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 Abstract
Introduction
Ovarian cancer,  classified as a malignant tumor, represents a major threat to women's health. The
factors contributing to its development are very diverse, among the notable characteristics of cancer
are metabolic disorders, but evidence linking them causally to ovarian cancer remains insufficient. The
aim is to identify potential biomarkers for early screening and targeted therapeutic strategy.

Material and methods
This study employed a GWAS and applied a two-sample MR analysis. Causality was primarily
assessed using random IVW. Cross-validation was conducted with MR-Egger, weighted median, and
weighted mode approaches. The MR-Egger intercept and Cochran’s Q test were adopted to assess
heterogeneity and pleiotropy. Pathway enrichment analysis was performed using MetaboAnalyst 6.0.

Results
Our research identifies key metabolites as potential biomarkers for early screening and personalized
therapy in ovarian cancer. By using MR, we establish causal links between ovarian cancer subtypes
and plasma metabolites, offering valuable insights for clinical applications. After FDR correction,
screening for one metabolite, 5-acetylamino-6-amino-3-methyluracil levels (AAMU). Also, significant
metabolites were enriched to caffeine metabolism(p<0.05) as the most significant metabolic pathway
in ovarian cancer.

Conclusions
We integrated genomic and metabolomic analyses to reveal causal associations of metabolites with
ovarian cancer and its subtypes. Certain metabolites were indicated as prospective biomarkers for
ovarian cancer Prep
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Genetically predicted 1,400 blood metabolites related to the risk of 

ovarian cancer: A Mendelian randomization study 

Abstract 

Background-aims:  Ovarian cancer, classified as a malignant tumor, represents a major 

threat to women's health. The factors contributing to its development are very diverse, 

among the notable characteristics of cancer are metabolic disorders, but evidence 

linking them causally to ovarian cancer remains insufficient. The aim is to identify 

potential biomarkers for early screening and targeted therapeutic strategy. 

Material and methods: This study employed a GWAS and applied a two-sample MR 

analysis. Causality was primarily assessed using random IVW method. Cross-

validation was conducted with MR-Egger, weighted median, and weighted mode 

approaches. The MR-Egger intercept and Cochran’s Q test were adopted to assess 

heterogeneity and pleiotropy. Pathway enrichment analysis was performed using 

MetaboAnalyst 6.0. 

Highlight: Our research identifies key metabolites as potential biomarkers for early 

screening and personalized therapy in ovarian cancer. By using MR, we establish causal 

links between ovarian cancer subtypes and plasma metabolites, offering valuable 

insights for clinical applications. 

Results: After FDR correction, screening for one metabolite, 5-acetylamino-6-amino-

3-methyluracil levels (AAMU). Also, significant metabolites were enriched to caffeine 

metabolism(p<0.05) as the most significant metabolic pathway in ovarian cancer. 

Conclusions: We integrated genomic and metabolomic analyses to reveal causal 

associations of metabolites with ovarian cancer and its subtypes. Certain metabolites 

were indicated as prospective biomarkers for ovarian cancer 

Keywords: ovarian cancer, Mendelian randomization, genomic metabolites, MR-

Egger, Cochrane Q 

Introduction: 

OC ranks among the three most prevalent cancers affecting the female reproductive 

system(1). In the year 2020, 313,959 new OC cases have been diagnosed worldwide, 

equivalent to 6.6 ASR cases per 100,000 people. The regions with the highest reported 

incidence rates include Central and Eastern Europe, where the ASR is notably elevated 

at 10.7. Northern Europe, which has an ASR of 8.8, follows closely(2). Currently, 

several molecular biomarkers, such as CA125 and HE4, are utilized for ovarian cancer 

screening and monitoring. However, their sensitivity, specificity, and applicability have 

certain limitations, and their performance in early OC screening remains suboptimal. 

Because early diagnostic indicators and symptoms are lacking, most OC patients are 
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diagnosed at advanced stages(3, 4). Current molecular strategies to prevent ovarian 

cancer include the use of oral contraceptives to reduce OC risk, the role of genetic 

testing (BRCA1/2 mutations), and ongoing research on targeted therapies aimed at 

preventing the progression of high-risk ovarian lesions. But all have significant 

limitations. In addition, OC is a multifaceted process that involves many variables, 

which creates an enormous public health problem. 

According to previous studies, the development of OC is associated with genetic 

factors(5), estrogen levels(6), age(7), abnormal gene splicing(8) and metabolic 

disorders(9), which are considered important contributors, and the progression of OC 

may be due to combined effects. Metabolic disorders are important factors in the 

development and progression of many diseases(10-12). Metabolic disorders, as one of 

the hallmark features of cancer, also is the key to OC; for example, Zhou(13) reported 

significant differences in the metabolites of histamine, purine nucleotides, glycine, 

serine, and sarcosine, along with the overexpression of alanine, cysteine, and glycine 

in serum samples by mass spectrometry in 44 ovarian serous cystadenocarcinoma 

(Stages I--IV) samples and in 50 healthy females or those with benign disease. Many 

plasma metabolites of small metabolic molecules are known to play key intermediate 

functions in different physiological pathways(14, 15). Their metabolism provides 

valuable insights into underlying pathological conditions, including cancer, which 

make them excellent candidates for biomarker exploration. However, evidence for a 

causal role of this trait in promoting or preventing OC is still lacking. Therefore, the 

utilization of plasma metabolites as potential biomarkers for early OC detection and as 

viable targets for innovative therapeutic interventions to enhance cancer prevention and 

early screening is a critical priority strategy. 

MR is a significant tool in epidemiology, as it addresses confounding variables and 

uncovers possible causal links. Research indicates that genetic variations can affect 

biochemical concentrations in plasma, implying that genetic diversity might contribute 

to racial disparities in the variations related to sex and/or age at the metabolite level(16, 

17). A recent thorough investigation into metabolite GWASs revealed loci connected to 

various diseases(18). In addition, Yiheng Che developed a GDM database to categorize 

genotype-dependent metabolic traits. This resource links thousands of metabolites and 

metabolic pathways to genetic data, enabling deeper exploration of the hidden 

connections between human plasma metabolites and the development and progression 

of OC(19).  

This research identifies key metabolic signatures that contribute to OC progression. 

By using Mendelian Randomization, we establish causal links between OC subtypes 

and plasma metabolites, offering potential and easily detectable biomarkers for early 

detection. Our findings also suggest the possibility of integrating metabolomic profiling 

into clinical practice for improved diagnosis, screening, and personalized treatment 

strategies, ultimately advancing targeted therapies and prognostic tools for OC. 
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METHODS 

2.1 Study design 

This study utilized the MR method in a large-scale GWAS to explore the 

fundamental relationships between the metabolites and OC, including its different 

subtypes. This approach is founded on three key assumptions(20, 21). This 

methodology depends on three essential assumptions: (1) The selected IVs must show 

a strong correlation with the exposure, specifically OC. (2) The selected IVs must be 

independent of any confounders that could affect the exposure‒outcome relationship. 

(3) The selected IVs must influence the results solely through the exposure‒outcome 

relationship. All analyses were conducted via R software (version 4.2.1) with the two-

sample MR, MRCAMO, and radial MR packages. Fig.1 provides the MR study process. 

This study investigated the causal associations between 1,400 plasma metabolites and 

OC risk, including its subtypes. 

Fig. 1 The flowchart illustrates the complete workflow of the MR analysis. 

 

2.2 Data sources for exposure and outcome 

The plasma metabolites of MR were obtained from a study by Chen(19) involving 

approximately 8,000 individuals of European. A list of the summary indicators of 

GWASs focusing on plasma metabolites is available in the GWAS Catalog. The 

accession numbers for these GWAS data range from GCST90199621 to 

GCST90201020. MR data of OC and each subtype of OC were obtained from IEU  

database, OC dataset ID: ieu-a-1120. The analysis included 66,450 Europeans, of whom 

225,509 had OC and 440,941 did not have OC. The data pertaining to the OC subtypes 

were derived from the same sources as previously described(22)(Table 1). 

Table 1 The sources from which the data were obtained. 
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Note: OC is currently classified into five major subtypes based on histopathologic 

and molecular genetic alterations: HOC, LOC, CCOC, EOC, MOC(22, 23). 

2.3 Selection of instrumental variables 

We accessed GWAS databases to identify IVs while adhering to the three main 

assumptions of MR. By employing a detailed selection methodology, we addressed 

concerns related to linkage disequilibrium and examined the latent causal relationship 

between plasma metabolites and OC. Recognizing the inherent nonindependence 

among metabolites, we acknowledge that adhering strictly to the conventional genome-

wide significance threshold of p<5×10-8 could be excessively cautious(19). Such an 

approach may inadvertently exclude potentially significant associations that warrant 

consideration. To broaden the scope of relevant plasma metabolites in our search, we 

applied a wider significance threshold of P < 1×10⁻⁵ for the selection of IVs(24). The 

intensity of the chosen SNPs as instruments was assessed by calculating the F statistic 

and the explained variance (R²) for each IV relative to the exposure trait. A common 

threshold for strong IVs is F>10(25), and any IVs with an F<10 were excluded as weak 

instruments. 

2.4 Statistical analysis 

To assess latent heterogeneity in the Wald ratio estimates of SNPs(26), we applied 

the IVW method with multiplicative random effects for accurate estimation(27). If there 

is heterogeneity (p < 0.05), random effects IVW will be apply; If P>0.05, fixed-effects 

IVW was applied(28). In addition to IVW, three other MR methods—MR-Egger, 

weighted median, and weighted mode—were adopted to evaluate causality(29). The 

IVW approach supposes that all included SNPs are effective instruments(30). In 

contrast, the weighted median method requires that at least half of the genetic variants 

be valid and satisfy the core MR assumptions, making it particularly useful when most 

instruments are not influenced by horizontal pleiotropy(31). The MR-Egger regression 

method, however, posits that more than 50% of the genetic variants are invalid(32). 

Results from the four analyses were considered consistent only if the directions of the 

estimates (positive or negative) aligned(32-34). Should there be discrepancies in these 

directions, we ruled out any indirect causal associations between metabolites and the 

progression of OC. 

We conducted two sensitivity analyses, Cochran's Q test and the MR-Egger 

intercept test to evaluate heterogeneity and pleiotropy(31, 32, 35). Heterogeneity was 

examined through IVW and MR-Egger regression, and the Cochran's Q statistic was 
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utilized as the primary measure. A P value >0.05 for both IVW and MR-Egger indicated 

no significant heterogeneity(36, 37). Pleiotropy was assessed by the MR-Egger 

regression intercept, where a P value above 0.05 suggested no evidence of pleiotropy. 

Additionally, MR-PRESSO analysis was conducted to detect and exclude significant 

outliers. To minimize false-positive outcomes from multiple testing, we employed FDR 

correction to adjust for statistical bias in multiple comparisons. 

2.5 Metabolic pathway enrichment analysis 

Pathway enrichment was carried out with the help of MetaboAnalyst version 6.0. 

This analysis encompassed a thorough investigation of metabolic pathways through 

RaMP, which stands for the Relational Database of Metabolomic Pathways. RaMP 

integrates various biological pathways drawn from multiple reputable sources, 

including KEGG, Reactome, WikiPathways, and the Human Metabolome Data Bank 

(HMDB)(38). This investigation included only biological pathways previously 

connected to OC identified by IVW (PIVW< 0.01). Additionally, only metabolites that 

have been previously linked to OC and its subtypes through IVW (PIVW< 0.01) were 

considered for this study. 

Results 

Plasma metabolites causally responsible for OC 

We performed MR analysis of 1400 blood metabolites and OC while excluding the 

inconsistency of results in the estimation direction (either positive or negative) in four 

methods. Although repeated trials were adjusted by the FDR method, we identified only 

one metabolite at the 0.05 significance level: AAMU levels: OR= 1.116, 95% CI: 1.060-

-1.174, PFDR<0.038. 

Nevertheless, we detected 14 metabolites associated with OC at the p<0.01 

significance level. These included six metabolites suggestive of a high risk of 

association with OC: AAMU levels with OR= 1.116, 95% CI: 1.060–1.174, 

PFDR<0.038; Ceramide (d18:1/14:0, d16:1/16:0) levels with OR= 1.122, 95% CI: 

1.055–1.194, P=0.0003; and SM(d18:1/16:0(OH)) levels with OR= 1.096, 95% CI: 

1.036–1.1160, P=0.0014; X-12221 levels with OR= 1.130, 95% CI: 1.050–1.217, 

P=0.0012; X-12410 levels with OR=1.114, 95% CI: 1.045–1.187, p=0.0010; and 

AFAMU levels with OR= 1.071, 95% CI: 1.031–1.113, P=0.0004. 8 Low-risk 

metabolites: m5U levels with OR= 0.938, 95% CI: 0.898--0.980, P=0.0046; 2R,3R-

DHB levels with OR= 0.905, 95% CI: 0.857--0.955, P=0.0003; LAG (18:2/20:4) levels 

with OR= 0.928, 95% CI: 0.878--0.981, P=0.0083; Gamma-glutamyl-alpha-lysine 

levels with OR= 0.902, 95% CI: 0.844--0.965, P=0.0026; Linolenoylcarnitine (C18:3) 

levels with OR= 0.876, 95% CI: 0.810--0.947, P=0.0008; N-lactoyl phenylalanine 

levels with OR= 0.849, 95% CI: 0.769--0.937, P=0.0012; X-23678 levels with OR= 

0.906, 95% CI: 0.842-0.974, P=0.0079; Spermidine to N-acetylputrescine ratio with 

OR= 0.893, 95% CI: 0.841-0.947, P=0.0002(Fig.2, Supplementary S1). The p value 

results of the four MR analyses for all positive results are shown in Fig.3. 

No signs of pleiotropy or heterogeneity were found in the strong causative factors 

Prep
rin

t



6 

 

mentioned earlier, indicating that the main results from the IVW approach in our 

research could support causal associations with minimal heterogeneity. The findings 

related to heterogeneity and horizontal pleiotropy are summarized in Supplementary 

Table S2-S3. 

Figure 2  Forest plot depicting impact estimates of the relationship between identified 

candidate metabolites and OC phenotypes. 

Figure 3 p value results of the four MR analyses for all positive results 

Common metabolite phenotypes between OC and the five subtypes 

Furthermore, we conducted the MR analysis involving a comprehensive 

assessment of 1,400 blood metabolites alongside five distinct subtypes of OC. This 

analysis was executed employing a consistent methodological framework, ensuring that 
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our approach-maintained uniformity across all the components of the study. Following 

the analysis of OC subtypes, a common pathogenic phenotype was identified for these 

subtypes, as illustrated in Fig.4. 

Figure 4 Shared metabolite phenotypes and OR values between OC and the five 

subtypes 

 

Specific metabolite phenotypes in five OC subtypes 

OC is classified into five main types: HOC, LOC, EOC, CCOC, MOC. HOC 

typically shows highly heterogeneous glandular structures, with CA125 and HE4 being 

common diagnostic markers, and p53 mutations are prevalent. EOC resembles 

endometrial glands, with positive ER and PR expression, and PTEN mutations are 

frequent. CCOC exhibits transparent vacuolated cells, with HNF1β as a specific marker 

and significant ARID1A mutations. MOC is characterized by mucin secretion, with 

elevated CEA levels, and KRAS mutations are common. Low-grade serous carcinoma 

has well-differentiated cells, frequent KRAS and BRAF mutations, and CA125 has 

limited diagnostic value. 

High-grade serous ovarian cancer 

With P<0.01, we screened 15 associated metabolites, 8 of which were identical to 

the OC results described above, and 7 were specific to HOC: trartronate 

(hydroxymalonate) level, N6-acetyllysine level, dopamine 3-o-sulfate level, 18:0/18:2-

GPC level, PIP-Sulfate (2) level, 4-acetylcatechol sulfate (1) level, and adenosine 5'-

monophosphate (AMP)-to-tyrosine ratio. These metabolites, when analyzed via four 

methods, produced results comparable to those obtained via IVW. 

Low-grade serous ovarian cancer 

Similar to HOC, we identified 9 known associated metabolites, with one 

overlapping with OC and 8 specific to LOC. These included 5 high-risk and 7 low-risk 

metabolites, which are as follows: sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1), 

sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0), the 3-formylindole level, the 3-

indoleglyoxylic acid level, the alpha-ketoglutarate to aspartate ratio, the 2-o-

methylascorbic acid level, the sucrose level, Spermidine to N-acetylputrescine ratio, 

and the adenosine 5'-monophosphate (AMP) to leucine ratio. 
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Endometeioid ovarian cancer 

In addition, we screened 18 relevant known metabolites associated with EOC 

subtypes, of which 3 metabolites were identical to those associated with OC, and the 

remaining 15 metabolites were specific, including 9 high-risk metabolites: 

trimethylamine n-oxide level, 1,2-dilinoleoyl-GPC (18:2/18:2) level, 18:2/18:3-GPC 

level, tetradecadienedioate (C14:2-DC) level, SM(d18:1/16:0(OH)) levels,  

dimethylglycine level, AFAMU levels, retinol (vitamin A) to linoleoyl-arachidonoyl-

glycerol (18:2 to 20:4) [2] ratio, cholesterol to linoleoyl-arachidonoyl-glycerol (18:2 to 

20:4) [2] ratio, and 9 low-risk metabolites: glycocholenate sulfate level, 1-(1-enyl-

stearoyl)-2-oleoyl-GPE (p-18:0/18:1) level, LAG (18:2/20:4) levels, dichosatrienoate 

(22:3n6) level, arachidonoylcarnitine (C20:4) levels, 2-ketocaprylate level, 

arachidonate (20:4n6) level, 18:0/20:4-GPC level, Spermidine to pyruvate ratio. 

Clear cell ovarian cancer 

There is one common outcome of OC, and there are also 3 specific high-risk 

metabolite, namely, 3-(3-hydroxyphenyl)propionate levels, SM(d18:1/16:0(OH)) 

levels, succinate levels, the cholesterol to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) 

[1] ratio, and 8 low-risk metabolites, namely, the quinate level, the taurocholenate 

sulfate level, the 4-hydroxycoumarin level, the 1-(1-enyl-palmitoyl)-GPC (p-16:0) ratio, 

the N-acetylcarnosine level, the 1-oleoyl-GPG (18:1) ratio, the arginine level, and the 

choline-to-choline ratio. 

Mucinous ovarian cancer 

Similarly, according to the IVW method, 15 known metabolites are thought to be 

associated with MOC, 2 of which are common to OC. Another 6 high-risk metabolites 

are specific to this phenotype: N-formylphenylalanine levels, N-methylhydroxyproline 

levels, 3-amino-2-piperidone levels, the adenosine 5'-diphosphate (ADP)-to-valine 

ratio, the isoleucine-to-phosphate ratio, and the leucine-to-phosphate ratio. In addition, 

9 low-risk metabolites were identified: 4-hydroxyhippurate levels, Arabonate/xylonate 

levels, Enyl-16:0/18:1-GPE levels, GGAL levels, PIP-Sulfate(3) levels, Beta-

hydroxyisovalerate levels, Guanidinoacetate levels, Orotidine levels, and the creatine 

to carnitine ratio. 

Information on the results of MR analysis of OC subtypes can be found in the 

Supplementary Table S4-S18 and Fig.S1-S5. 

Pathway enrichment analysis 

 As shown in Fig.4 (Supplementary Table S19), in our research, we conducted a 

thorough analysis of the metabolic pathways and enrichment of metabolites that are 

linked to OC and its various subtypes. This involved an investigation of the RaMP 

database, which yielded insightful results. Our findings revealed a total of 23 distinct 

metabolic pathways associated with OC. Notably, caffeine metabolism was the most 

significant among these pathways, highlighting its potential relevance in understanding 

the metabolic alterations associated with OC. 
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Figure 4 OC Metabolite Pathway Enrichment Top 25 Pathways. 

 

The analysis of metabolic pathways across the five subtypes of OC revealed 

notable findings. Caffeine metabolism was significantly correlated with HOC. 

Moreover, pathways related to "Citrullinemia Type I," "Argininemia", 

"Argininosuccinic Aciduria", "Ornithine Transcarbamylase (OTC) Deficiency” and 

“Carbamoyl Phosphate Synthetase Deficiency” were strongly associated with LOC. 

The "methionine de novo and salvage" pathway was also significantly linked to EOC, 

whereas the "immune system" pathway was notably associated with CCOC. 

Furthermore, pathways involving mRNA, protein, and metabolite induction by 

cyclosporin A were significantly related to MOC. The most important pathways for 

each cancer subtype are presented in the Supplementary Table S21-S24, Fig S1-S5. 

DISCUSSION: 

In this study, eight high-risk factors and six low-risk factors were identified through 

genomics and metabolomics via MR. In addition, we reverse-validated our results, 
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which revealed no causality, eliminating bias associated with reverse causality and 

reinforcing the dependability of our preliminary MR result. After FDR correction, one 

high-risk factor for OC, AAMU, was identified. Moreover, metabolic pathway 

enrichment analysis revealed caffeine metabolism as the most significant pathway. 

We characterized eight metabolites as potential cause-and-effect links to increased 

OC risk. Currently, research on the association between these metabolites and OC 

remains limited. LAG (18:2/20:4) and C18:3-Car participate in glycerophospholipid 

and lipid metabolism pathway. Lipid metabolism reprogramming is a signature of 

cancer, and studies have shown that certain polyunsaturated fatty acids (PUFAs) and 

their glycerides are linked to inflammation and cancer progression(39, 40). Carnitine 

derivatives, including linolenoylcarnitine, may be involved in mitochondrial energy 

metabolism and the metabolic adaptation of cancer cells(41). Our study further supports 

this perspective. GGAL, N-lactoylphenylalanine and 2R,3R-DHB are both involved in 

amino acid metabolism pathway. In cancer cells, amino acid metabolism is frequently 

reprogrammed to satisfy the elevated demands for nutrients, energy, and biosynthetic 

precursors necessary for growth. Studies have shown that N-lactoyl compounds may 

be linked to lactate metabolism and the acidification of the tumor microenvironment, 

allowing cancer cells to promote growth and immune evasion via this metabolic 

pathway(42-44). In future studies, we could explore targeting this pathway to disrupt 

immune evasion in tumor cells and thereby control cancer progression. 

The ratio of spermidine to N-acetylputrescine can serve as an indicator of the 

balance between polyamine synthesis and degradation, which has been shown to be 

dysregulated in various types of cancer. Polyamine metabolism is often upregulated in 

cancer cells to support their rapid growth and survival(45, 46), making it a potential 

target for cancer therapy.  

AAMU, m5U, and AFAMU are all involved in pyrimidine metabolism. Due to their 

essential role in cell proliferation, dysregulation of pyrimidine metabolism has already 

been recognized as a critical driver of tumorigenesis(47, 48).Cancer cells typically 

enhance pyrimidine synthesis (de novo synthesis) to meet the demands of rapid 

proliferation(49). Among these, m5U, a metabolic product of tRNA degradation, is 

linked to RNA methylation and is elevated in bladder cancer(50), potentially reflecting 

the high RNA metabolic activity of tumor cells. This finding aligns with our study. 

From a treatment perspective, targeting pyrimidine metabolism could provide a novel 

therapeutic approach which is that therapeutic strategies aimed at modulate pyrimidine 

metabolism could inhibit this excessive metabolic activity, potentially slowing tumor 

progression. 

Our analysis revealed potential causal relationships between six metabolic products 

and the inhibition of OC progression. Among these, AAMU and AFAMU are involved 

in caffeine metabolism. Recent studies have shown that caffeine metabolism is closely 

linked to colorectal cancer(51), breast cancer(52), and prostate cancer(53), among 

others. The relationship between caffeine metabolism and OC risk may stem from the 

impact of caffeine and its metabolic byproducts on sex hormone regulation(54, 55). 

Studies have also demonstrated that caffeine can affect DNA methylation levels by 

inhibiting DNA methyltransferases (DNMTs), thus influencing the activity of 

Prep
rin

t



11 

 

oncogenes and tumor suppressor genes(56). These findings align with our results, but 

the underlying mechanisms warrant further investigation. Future research should 

explore individual variations in caffeine metabolism to develop more targeted strategies 

for cancer prevention and treatment. 

Ceramide (d18:1/14:0, d16:1/16:0) and SM(d18:1/16:0(OH)) are metabolites of 

sphingolipid metabolism. Both ceramide and sphingomyelin are critical tumor 

suppressors that regulate apoptosis, autophagy, and cell proliferation(57). Therefore, 

investigating the potential of sphingolipid metabolism, particularly the use of ceramide 

derivatives as anticancer agents, may provide a novel approach to cancer therapy. 

Although five OC subtypes have unique metabolites distinct from those in other 

forms of OC, these notable findings do not lessen the importance of metabolites in the 

development of OC. There is growing evidence on observational studies has 

highlighted metabolic abnormalities in cancer patients relative to healthy individuals. 

These findings may guide the development of targeted treatment strategies for OC 

patients. These initial findings offer a foundation for further research. 

We support the development of screening programs for groups displaying 

metabolic irregularities, employing big data analysis to highlight the significant impact 

of plasma metabolites on the clinical prevention and prognosis of OC. Currently, 

several methods, such as Mass Spectrometry, Nuclear Magnetic Resonance, are 

available for detecting plasma metabolite levels. Future studies could utilize ex vivo 

and in vivo experiments to further investigate the relationship between these 

metabolites and the diagnosis and treatment of OC. We hope to combine metabolic 

profiling with current diagnostic biomarkers (e.g., CA-125) in the future to improve 

diagnostic accuracy in OC. Furthermore, we endorse the practice of conducting 

longitudinal follow-up assessments of patients diagnosed with OC. This ongoing 

monitoring is crucial for exploring potential biomarkers associated with cancer 

recurrence. By tracking these patients over time, we can better understand the complex 

dynamics of cancer behavior and develop more effective strategies to predict and 

prevent recurrences. 

 

Limitations: 

Acknowledging the limitations of this study is essential. Firstly, the accurate MR 

analysis is contingent upon the explanation of  IV exposure, emphasizes that larger 

sample sizes and more precise metabolomic measurements. Moreover, the study's focus 

on a European population restricts the generalizability of the findings, underscoring the 

importance of further validation in more diverse cohorts. Future studies should aim for 

more precise classification and characterization of phenotypes, as well as refinement of 

functional modeling to reduce bias. These improvements would enhance the power and 

validity of the results. Also, because MR can only be used to assess the causal effect of 

exposure on outcomes, without considering the quantification of potential causal effect 

sizes. Future studies should analyze longitudinal data and conduct in Clinical trials to 

validate the specific causal relationship between the expression levels of these 
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metabolites and OC, which will help determine whether these effects are age- and sex 

hormone-dependent or conditional on specific factors, thus providing a more nuanced 

understanding of the dynamic regulatory relationship between these metabolites and 

OC. 

Conclusion: 

This MR research highlights potential causal links between metabolites and OC, 

along with its subtypes. The results increase our understanding of OC development, 

including its different variants, and could serve as a foundation for improved 

management approaches in clinical practice. Nonetheless, because of insufficient strong 

supporting evidence, additional research is necessary to validate these connections and 

broaden these findings to increase their applicability in the early detection and diagnosis 

of OC. Future studies could investigate the combination of metabolites with existing 

diagnostic markers such as CA125 and HE4 to enhance the diagnostic accuracy for 

early-stage OC. Additionally, exploring novel therapeutic strategies targeting 

metabolites or metabolic pathways could offer promising approaches for inhibiting OC 

progression. 
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m5U: 5-methyluridine (ribothymidine);  

2R,3R-DHB: 2R,3R-dihydroxybutyrate;  

LAG (18:2/20:4): Linoleoyl-arachidonoyl-glycerol (18:2/20:4) [1];  

Enyl-16:0/18: 1-GPE:1-(1-enyl-palmitoyl)-2-oleoyl-GPE (p-16:0/18:1) 

PIP-Sulfate(2): Sulfate of piperine metabolite C16H19NO3 (2) 

PIP-Sulfate(3): Sulfate of piperine metabolite C16H19NO3 (3) 

GGAL: Gamma-glutamyl-alpha-lysine;  

C18:3-Car: Linolenoylcarnitine (C18:3);  
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SM(d18:1/16:0(OH)): Hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH));  

AFAMU: 5-acetylamino-6-formylamino-3-methyluracil. 

18:0/18:2-GPC:1-stearoyl-2-linoleoyl-gpc (18:0/18:2) 

18:0/20:4-GPC:1-stearoyl-2-arachidonoyl-gpc (18:0/20:4)  

18:2/18:3-GPC:1-linoleoyl-2-linolenoyl-GPC (18:2/18:3) 
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GWAS ID Year Trait sample size Ncase 

ieu-a-1120 2017 OV 66450 25509 

ieu-a-1121 2017 HOC 53978 13037 

ieu-a-1122 2017 LOC 41953 1012 

ieu-a-1124 2017 CCOC 42307 1366 

ieu-a-1125 2017 EOC 43751 2801 

ieu-a-1231 2017 MOC 43507 2566 
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