SLC7A11 exhibited ele-
vated expression levels in tumor tissues, where-
as NUBPL demonstrated decreased expression in 
tumor tissues (Figure 1 A). Our qRT-PCR analysis 

confirmed increased expression levels of OXSM, 
RPN1, SLC3A2, NDUFA11, and SLC7A11 in tumor 
tissues compared to normal tissues. In contrast, 
the expression levels of LRPPRC and NUBPL in 
tumor tissues showed no significant difference 
compared to their corresponding normal tissues 
(Figure 1 B). These initial findings led us to formu-
late the hypothesis that DRGs play a pivotal role in 
the context of BRCA. To investigate this hypothe-
sis, we conducted a clustering analysis based on 
the expression profiles of the ten DRGs. We ob-
served that when the consensus matrix reached 
k = 2, BRCA patients could be effectively grouped 
into two distinct clusters: cluster 1 and cluster 2. 
This clustering was accompanied by minimiza-
tion of the slope of the cumulative distribution 
function (CDF) curve (Figure 1 C). Consequently, 
we proceeded to classify BRCA patients into two 
subgroups based on this clustering. Further anal-
ysis revealed that these subgroups exhibited dis-
tinct expression patterns for the DRGs. Cluster 1, 
characterized by high expression levels of many 
DRGs, was designated as the “high DRG group”. 
Conversely, cluster 2, with predominantly low ex-
pression of most DRGs, was labeled as the “low 
DRG group” (Figure 1 D). To explore the clinical 
relevance of these subgroups, we examined K-M 

Figure 1. Differential analysis of DRGs and creation of DRG subgroups. A – Seven DRGs were significantly differen-
tially expressed in tumor and normal tissues. *p < 0.05; **p < 0.01, ***p < 0.001
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Figure 1. Cont. B – Expression levels of seven DRGs in tumor and para-tumor tissues identified by qRT-PCR, with 
Student’s t-test. C – The unsupervised clustering process, when k = 2, 3, and the CDF curve. When k = 2, the CDF 
curve was most moderate. D – Differences in expression levels of 10 DRGs in cluster 1 and cluster 2. *p < 0.05;  
**p < 0.01, ***p < 0.001
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survival curves. These analyses indicated that pa-
tients in the low DRG group exhibited significantly 
better survival outcomes compared to those in 
the high DRG group (p < 0.001, Figure 1 E). These 
findings underscore the potential importance of 
DRGs in predicting patient prognosis in BRCA.

Functional enrichment and immune 
analysis of BRCA subgroups

Differential analysis was conducted on the two 
subgroups, resulting in the identification of 472 

DEGs. Among these DEGs, 275 were up-regulat-
ed, and 197 were down-regulated. Subsequent-
ly, we performed GO enrichment for these DEGs 
across three functional classifications: Molecular 
Function (MF), Biological Process (BP), and Cellu-
lar Component (CC) (Figure 2 A). In the Molecular 
Function subontology, several GO terms related to 
critical biological functions were significantly en-
riched. These included antigen binding, endopep-
tidase activity, immunoglobulin receptor binding, 
gated channel activity, and serine hydrolase activ-

Figure 1. Cont. E – K-M survival curves in 2 subgroups. *p < 0.05; **p < 0.01, ***p < 0.001
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ity. Within the Biological Process category, we ob-
served significant enrichment of GO terms asso-
ciated with important processes such as humoral 
immune response, regulation of B cell activation, 
B cell receptor signaling pathway, membrane in-
vagination, and plasma membrane invagination. 
In the Cellular Component classification, the en-
riched terms pointed to the involvement of DEGs 
in specific cellular locations and structures, such 
as the immunoglobulin complex, external side of 
the plasma membrane, circulating immunoglob-
ulin complex, blood microparticle, and myofibril. 
Moreover, the KEGG pathway analysis indicated 
that these DEGs were notably enriched in several 
pathways, including neuroactive ligand-receptor 
interaction, the cAMP signaling pathway, nicotine 
addiction, the PPAR signaling pathway, the dopa-
minergic synapse, and primary immunodeficiency, 
among others (Figure 2 B). Notably, many of these 
pathways were related to immune functions and 
signaling. Subsequent immune cell infiltration 
analysis revealed intriguing insights. In the DRG 
low group, we observed higher infiltration levels 
of immune cells known for their tumor-suppress-
ing and killing functions, including naïve B Cells, 
plasma cells, CD8+ T cells, Tregs, and activated NK 
cells. Conversely, the DRG high group exhibited 
elevated infiltration of M2 macrophages, a  type 
of differentiated tumor-related macrophage, as 
well as resting NK cells (Figure 2 C). Furthermore, 
the analysis of TME scores demonstrated that the 
DRG low group exhibited higher immune scores 
and stromal scores, indicating a more pronounced 
immune response and stromal cell presence (Fig-
ure 2 D).

Construction and validation of prognostic 
model related to disulfidptosis in BRCA

In the Pearson correlation analysis, we found 
one DRG that correlated poorly with all lncRNAs, 
so we identified 427 lncRNAs that were correlated 
with 9 DRGs (p < 0.001 and |R| > 0.3). The San-
key diagram shows the correlation between DRGs 
and DRlncRNAs (Figure 3 A). In the training group, 
univariate Cox regression analysis identified  
7 prognosis-related lncRNAs (Figure 3 B). Then, us-
ing LASSO regression and multivariate Cox regres-
sion analysis, we constructed a  risk model com-
posed of 4 lncRNAs (AC007996.1, AC004816.2, 
MIR200CHG, AL354920.1) (Figures 3 C, D). Based 
on the coefficients assigned to the 4 lcnRNAs by 
the multivariate Cox regression, the risk score can 
be determined as: Risk score = expressionAC007996.1 

× βAC007996.1 + expressionAC004816.2 × βAC004816.2 + ex-
pressionMIR200CHG × βMIR200CHG + expressionAL354920.1 × 
βAL354920.1.

The correlation heat map (Figure 3 E) illustrates 
strong correlations between the four lncRNAs in-

cluded in the model and the ten DRGs. In all three 
groups – training, testing, and the entire groups 
– the risk score curves and survival status dot 
plots consistently showed that as the risk score 
increased, the prognosis worsened (Figures 3 
F–H). Combining the risk score coefficients and 
the expression heat map of the four risk-asso-
ciated lncRNAs, we observed that AC007996.1, 
AC004816.2, and MIR200CHG were strongly ex-
pressed and acted as protective factors for BRCA in 
the low-risk group. Conversely, AL354920.1, highly 
expressed in the high-risk group, served as a risk 
factor (Figures 3 F–H). The K-M survival curves 
demonstrated statistical significance in the train-
ing group (p < 0.001), testing group (p = 0.003), 
and the entire group (p < 0.001), indicating a worse 
prognosis in the high-risk group (Figures 4 A–C). 
These findings underscore the prognostic value 
of the model. Univariate Cox regression analysis 
was conducted in the training group (p < 0.001,  
HR = 1.629 (1.295–2.048)), testing group (p = 
0.005, HR = 1.683 (1.172–2.415)), and the entire 
group (p < 0.001, HR = 1.652 (1.364–2.002)), re-
vealing that the risk score was a significant prog-
nostic factor (Figures 4 D–F). Furthermore, the 
results of multivariate Cox regression analysis in 
the training group (p < 0.001, HR = 1.543 (1.203–
1.979)), testing group (p = 0.012, HR = 1.680 
(1.120–2.520)), and the entire group (p < 0.001, 
HR = 1.541 (1.254–1.892)) suggested that the risk 
score remained an independent predictor of overall 
survival even after adjusting for other influencing 
factors (Figures 4 G–I). Additionally, the area under 
the ROC curve was calculated for 1-year, 3-year, 
and 5-year survival, resulting in values of 0.696, 
0.675, and 0.651 in the training group; 0.734, 
0.643, and 0.628 in the testing group; and 0.714, 
0.655, and 0.641 in the entire group, respectively. 
These values indicated that the model maintained 
a stable and reliable predictive accuracy (Figures 
4 J–L). Notably, the ROC curves also demonstrat-
ed that the 10-year C-index outperformed other 
clinical factors, underscoring the robust ability 
of the risk score to predict outcomes, particular-
ly long-term outcomes (Figure 5 A). Additionally, 
we compared the 10-year concordance index 
(C-index) and area under the curve (AUC) values 
of our model with those of several existing disul-
fidptosis-related models. As shown in Figure 5 B 
and Supplementary Table SI, our model achieved 
a higher C-index than those developed by Wang 
et al. [16] (0.70 vs. 0.63), Zheng et al. [17] (0.70 vs. 
0.67), and Liu et al. [18] (0.70 vs. 0.64). Regarding 
the AUC values for 1, 3, and 5 years, our model is 
similar to those of Chen et al. [19] and Wang et al. 
[16], but the models by Zheng et al. [17], Liu et al. 
[18], and Wu et al. [20] showed higher AUC values 
for these time points. These results suggest that, 
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Figure 3. Construction of disulfidptosis-re-
lated risk prognostic model. A  – Sankey di-
agram revealing the correlation of 9 DRGs 
and lncRNAs. B – In the training group,  
7 risk prognostic lncRNAs obtained by univar-
iate Cox regression analysis on 427 lncRNAs.  
C, D – LASSO regression analysis performed 
to avoid overfitting. E – Correlation heat map 
of 4 risk lncRNAs of the model with 10 DRGs.  
*p < 0.05; **p < 0.01, ***p < 0.001
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Figure 3. Cont. F – Risk score curves, survival status 
dot plots, and heat maps of risk lncRNAs’ expres-
sion in the training group. G – Risk score curves, 
survival status dot plots, and heat maps of risk 
lncRNAs’ expression in the testing group. H – Risk 
score curves, survival status dot plots, and heat 
maps of risk lncRNAs’ expression in the entire 
group. *p < 0.05; **p < 0.01, ***p < 0.001
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Figure 4. Validation and evaluation of risk prognostic model. A–C – K-M survival curve in the training group, testing 
group, and entire group. D–F – Univariate Cox regression in the training group, testing group, and entire group
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while our model demonstrated superior predictive 
accuracy for 10-year overall survival (OS) in breast 
cancer patients, it showed slightly weaker perfor-
mance in predicting OS during the first 5 years 
compared to some other models.

Nomogram and principal component 
analysis (PCA) in prognostic model

To enhance the impact of this model on clini-
cal decision-making, we integrated the prognostic 

risk-scoring model with current clinical parameters 
to develop a  nomogram. The calibration curves, 
which demonstrated the agreement between pre-
dicted survival and actual clinical outcomes, con-
firmed the reliability of the nomogram’s predic-
tions (Figures 5 C, D). Additionally, the DCA curve 
showed that the nomogram has significant po-
tential for clinical decision-making, outperforming 
the risk score and stage individually (Figure 5 E). 
To further validate the discriminative power of the 
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Figure 4. Cont. G–I – Multivariate Cox regression for independent prognostic analysis in the training group, testing 
group, and entire group. J–L – AUC values of ROC curves in 1, 3, 5 years in the training group, testing group, and 
entire group
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Figure 5. Nomogram and PCA. A – Comparison of the C-index of risk score and clinicopathological factors, in-
cluding age, stage, T, M, and N. B – Comparison of C-index in disulfidptosis-related lncRNA prognostic models.  
C – Nomogram of the model obtained by combining risk scores and clinicopathological factors
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Figure 5. Cont. D – Calibration curve of nomogram in the model. E – DCA curve comparing the net benefit of the 
nomogram with the other variables included in the nomogram alone. *p < 0.05; **p < 0.01, ***p < 0.001. F–I – PCA 
of TCGA-BRCA cohort based on all genes, DRGs, DRlncRNAs, and risk lncRNAs, respectively
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model, we compared the distributions of entire 
gene sets, DRGs, DRlncRNAs, and the risk model 
between different risk groups using principal com-
ponent analysis (PCA). As depicted in Figures 5 F-I, 
the four lncRNAs included in the model exhibited 
superior discriminatory ability in distinguishing 
the two risk groups compared to the entire gene 
sets, DRGs, or DRlncRNAs. These findings collec-
tively provided robust support for the notion that 
this innovative prognostic model could accurately 
predict the prognosis of BRCA patients.

The correlation of clinical features and risk 
score

The statistical significance of the risk score ex-
tended beyond overall survival (OS) and encom-
passed progression-free survival (PFS) as well (p < 
0.001), as illustrated in Figure 6 A. To further vali-
date the prognostic relevance of the risk score, we 
analyzed various clinicopathological factors. Our 
findings consistently demonstrated that high-risk 
patients experienced poorer prognoses than their 
low-risk counterparts across a  range of patho-
logical factors, including age, T, N, M, and stage 
(Figure 6 B and Supplementary Figure S2). Sub-

sequently, we performed a correlation analysis to 
assess the relationship between the risk score and 
various clinicopathological factors. Notably, we 
observed a positive correlation between the risk 
score and T, indicating a connection between the 
risk score and tumor progression. Furthermore, 
patients classified as M1, denoting the presence 
of distant metastasis, exhibited higher risk scores, 
underscoring the predictive capacity of high-risk 
scores for tumor metastasis. Additionally, as pa-
tients progressed from stage I  to stage IV, their 
risk scores increased (Figure 6 C). These compre-
hensive analyses provided further evidence of the 
prognostic significance of the risk score and its 
potential utility in predicting outcomes across var-
ious clinicopathological factors in BRCA patients.

Functional enrichment analysis in high- and 
low-risk group

To better understand how DRlncRNAs affect-
ed the occurrence and progression of BRCA, we 
performed GSEA analysis. The results revealed 
that gene sets of patients in the high-risk group 
were enriched in steroid biosynthesis, galactose 
metabolism, and ECM receptor interaction. There 
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score with T, M, and stage
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was significant enrichment of linoleic acid me-
tabolism, complement and coagulation cascades, 
arachidonic acid metabolism, and PPAR signaling 
pathways for low-risk patients (Figure 7).

Characterization of the immune 
microenvironment for risk score

Given the pivotal role of the tumor immune 
microenvironment and the transformative impact 
of immune checkpoint drugs in cancer treatment, 
we investigated the relationship between the 
immune microenvironment and the risk score in 
all patients. Our analysis revealed that patients 
in the high-risk group exhibited significantly re-
duced percentages of naive B cells, CD8+ T cells, 
and resting dendritic cells, as depicted in Figures 
8 A–C. Conversely, the proportions of M0 and M2 
macrophages were notably higher in these pa-
tients, indicating that, in the high-risk group of 
patients, M0 is polarized to M2 in a greater pro-
portion. Moreover, our examination of immune-re-
lated processes, such as the type I interferon (IFN) 
response, co-stimulation and co-inhibition of an-
tigen-presenting cells (APCs), T cell co-inhibition, 
and regulatory T cells (Treg), revealed substantially 
higher activity in the high-risk group (Figure 8 D).  
Furthermore, our differential analysis of immune 
checkpoint genes indicated that the high-risk 
group exhibited higher expression levels of im-
mune checkpoint-related genes. These included 
CD28, CD80, CD86, PDCD1LG2 (PD-L2), and NRP1 
(Figure 8 E). Taken together, our findings sug-
gest that patients in the high-risk group exhibit 
a suppressed immune response, characterized by 
reduced CD8+ T cell levels, likely driven by elevat-

ed PD-L2 expression, which inhibits immune cell 
function. Additionally, high infiltration of regula-
tory T cells (Tregs) and M2 macrophages further 
suppresses effector T cell activity through the se-
cretion of immunosuppressive cytokines such as 
IL-10 and TGF-β.

The mutational landscape, TMB, and drug 
susceptibility in high- and low-risk groups

We conducted an analysis of the TMB for each 
BRCA patient and compared the mutation fre-
quencies of the top 15 mutated genes between the 
high-risk and low-risk groups. Among these high-
ly mutated genes were PIK3CA, TP53, TTN, CDH1, 
GATA3, MUC16, KMT2C, MAP3K1, HMCN1, FLG, 
RYR2, SYNE1, USH2A, ZFHX4, and PTEN. Notably, 
TP53, TTN, MUC16, and HMCN1 mutations were 
more prevalent in the high-risk group (Figures 9 
A, B). Furthermore, we observed a significant dif-
ference in TMB between the two risk groups (p < 
0.001, Figure 9 C). Interestingly, patients with low-
er TMB exhibited a more favorable prognosis (Fig-
ure 9 D). Importantly, those with both high TMB 
and high risk scores had the lowest chances of 
survival (p < 0.001, Figure 9 E). Additionally, when 
screening for sensitive drugs associated with risk 
scores, we discovered that patients in the low-
risk group exhibited greater sensitivity to several 
targeted drugs. These included JAK1_870, KRAS 
(G12C) inhibitor-12, buparlisib, Wee1 inhibitor, 
afuresertib, and CDK9_5576. Moreover, patients 
in the low-risk group were also more responsive to 
certain common antitumor drugs such as lefluno-
mide and oxaliplatin. To support the robustness 
of these findings, the confidence intervals for IC50 

Figure 7. Gene set enrichment analysis in high- and low-risk groups. A – Top 5 pathways enriched in the high-risk 
group. B – Top 5 pathways enriched in the low-risk group
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Figure 8. Immune landscapes for risk prognosis model. A  – Relevant percentage of immune cell infiltration in 
high- and low-risk groups. B – Comparison of TME scores between the 2 risk groups. C – Differences in immune cell 
infiltration between the 2 risk groups. *p < 0.05; **p < 0.01, ***p < 0.001
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values of the drugs are provided in Supplementa-
ry Table SII. This suggests that the risk score can 
serve as a valuable guide for patients in selecting 
their drug regimen (Figure 9 F).

Discussion

As one of the most prevalent malignancies 
worldwide, BRCA poses a  particularly significant 
challenge in China, where rising cases and fatali-
ties demand urgent attention. Recognizing the po-
tential therapeutic implications of disulfidptosis 
and the critical role of lncRNAs in BRCA, we have 
developed a prognostic model based on lncRNAs 

associated with disulfidptosis to facilitate progno-
sis prediction.

In this study, based on the ten DRGs in the BRCA 
patients, consensus clustering was performed in 
this study to identify two distinct molecular clus-
ters. The result showed that lower expression of 
DRGs was associated with better survival proba-
bility. GO and KEGG analyses revealed significant 
differences between the two clusters in terms 
of biological functions and signaling pathways 
Notably, several immune-related pathways, the 
including humoral immune response, regulation 
of B cell activation, the B cell receptor signaling 
pathway, and the immunoglobulin complex, were 
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A

B

Figure 9. Mutation landscape and drug sensitivity assessment of the model. A – Mutation proportions of top genes 
in BRCA in the high-risk group. B – Mutation proportions of top genes in BRCA in the low-risk group
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Figure 9. Cont. C – Differences in TMB between 
high- and low-risk groups. D, E – Differences in 
survival prognosis between patients with high and 
low TMB
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significantly enriched. These findings underscore 
the potential link between DRGs and the immune 
microenvironment, warranting further in-depth 
investigation.

Building on the observed connections be-
tween DRGs and the immune microenvironment, 
we identified four DRlncRNAs (AC007996.1, 
AC004816.2, MIR200CHG, AL354920.1) to con-
struct a robust prognostic model. The model was 
also validated as a  potential independent prog-
nostic factor for BRCA. MIR200CHG has been 
reported to influence the spread, invasion, and 
treatment response of BRCA [21]. Interestingly, 
two DRlncRNAs in the model, namely MIR200CHG 
and AC004816.2, have been included in other 
BRCA prediction models [20] and are all protective 
biomarkers, which is consistent with the findings 
of our study. While most identified DRlncRNAs 
align with existing models, AL354920.1 emerges 
as a novel marker, highlighting a promising ave-
nue for future research. Given the novel associa-
tion of MIR200CHG and AL354920.1 with BRCA 

prognosis, further functional studies are essential 
to fully elucidate their roles in tumor progression 
and resistance to treatment. Such investigations 
may provide valuable insights into potential ther-
apeutic targets for improving treatment outcomes 
in breast cancer.

We explored the correlation of risk score and 
clinicopathological characteristics. It was found 
that BRCA patients in the group with a high risk 
score were at an advanced tumor stage, which 
might have contributed to their poor progno-
ses. A  nomogram serves as a  predictive tool for 
assessing the prognosis of patients and can aid 
clinicians in making treatment decisions. To fa-
cilitate clinical decision-making, we constructed 
a nomogram. Additionally, to complement the no-
mogram and further evaluate the clinical utility of 
the predictive model, we employed the DCA curve. 
Our results demonstrate that the nomogram, 
which incorporates the risk score and clinical clin-
icopathological features, has significant potential 
for clinical decision-making, outperforming the 
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Figure 9. Cont. F – Drugs with differential sensitivity in high- and low-risk groups
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risk score and stage individually. Therefore, we 
propose that the lncRNAs identified in this study 
have considerable potential for clinical translation, 
aiding treatment decisions. However, we must ac-
knowledge challenges to their clinical application, 
including the high cost of detection technologies 
and the complexity of lncRNA detection and quan-
titative analysis. LncRNAs are often characterized 
by greater secondary structure variability and tis-
sue specificity, which complicates detection. Fur-
ther clinical validation is needed to confirm the 
reliability and stability of lncRNAs as biomarkers. 
In addition, although we conducted comprehen-
sive internal validation to ensure the robustness 
of our model, we recognize that validation using 
independent GEO datasets would further enhance 
its generalizability. Unfortunately, no suitable ex-
ternal datasets with both disulfidptosis-related 
lncRNA expression and clinical information were 
available for this study.

The GSEA analysis showed that steroid biosyn-
thesis, galactose metabolism, and ECM receptor 
interaction were enriched in the high-risk group. 
In contrast, linoleic acid metabolism, arachidonic 
acid metabolism, and the PPAR signaling path-
way were activated in the low-risk group. There 
is evidence suggesting that steroid biosynthesis, 
galactose metabolism, and ECM receptor interac-
tion are crucial for tumor growth and migration 
[22–24]. Interestingly, arachidonic acid metabo-
lism and the PPAR signaling pathway are associ-
ated with various malignancies and inflammatory 
diseases [25–27]. Therefore, these pathways may 
offer potential therapeutic and preventive strate-
gies for BRCA patients. 

Individual differences in tumor progression ex-
ist due to heterogeneity in the tumor microenvi-
ronment [28, 29]. Therefore, it is necessary to de-
velop activation strategies that target the immune 
microenvironment based on the different immune 
escape mechanisms in the TME. The results of 
our immune cell infiltration and functional analy-
ses suggested that tumors in the high-risk group 
exhibited a poor immune response, accompanied 
by upregulation of major immune checkpoints, in-
cluding the emerging gene PDCD1LG2. Specifical-
ly, compared to the low-risk scoring group, CD8+ 
T-cell infiltration was reduced in the high-risk 
scoring group, whereas the level of M2 infiltra-
tion was higher, and T-cell-coinhibition and Treg 
scores were higher in the high-risk scoring group. 
There are a number of mechanisms that inhibit T 
cell activity (e.g., reducing CD8+ T cell infiltration) 
in the tumor microenvironment, including acti-
vation of immune checkpoint pathways, such as 
PD-1, PD-L1, and PD-L2, which results in suppres-
sion of T cell function [30, 31], and activated Treg 
inhibit effector T cell activity by secreting inhibi-

tory cytokines, and direct cellular contact, which 
contributes to the tumor’s escape from immune 
system surveillance [32]. In addition, polarized 
M2 macrophages are also involved in inhibiting 
the activation and proliferation of suppressor T 
cells. Tumor-associated macrophages (TAMs) are 
among the most abundant infiltrating leukocytes 
in various tumors. TAMs can be classified into two 
subtypes: M1-type and M2-type. M1-type TAMs 
exhibit anticancer activity by releasing nitric ox-
ide (NO) and promoting a Th1/cytotoxic T cell re-
sponse. In contrast, M2-type TAMs contribute to 
immunosuppression by either directly or indirectly 
inhibiting T cell function. This is achieved through 
the expression of immune checkpoint ligands 
such as PD-L1, secretion of inhibitory cytokines 
such as IL-10 and TGF-β, and suppression of T cell 
activity. This polarization of M2 is closely related 
to tumor progression and therapeutic resistance. 
Consequently, reprogramming M2-type TAMs to 
an M1-like phenotype has emerged as a promis-
ing therapeutic strategy to enhance T cell-medi-
ated antitumor immunity and mitigate the immu-
nosuppressive tumor microenvironment [33–36]. 
Our findings of higher level of M2 in the high-risk 
group indicate that this group of patients can 
benefit from M1 polarization therapy. However, 
further research is required to determine whether 
these findings can translate into promising antitu-
mor therapies for BRCA.

As anticipated, the genes PIK3CA and TP53 
exhibited the highest mutation rates in the two 
groups. PIK3CA mutations have a strong correla-
tion with prognosis and treatment options for 
BRCA [37]. On the other hand, TP53, as a tumor 
suppressor gene, plays crucial roles in controlling 
the cell cycle, aging, and DNA repair [38, 39], and 
its significant impact has been extensively ex-
plored in various studies. Apart from PIK3CA and 
TP53, the discovery of elevated MAP3K1 muta-
tions in the low-risk group underscores potential 
therapeutic distinctions between the clusters. 
MAP3K1 may indeed have an impact on the ag-
gressiveness and treatment response in BRCA [40, 
41]. Moreover, genomic studies have indicated 
that MAP3K1 mutations are particularly prevalent 
in the luminal A subtype of BRCA [42], which could 
be linked to the better prognosis observed in the 
low-risk group.

Clinically, treatment strategies for breast can-
cer have shown a diverse range of characteristics, 
encompassing endocrine therapy, targeted thera-
py, chemotherapy, and emerging immunotherapy 
approaches. The choice of therapeutic options 
depends on the molecular subtype of the tumor, 
the clinical stage of the patient, and the response 
to specific treatments. With the increasing under-
standing of the biological mechanisms underlying 
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breast cancer, numerous promising target genes 
have been identified and are currently being ex-
plored in clinical trials to assess the efficacy of 
their inhibitors. In our drug sensitivity analysis, 
we found that patients in the low-risk group ex-
hibited greater sensitivity to several targeted 
therapies, including JAK1_870, KRAS (G12C) in-
hibitor-12, buparlisib, Wee1 inhibitor, afuresert-
ib, and CDK9_5576. Additionally, patients in this 
group showed increased responsiveness to com-
mon antitumor agents such as oxaliplatin. Buparl-
isib, a  PI3K inhibitor, has demonstrated clinical 
benefits in breast cancer in several clinical trials, 
particularly in patients with high rates of PIK3CA 
mutations, which sensitize breast cancer patients 
to buparlisib through PI3K activation [43–45]. In 
our study, the higher mutation rate of PIK3CA in 
the low-risk group may explain their enhanced 
sensitivity to buparlisib. This suggests that our 
risk model could potentially identify patients who 
are more likely to respond to buparlisib, aiding in 
personalized treatment plans and patient selec-
tion for clinical trials investigating buparlisib in 
breast cancer. Additionally, a recent study by Kar-
en Cichowski et al. from Harvard Medical School, 
published in Nature, demonstrated that AKT and 
EZH2 inhibitors effectively target triple-negative 
breast cancers (TNBCs) by hijacking mechanisms 
of involution [46]. Moreover, several clinical trials 
are currently evaluating the safety and efficacy of 
afuresertib in breast cancer patients. The imple-
mentation of our risk model could support the de-
sign of clinical trials for afuresertib in this context. 
Similarly, drugs targeting JAK1_870, KRAS (G12C), 
CDK9_5576, and Wee1 are also in clinical trials, 
and incorporating our risk model could inform the 
design of these studies [47–49]. 

When comparing the 10-year C-index and AUC 
values for 1, 3, and 5 years, our model demon-
strated stronger predictive power for 10-year 
overall survival (OS) in breast cancer patients 
than other disulfidptosis-related models. Howev-
er, it showed slightly weaker performance in pre-
dicting OS during the first 5 years. Furthermore, in 
contrast to the models by Wang et al. [16], Zheng  
et al. [17], and Chen et al. [19], our study devel-
oped a novel disulfidptosis-related lncRNA model 
based on 10 disulfidptosis-related genes. Addi-
tionally, we constructed a nomogram integrating 
the risk score and clinical factors, which has sig-
nificant potential for clinical decision-making. The 
results of the drug sensitivity analysis suggest 
that risk scores could be used to identify patients 
likely to respond to targeted therapies, as well as 
to guide clinical trials of these agents.

Our current study successfully constructed 
a prognostic model using four DRlncRNAs, demon-
strating favorable predictive accuracy and stability. 

Despite these promising findings, several limita-
tions must be addressed to strengthen the mod-
el’s clinical utility. First, the retrospective design 
of our study and the lack of external validation 
cohorts limit the generalizability of our model. In 
future research, prospective cohort evaluations 
are essential to validate its predictive power. Sec-
ondly, the gene expression results in tumor and 
normal tissues showed inconsistencies between 
TCGA and qRT-PCR. This discrepancy could be at-
tributed to biological variability among popula-
tions from different regions, the limited sample 
size in qRT-PCR validation, and technical differ-
ences between high-throughput sequencing and 
qRT-PCR platforms. Future studies should validate 
these findings in larger cohorts from diverse re-
gions. Thirdly, while immune checkpoint inhibitor 
(ICI)-based immunotherapy and readily available 
medications have shown therapeutic potential for 
different groups, further research is needed to de-
termine the optimal treatment regimen selection. 
Finally, potential overfitting in LASSO regression 
may arise due to the limited number of DRln-
cRNAs. We plan to address this concern in future 
work by incorporating additional validation to as-
sess the robustness of our thresholds.

In conclusion, we developed a novel prognos-
tic model based on four disulfidptosis-related 
lncRNAs (DRlncRNAs: AC007996.1, AC004816.2, 
MIR200CHG, and AL354920.1) for predicting 
breast cancer (BRCA) prognosis. This model ef-
fectively stratifies patients into high-risk and 
low-risk groups, with high-risk patients showing 
significantly poorer overall survival, increased 
tumor mutational burden (TMB), and a more im-
munosuppressive tumor microenvironment. Fur-
thermore, high-risk patients exhibited elevated 
expression of immune checkpoint genes, while 
low-risk patients demonstrated greater sensitivity 
to specific targeted therapies, suggesting that the 
risk score could serve as a potential tool for pre-
dicting response to immune checkpoint blockade 
(ICB) therapy and several antitumor drugs. Our 
findings suggest that our model could serve as 
a valuable tool for prognosis prediction and guid-
ing personalized treatment strategies in BRCA.
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