Genetic causal associations between serum metabolites and infertility: a Mendelian randomization study

Keywords

Infertility, Mendelian randomization, Circulating plasma metabolites

Abstract

Introduction

This study aims to elucidate the causal relationships between serum metabolites and infertility in both men and women, and to identify key metabolic biomarkers.

Material and methods

This study used a two-sample Mendelian randomization design,utilizing circulating plasma metabolite genome wide association study data as an exposure factor and FinnGen Consortium R10 genome wide association study data for infertility in men and women as an outcome. The causal relation between plasma metabolites and infertility in men and women was assessed using five methods: inverse variance weighted, Egger regression, weighted median, maximum likelihood estimation, and simple mode.

Results

This analysis identified 17 and 10 metabolites positively and negatively associated with infertility in women, respectively. Similarly, 22 and 30 metabolites were positively and negatively associated with infertility in men, respectively. Galactonate and glycerate levels were identified as risk factors for infertility in both men and women. In addition, sphingomyelin exerts protective effects against infertility in both men and women. Metabolic pathway analysis revealed enrichment of critical metabolic pathways related to infertility.

Conclusions

This study identified several circulating metabolic biomarkers associated with infertility. These biomarkers can be used for the screening and prevention of infertility. In addition, they could be employed as candidate molecules for future mechanistic exploration and drug-targeting studies.

1	Genetic causal associations between serum metabolites and
2	infertility: a Mendelian randomization study
3	Jiahao Shi ¹⁺ , Jiamei Zhu ³⁺ , Tian Tao ^{2*}
4	¹ Department of Urology, The Affiliated Wuxi People's Hospital of Nanjing Medical
5	University, Wuxi, China
6 7	² Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
8	³ Department of Obstetrics and Gynecology, Jingjiang People's Hospital Affiliated to
9	Yangzhou University, Taizhou, China
10	* Corresponding author:
11	Tian Tao; Email: taotian_1123@163.com
12	⁺ these authors contributed equality to this work

13 Abstract

Intorduction: This study aims to elucidate the causal relationships between serum
metabolites and infertility in both men and women, and to identify key metabolic
biomarkers.

17 **Methods:** This study used a two-sample Mendelian randomization design, utilizing 18 circulating plasma metabolite genome wide association study data as an exposure factor 19 and FinnGen Consortium R10 genome wide association study data for infertility in men 20 and women as an outcome. The causal relation between plasma metabolites and infertility 21 in men and women was assessed using five methods: inverse variance weighted, Egger 22 regression, weighted median, maximum likelihood estimation, and simple mode. **Results:** This analysis identified 17 and 10 metabolites positively and negatively 23 24 associated with infertility in women, respectively. Similarly, 22 and 30 metabolites were positively and negatively associated with infertility in men, respectively. Galactonate and 25 26 glycerate levels were identified as risk factors for infertility in both men and women. In 27 addition, sphingomyelin exerts protective effects against infertility in both men and 28 women. Metabolic pathway analysis revealed enrichment of critical metabolic pathways 29 related to infertility.

30 Conclutions: This study identified several circulating metabolic biomarkers associated

2

31	with infertility. These biomarkers can be used for the screening and prevention of
32	infertility.In addition, they could be employed as candidate molecules for future
33	mechanistic exploration and drug-targeting studies.

34 **Keywords:** Infertility, Circulating plasma metabolites, Mendelian randomization

35 Introduction

36	Infertility, a prevalent reproductive system disorder with rising global incidence, impacts
37	individual well-being, family dynamics, and societal demographics. Defined as the failure
38	to achieve clinical pregnancy after 12 months of regular unprotected intercourse[1]. It
39	affects 14.3% and 25% of reproductive-age couples in developed and developing
40	countries, respectively[2]. Notably, male factors contribute to nearly 50% of cases,
41	highlighting the need for early prevention, diagnosis, and targeted management strategies.
42	Integrative omics (transcriptomics, proteomics, metabolomics) has emerged as a pivotal
43	tool in life sciences. Evidence indicates that metabolic disorders (e.g. hypertension,
44	diabetes, obesity) are strongly linked to infertility in both sexes[3,4]. Metabolomics,
45	extending beyond genomics and proteomics[5, 6], identifies metabolic biomarkers and
46	elucidates pathogenic pathways by analyzing circulating metabolite profiles between
47	infertile patients and healthy controls, offering novel therapeutic targets for infertility
48	prevention and treatment.

3

49	Mendelian randomization (MR) is an epidemiological method that utilizes
50	single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) to infer causal
51	relationships between exposures and diseases, circumventing limitations of observational
52	studies[7]. Leveraging genome-wide association study (GWAS) data, we applied a
53	two-sample MR approach to investigate causal effects of serum metabolites on infertility
54	and identify underlying metabolic pathways.

55 Materials and methods

56 Study design

57	We used a two-sample MR approach based on GWAS summary statistics to investigate
58	causal associations between circulating metabolites in humans and the risk of infertility in
59	both men and women. This is a genetic epidemiological approach for investigating
60	causality and addressing confounders by using IVs under three assumptions: (i) IVs are
61	not associated with confounders; (ii) IVs are associated with exposure factors; and (iii)
62	IVs are not associated with outcome variables, with IVs influencing outcomes only
63	through exposure. Genetic information on circulating metabolites and infertility in
64	humans was obtained from separate GWAS databases, and the flowchart of this MR study
65	is shown in Figure 1.

66 GWAS data

67	Chen et al. obtained a genome-wide association database of 870 blood metabolites [8].
68	This is the most comprehensive analysis of blood metabolites in humans and is included
69	in the GWAS catalog. After applying the appropriate exclusion criteria, the Canadian
70	Longitudinal Study of Aging finalized the identification of 8,299 participants between the
71	ages of 45 and 85 years and performed genome-wide typing, identifying 248 linked loci.
72	They were also tested for 1,091 circulating plasma metabolites and 309 metabolite ratios.
73	Of the 1,091 metabolites, 850 had a known identity (including lipids, amino acids,
74	xenobiotics, nucleotides, cofactors and vitamins, carbohydrates, peptides, and
75	energy-related molecules), whereas the remaining 241 were defined as unknown or
76	partially characterized molecules; metabolite ratios and unknown molecules were
77	excluded from this study. Information on these metabolites is provided in Supplementary
78	Table S1.
79	FinnGen is a large public-private cooperation project covering the entire territory of
80	Finland to determine the etiology of various diseases and assess the role of genetics in
81	health and disease. We downloaded GWAS data related to infertility in both men and
82	women from the R10 version of the FinnGen consortium, which yielded 14,759 infertility
83	cases in women, 111,583 controls, 1,429 infertility cases in men, and 130,139 controls

84 (https://r10.finngen.fi/).

85 IV selection

86	In this study, we selected SNPs as genetic IVs. We rigorously screened the IVs associated
87	with serum metabolites using the following steps to ensure the robustness of the MR
88	analyses (Figure 1). First, SNPs with $MAF > 0.01$ in exposure and outcome were selected,
89	followed by screening for SNPs satisfying the locus-wide significance threshold (P < 1 \times
90	10^{-5}) associated with exposure. Subsequently, SNPs were removed by performing the LD
91	clumping procedure with $r^2 < 0.001$ and a window size = 10,000 kb to eliminate variants
92	in linkage disequilibrium. Genetic variants with $F > 10$ were selected as strong IVs to
93	avoid bias from weak IVs [9].

94 MR analysis

95	Five methods were used to evaluate the causal relation between exposure (plasma
96	metabolites) and outcome (infertility), with the random-effects inverse variance weighted
97	(IVW) model as the primary analytical method, along with the MR-Egger, weighted
98	median, maximum likelihood, and simple mode methods [10]. If only one IV was
99	available for the plasma metabolites, the Wald ratio was used. If two or more IVs were
100	present, the IVW method was used. Results with significant P-values for the IVW method
101	and beta values for the remaining four methods in the same direction as the IVW method
102	were considered meaningful. In the heterogeneity test, Cochran's Q statistic had a
103	P-value > 0.05 , indicating no heterogeneity between SNPs at the statistical level. Second,
104	horizontal pleiotropy was assessed using MR–Egger regression. A P-value < 0.05 for the

105	intercept term indicated the presence of statistically significant horizontal pleiotropy. We
106	detected reverse causality using the Steiger test of directionality, with TRUE indicating
107	the absence of statistically significant reverse causality. The results show that all MR
108	methods yielded results in the same direction and that the MR-Egger method did not
109	detect statistically significant pleiotropy, supporting our main finding. Statistical analyses
110	were conducted using R software (version 4.2.3), and MR analysis was performed using
111	the TwoSampleMR package.

112 Metabolic pathway analysis

- 113 The RaMP database of Web-based Metaconflict 6.0 was used to analyze metabolic
- 114 pathways leading to infertility (https://www.metabcanalest.ca/), and pathways with FDR
- 115 < 0.05 were considered significantly enriched.

116 **Results**

117 MR results for infertility in men and women

- 118 After excluding unknown metabolites and metabolite ratios, 870 plasma
- 119 metabolite-associated SNPs with known structures and functions were used. The number
- 120 of IVs selected for plasma metabolites ranged from 3 to 32, and we derived causal
- 121 associations between 870 metabolites and infertility in both men and women

122	(Supplementary Tables S2 and S3). The IVW method showed a positive correlation
123	between increased levels of 17 metabolites and the risk of infertility in women, including
124	eight from the lipid metabolism pathway, three from the amino acid metabolism pathway,
125	two from the cofactor and vitamin pathways, two from the carbohydrate pathway, one
126	from the xenobiotic pathway, and one from a partially characterized molecular pathway.
127	The top five of these metabolites were as follows: 7-methylxanthine (odds ratio [OR] =
128	1.187, 95% confidence interval [CI] = 1.076–1.311, P = .0007); octadecadienedioate
129	(C18:2-DC) (OR = 1.086, CI = 1.041–1.134, P = .0002); galactonate (OR = 1.192, CI =
130	1.069–1.329, P = .0016); metabolonic lactone sulfate (OR = 1.067, CI = 1.026–1.109, P
131	= .0011); sphingomyelin (d18:0/18:0, d19:0/17:0) (OR = 1.112, CI = 1.037–1.193, P
132	= .0030). Furthermore, we observed 10 metabolites that were negatively associated with
133	infertility in women. The top five of these included oleate/vaccenate (18:1) (OR = 0.865 ,
134	CI = 0.784–0.954, P = .0037); glycoursodeoxycholate (OR = 0.892, CI = 0.827–0.963, P
135	= .0032); sphingomyelin (d18:2/23:1) (OR = 0.894, CI = 0.819–0.975, P = .0116);
136	glycocholate (OR = 0.923, CI = 0.862–0.987, P = .0196); glycohyocholate (OR = 0.869,
137	CI = 0.772–0.979, P = .0208) (Figure 2 and Supplementary Table S4).

138 A total of 22 metabolites were identified as positively associated with infertility in men.

139 The top five metabolites were as follows: 1-oleoyl-GPI (18:1) (OR = 1.429, CI =

140 1.151–1.773, P = .0012); 11 β -hydroxyandrosterone glucuronide (OR = 1.382, CI =

141 1.134–1.683, P = .0013); tauro- β -muricholate (OR = 1.178, CI = 1.051–1.319, P = .0048);

- 143 trans-4-hydroxyproline (OR = 1.372, CI = 1.095–1.718, P = .0059). Concurrently, 30
- 144 metabolites were negatively associated with infertility in men. Of these, the top five
- 145 included 5 α -androstan-3 β , 17 β -diol monosulfate (2) (OR = 0.852, CI = 0.767-0.947, P

146 = .0029); 1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (p-16:0/18:2) (OR = 0.742, CI =

- 147 0.608–0.904, P = .0032); sphingomyelin (d18:1/24:1, d18:2/24:0) (OR = 0.659, CI =
- 148 0.498–0.873, P = .0036); carnitine C14 (OR = 0.704, CI = 0.543–0.914, P = .0083);
- 149 and rosterone sulfate (OR = 0.903, CI = 0.835-0.976, P = .0100) (Figure 3 and
- 150 Supplementary Table S5).

151 Infertility in men and women share several causal metabolites. Pyridoxal was positively 152 associated with infertility in both women (OR = 1.096, CI = 1.027 - 1.170, P = .0058) and men (OR = 1.257, CI = 1.042 - 1.518, P = .0171). Galactonate and glycerate levels were 153 154 risk factors for infertility in both men and women. Furthermore, sphingomyelin exerted a 155 protective effect against infertility and was inversely correlated with infertility in women 156 (d18:2/23:1). By contrast, in infertility in men, six sphingomyelin metabolites were 157 identified: sphingomyelin (d18:0/18:0, d19:0/17:0); sphingomyelin (d18:0/20:0, 158 d16:0/22:0); sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0); sphingomyelin 159 (d18:1/18:1, d18:2/18:0); sphingomyelin (d18:1/20:2, d18:2/20:1, d16:1/22:2);

160 sphingomyelin (d18:1/24:1, d18:2/24:0).

161 Sensitive analysis

- 162 The directionality of the MR results was consistent across all methods (Supplementary
- 163 Materials S1 and S2). MR–Egger results showed that no horizontal pleiotropy was
- 164 detected for 27 metabolites associated with infertility in women and 52 metabolites
- 165 related to infertility in men (Supplementary Table S1). Scatter plots depict the effect of
- 166 each SNP locus on infertility, with the slopes representing the magnitude of impact.
- 167 Leave-one-out analysis showed no significant outliers (Supplementary Materials S3 and

168 S4).

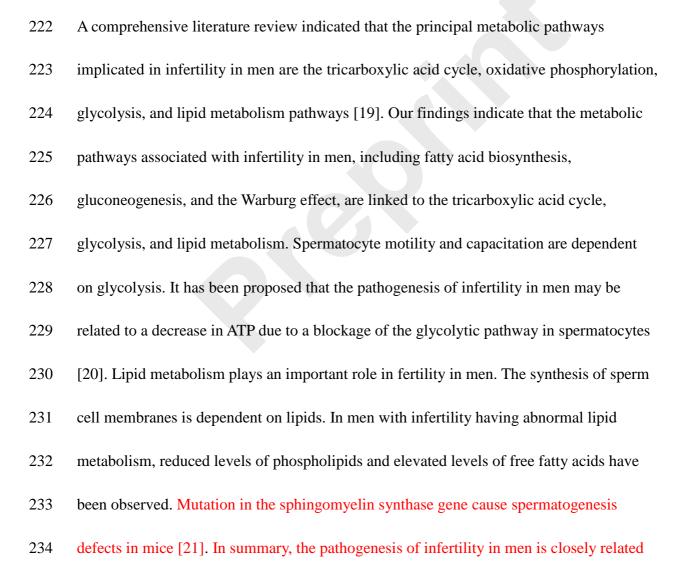
169 Metabolic pathway analysis

170	A study of metabolic pathways revealed that the five most prevalent metabolic pathways
171	in infertility in women were glycerolipid metabolism, glycine and serine metabolism,
172	valine/leucine/isoleucine degradation, bile acid biosynthesis, and thiamine metabolism
173	(Figure 4A). The five metabolic pathways strongly associated with infertility in men were
174	de novo triacylglycerol biosynthesis, malate-aspartate shuttle, glycerol phosphate shuttle,
175	cardiolipin biosynthesis, and bile acid biosynthesis. Additionally, five metabolic pathways
176	were common to infertility in both men and women (Figure 4B): bile acid biosynthesis,
177	vitamin B6 metabolism, glycerolipid metabolism, transfer of acetyl groups into

178 mitochondria, and valine/leucine/isoleucine degradation.

179 **Discussion**

180	In this two-sample MR analysis utilizing largescale GWAS data, we systematically
181	investigated the potential causal associations between 871 plasma metabolites and
182	infertility in both men and women. Multiple risk and protective factors associated with
183	infertility, as well as key metabolic pathways, were identified. The results provide new
184	evidence and insights into infertility pathogenesis and potential targets for prevention and
185	treatment. Metabolomics, a widely used method for studying reproduction-related
186	diseases, effectively identifies biomarkers in blood, semen, and follicular fluid. Among
187	these, blood samples are particularly valuable because of their accessibility and rich
188	metabolic profile. This study not only validated characteristic metabolites but also further
189	elucidated key metabolic pathways leading to infertility, laying an important foundation
190	for a deeper understanding of infertility's molecular mechanisms and the development of
191	precise therapeutic strategies.
192	A decline in semen quality is a major cause of infertility in men. In some countries,


semen quality problems have become a primary issue for young men with fertility

194 problems [11]. One study found differences in the serum metabolic profiles of men with

195 different sperm concentrations and identified the markers as peptides related to the

196	protein complement C3f [12]. Zhang et al. identified 24 potential biological markers of
197	serum metabolites in patients with azoospermia and in healthy controls. Taurine exhibits
198	high levels in healthy individuals and is enriched in one of the metabolic pathways,
199	gluconeogenesis, which is consistent with the results of the present study [13]. Androgen
200	secretion-stimulating factors play a pivotal role in sperm production, potentially
201	enhancing sperm viability and count [14]. Alipour et al. demonstrated that pyruvate and
202	taurine enhanced sperm viability through a correlation between seminal plasma
203	metabolomic profile and ejaculation-abstinence period length in normozoospermic men
204	[15]. Tauro- β -muricholate is a compound that combines taurine and bile acids, exhibiting
205	dual functionality as both bile acids and taurine. Bile acids are associated with idiopathic
206	infertility. Furthermore, FXR binds to endogenous bile acids and impedes spermatozoa
207	fertilization [16]. This study indicates that serum metabolites of tauro- β -muricholate may
208	be a risk factor for infertility in men. This may be related to the biological function of bile
209	acids, and further investigation is required to elucidate the specific biological mechanisms.
210	In the present study, carnitine C18:2 was identified as a potential biomarker of infertility
211	in men, whereas carnitine C14 was found to have a protective effect against this condition.
212	The carnitine family encompasses a range of active forms with distinct and significantly
213	varying functions among the various metabolite members. Urine metabolomic analyses
214	have shown that acylcarnitines, carnitine C8, and carnitine C10:2 are strongly associated
215	with infertility in men [17]. However, other studies have indicated that carnitine, a 12

naturally occurring antioxidant in mammals, is a potential therapeutic agent for
improving infertility in men. In vitro experiments have demonstrated that L-carnitine
significantly improves sperm quality in patients with severe spermatopenia [18]. These
findings suggest that the roles of carnitine and its metabolites in infertility in men are
complex and varied and that their specific functional mechanisms require further in-depth
study.

235	to various metabolic pathways, including the tricarboxylic acid cycle, glycolysis, lipid
236	metabolism, and fatty acid biosynthesis. Collectively, these pathways regulate
237	spermatogenesis, motility, and energetics by affecting the energy supply, cell membrane
238	structure, and spermatozoa function.
239	A growing body of evidence has indicated that infertility is a metabolic disorder, with
240	polycystic ovary syndrome (PCOS) being the most prevalent form of infertility in women.
241	PCOS is characterized by anovulation and endocrine and metabolic disorders [22]. A
242	prospective randomized controlled trial of patients with PCOS identified six plasma
243	metabolites, including glutamic acid, aspartic acid, 1-methylnicotinamide, acetylcarnitine,
244	glycerophosphocholine, and oleamide, which may serve as potential biomarkers for
245	PCOS [23]. As identified in this study, the metabolites associated with infertility in
246	women were predominantly lipid metabolites. Lipids play pivotal roles in human
247	reproduction. Blood lipids can influence women's reproductive health by regulating the
248	production of steroid hormones and may even have adverse effects on pregnant women
249	and fetuses [24]. The composition of lipids in the follicular fluid influences the
250	functionality of granulosa cells, which in turn affects oocyte development and maturation
251	[25]. An MR study by Jansen et al. showed that elevated triglyceride, total cholesterol,
252	and low-density lipoprotein cholesterol levels were associated with an increased risk of
253	infertility in women [26]. The results of our study indicated that glycerate may be a risk

254 factor for infertility in women. Glycerates are conventionally classified into triglycerides, 255 1,2- or 1,3-glycerol diesters and 1- or 2-glycerol monoesters according to the number and 256 position of the acyl groups. Of these, triglycerides represent the most significant and 257 prevalent constituents; thus, we hypothesized that the primary cause of infertility in 258 women because of glycerate is the action of triglycerides. Furthermore, our findings 259 indicated a positive causal relation between bilirubin levels and infertility in women. One study examined serum total bilirubin, conjugated bilirubin, and free bilirubin levels in 260 infertile and normal fertile women. The results indicated that all three parameters were 261 elevated in the infertile group compared with those in the control group. The implication 262 263 of these results is that elevated bilirubin levels may contribute to poor pregnancy outcomes [27]. Robert B. Hood et al. identified nine metabolites, including bilirubin, 264 265 through the metabolomic analysis of follicular fluid from 125 infertile women undergoing 266 IVF [28]. This is consistent with our findings.

Studies of women's metabolic pathways have found that infertility in women is associated with bile acid biosynthesis. A previous study identified that serum metabolic pathways in infertile women include fatty acid metabolism, whereas metabolic pathways in follicular fluid include bile acid biosynthesis [29], which is comparable to our findings. Smith et al. identified bile acids and all enzymes involved in the bile acid synthesis pathway in human follicular fluid [30]. These findings suggest that the bile acid synthesis pathway is

273	essential for follicular growth, development, and maturation. However, further
274	investigations are required to elucidate the underlying mechanisms of infertility. A
275	metabolomic analysis of follicular fluid in women with evidence of infertility because of
276	decreased ovarian reserve function revealed that the metabolic pathways involved
277	included pantothenate and CoA biosynthesis and glutathione metabolism [29], consistent
278	with our findings. The biosynthesis of pantothenate and CoA plays a role in the
279	metabolism of sugars, proteins, and fats and exhibits antioxidant effects. These processes
280	influence oocyte development and maturation.
281	This study had several strengths. It represents the most comprehensive investigation to
282	date of the potential causal relation between plasma metabolites and infertility. Second,
283	this study employed five distinct statistical methods for MR to enhance the robustness
284	and credibility of the findings.
285	The metabolic markers and pathways identified in this study have the following clinical
285 286	The metabolic markers and pathways identified in this study have the following clinical translational potential. For instance, the metabolites can be utilised as non-invasive

- 288 metabolic pathways (such as lipid and glucose metabolism) provide new perspectives for
- 289 developing targeted therapeutic strategies. Furthermore, the monitoring of metabolic
- 290 processes in high-risk populations (like patients with a family history of infertility or
- 291 metabolic syndrome) in combination with lifestyle interventions has been shown to

292	reduce the risk of infertility. However, it should be noted that the study is subject to
293	several limitations. First, the lack of detailed participant clinical characteristics in the
294	database limits the in-depth interpretation of the causal relation between metabolites and
295	infertility, as different etiologies can lead to significant differences in metabolite profiles.
296	Failure to fully consider these clinical features may have affected the generalizability and
297	clinical application of the findings. Future studies should incorporate more detailed
298	clinical information combined with multicenter data to further validate and optimize the
299	reliability of metabolites as infertility biomarkers. Second, the GWAS database employed
300	in this study predominantly comprises data from European populations. Consequently, the
301	generalizability of these results to other racial and geographical groups remains unclear.
302	Third, although the present study revealed significant associations between some serum
303	metabolites and infertility using MR, whether these metabolites directly contribute to
304	infertility or whether their changes are a result of the disease remains uncertain. Some
305	metabolites may be involved in pathological processes by affecting sperm or egg energy
306	metabolism, oxidative stress, or cell membrane function, whereas others may simply
307	reflect changes in the metabolic environment. Future studies combining functional
308	experiments (including gene editing or metabolic interventions) and longitudinal cohort

310 Conclusion

17

311	The fundamental objective of metabolomics is the identification of specific biomarkers.
312	In the present study, MR analysis was used to identify plasma metabolite risk factors and
313	protective factors associated with infertility. The analysis involved 17 risk factors and 10
314	protective factors for infertility in women and 22 risk factors and 30 protective factors for
315	infertility in men. Certain metabolites play a common role in infertility in both women
316	and men. For instance, pyridoxal was positively associated with infertility in both women
317	and men, whereas galacturonic acid and glycolic acid were identified as common risk
317 318	and men, whereas galacturonic acid and glycolic acid were identified as common risk factors. Through metabolic pathway analysis, we identified the pivotal metabolic
318	factors. Through metabolic pathway analysis, we identified the pivotal metabolic
318 319	factors. Through metabolic pathway analysis, we identified the pivotal metabolic pathways associated with infertility. These findings have yielded significant candidate

References 323

1. Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin 324 Biochem 2018; 62: 2-10. 325

2. Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, 326

regional, and global trends in infertility prevalence since 1990: A systematic analysis of 327

277 health surveys. PLOS Med 2012; 9: e1001356. 328

3. Service CA, Puri D, Al Azzawi S, Hsieh TC, Patel DP. The impact of obesity and 329

330	metabolic health on male fertility: A systematic review. Fertil Steril 2023; 120: 1098-111.
331	4. Dai M, Hong L, Yin T, Liu S. Disturbed follicular microenvironment in polycystic
332	ovary syndrome: Relationship to oocyte quality and infertility. Endocrinology 2024; 165.
333	5. Kovac JR, Pastuszak AW, Lamb DJ. The use of genomics, proteomics, and
334	metabolomics in identifying biomarkers of male infertility. Fertil Steril 2013; 99:
335	998-1007.
336	6. Zhang A, Sun H, Wang P, Han Y, Wang X. Recent and potential developments of
337	biofluid analyses in metabolomics. J Proteomics 2012; 75: 1079-88.
338	7. Sekula P, Del Greco M F, Pattaro C, Köttgen A. Mendelian randomization as an
339	approach to assess causality using observational data. J Am Soc Nephrol 2016; 27:
340	3253-65.
341	8. Chen Y, Lu T, Pettersson-Kymmer U, et al. Genomic atlas of the plasma metabolome
342	prioritizes metabolites implicated in human diseases. Nat Genet 2023; 55: 44-53.
343	9. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies:
344	A guide, glossary, and checklist for clinicians. BMJ 2018; 362: k601.
345	10. Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian
346	randomization investigations: Update for summer 2023. Wellcome Open Res 2019; 4: 186.
347	11. Jørgensen N, Joensen UN, Jensen TK, et al. Human semen quality in the new
348	millennium: A prospective cross-sectional population-based study of 4867 men. BMJ
349	Open 2012; 2.
	19

- 350 12. Courant F, Antignac JP, Monteau F, Le Bizec B. Metabolomics as a potential new
- approach for investigating human reproductive disorders. J Proteome Res 2013; 12:

352 2914-20.

- 353 13. Zhang Z, Zhang Y, Liu C, et al. Serum metabolomic profiling identifies
- 354 characterization of non-obstructive azoospermic men. Int J Mol Sci 2017; 18.
- 355 14. Zhang J, Huang Z, Chen M, et al. Urinary metabolome identifies signatures of
- 356 oligozoospermic infertile men. Fertil Steril 2014; 102: 44-53.e12.
- 357 15. Alipour H, Duus RK, Wimmer R, et al. Seminal plasma metabolomics profiles
- following long (4-7 days) and short (2 h) sexual abstinence periods. Eur J Obstet Gynecol
- 359 Reprod Biol 2021; 264: 178-83.
- 360 16. Yang J, Zong X, Wu G, Lin S, al Feng Y, Hu J. Taurine increases testicular function in
- aged rats by inhibiting oxidative stress and apoptosis. Amino Acids 2015; 47: 1549-58.
- 362 17. Malivindi R, Santoro M, De Rose D, et al. Activated-farnesoid X receptor (FXR)
- 363 expressed in human sperm alters its fertilising ability. Reproduction 2018; 156: 249-59.
- 18. Chang D, Li F, Kang Y, et al. The effects of L-carnitine and fructose in improved
- 365 Ham's F10 on sperm culture in idiopathic severe asthenospermia within 24h. PLOS One
- 366 2025; 20: e0306235.
- 367 19. Peña FJ, Ortiz-Rodríguez JM, Gaitskell-Phillips GL, Gil MC, Ortega-Ferrusola C,
- 368 Martín-Cano FE. An integrated overview on the regulation of sperm metabolism
- 369 (glycolysis-Krebs cycle-oxidative phosphorylation). Anim Reprod Sci 2022; 246: 106805.

- 370 20. Eirefelt S, Stahlhut M, Svitacheva N, et al. Characterization of a novel non-steroidal
- 371 glucocorticoid receptor agonist optimized for topical treatment. Sci Rep 2022; 12: 1501.
- 21. Wittmann A, Grimm MOW, Scherthan H, et al. Sphingomyelin Synthase 1 Is Essential
- 373 for Male Fertility in Mice. PLoS One 2016; 11: e0164298.
- 22. Azziz R, Carmina E, Chen Z, et al. Polycystic ovary syndrome. Nat Rev Dis Primers
- 375 2016; 2: 16057.
- 23. Ding X, Deng Y, Wang Y, et al. Serum metabolomic profiling reveals potential
- 377 biomarkers in assessing the management of women with polycystic ovary syndrome: A
- 378 randomized controlled trial. Chin Med J (Engl) 2022; 135: 79-85.
- 379 24. Morel Y, Roucher F, Plotton I, Goursaud C, Tardy V, Mallet D. Evolution of steroids
- 380 during pregnancy: Maternal, placental and fetal synthesis. Ann Endocrinol (Paris) 2016;
- 381 77: 82-9.
- 25. Liu Y, Zhai J, Chen J, Wang X, Wen T. PGC-1α protects against oxidized low-density
- 383 lipoprotein and luteinizing hormone-induced granulosa cells injury through ROS-p38
- 384 pathway. Hum Cell 2019; 32: 285-96.
- 385 26. Jansen H, Lieb W, Schunkert H. Mendelian randomization for the identification of
- 386 causal pathways in atherosclerotic vascular disease. Cardiovasc Drugs Ther 2016; 30:
- 387 41-9.
- 388 27. Mangione R, Pallisco R, Bilotta G, et al. Bilirubin concentration in follicular fluid is
- 389 increased in infertile females, correlates with decreased antioxidant levels and increased

- 390 nitric oxide metabolites, and negatively affects outcome measures of in vitro fertilization.
- 391 Int J Mol Sci 2023; 24.
- 392 28. Hood RB, Liang D, Tan Y, et al. Serum and follicular fluid metabolome and markers
- 393 of ovarian stimulation. Hum Reprod 2023; 38: 2196-207.
- 394 29. Li J, Zhang Z, Wei Y, Zhu P, al Yin T, Wan Q. Metabonomic analysis of follicular
- fluid in patients with diminished ovarian reserve. Front Endocrinol (Lausanne) 2023; 14:
- 396 1132621.
- 397 30. Smith LP, Nierstenhoefer M, Yoo SW, Penzias AS, Tobiasch E, Usheva A. The bile
- acid synthesis pathway is present and functional in the human ovary. PLOS One 2009; 4:
- 399 e7333.

400 **Declarations**

- 401 Ethics approval and consent to participate
- 402 Not applicable
- 403 **Consent for publication**
- 404 Not applicable

405 Availability of data and materials

- 406 Publicly available datasets were analyzed in this study. Further inquiries can be directed
- 407 to the corresponding authors.

408 **Competing interests**

409 The authors declare no conflicts of interest.

410 Funding

411 No funding was received for this study.

412 Authors' contributions

- 413 J.H.S. and J.M.Z. conceived and presented the ideas. J.H.S. and T.T. processed the data
- 414 and wrote the manuscript. J.H.S., T.T., and J.M.Z. participated in data acquisition and
- 415 interpretation. All authors have read and approved the final manuscript.

416 Acknowledgments

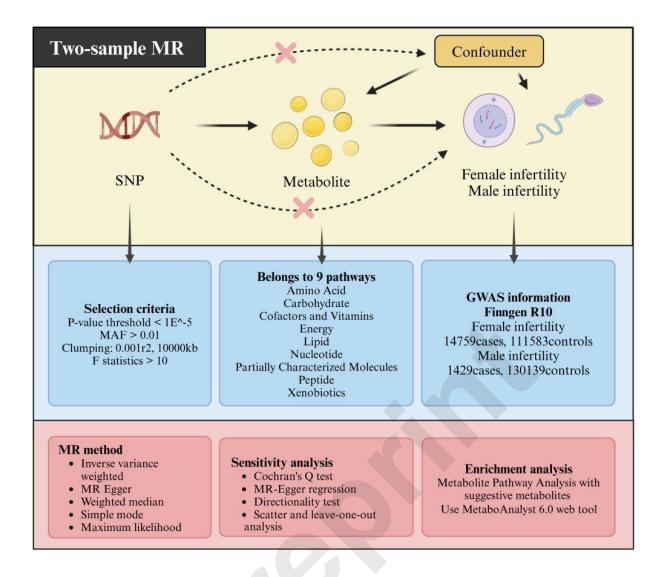
- 417 We gratefully acknowledge the invaluable contributions of researchers from prestigious
- 418 institutions, including those who provided the blood metabolite GWAS summary data and
- 419 FinnGen consortium. Furthermore, we express our gratitude to the diligent researchers
- 420 and dedicated participants of other genome-wide association study datasets used in this
- 421 research. Their steadfast commitment has been crucial for advancing scientific knowledge.

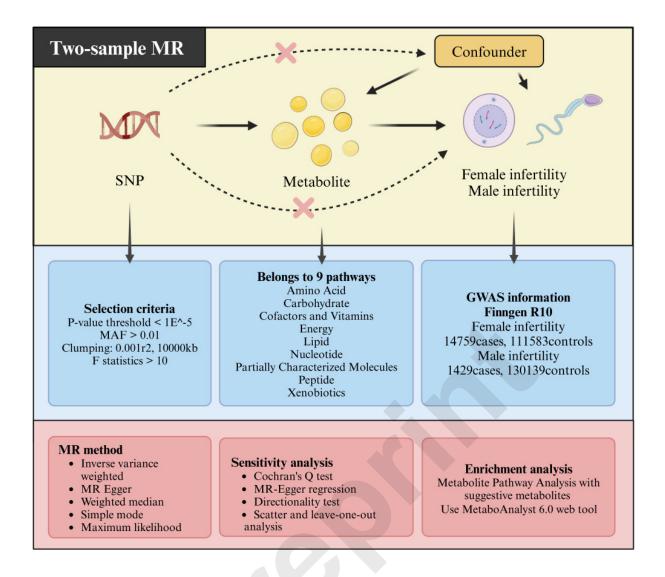
422 We also thank BioRender.com for their assistance with the illustrations.

423 Figure legends

424 Figure 1 Flowchart of the study design in our Mendelian randomization (MR)

425 analysis

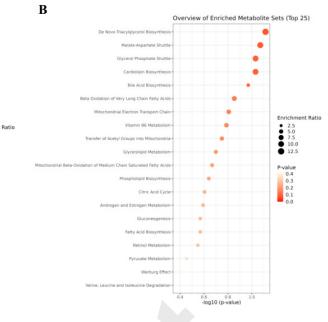

426 Figure 2 Forest plot of Mendelian randomization (MR) analysis between plasma

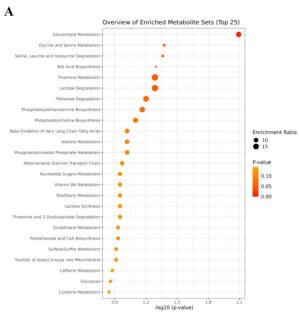

- 427 metabolites and infertility in women (IVW, inverse variance weighted; SNP, single
- 428 nucleotide polymorphism; OR, odds ratio; CI, confidence interval)

429 Figure 3 Forest plot of Mendelian randomization (MR) analysis between plasma

430 metabolites and infertility in men (IVW, inverse variance weighted; SNP, single

- 431 nucleotide polymorphism; OR, odds ratio; CI, confidence interval)
- 432 Figure 4 Enriched significant metabolic pathways of infertility. (A) Significant
- 433 metabolic pathways involved in infertility in women. (B) Significant enrichment of
- 434 metabolic pathways in men with infertility





Exposure	SNPs		OR (95% CI)	Pval	Q_pval_IVW	Egger_intercept_pv
(16 or 17)-methylstearate (a19:0 or i19:0)	13		1.125 (1.007 to 1.258)	3.780e-02	0.909	0.833
7-methylxanthine	14		1.187 (1.076 to 1.311)	6.550e-04	0.475	0.985
Bilirubin (E,Z or Z,E)	17	-	1.059 (1.011 to 1.109)	1.497e-02	0.125	0.758
Deoxycholic acid glucuronide	21		1.068 (1.003 to 1.139)	4.161e-02	0.146	0.053
Eicosenedioate (C20:1-DC)	28	-	1.070 (1.019 to 1.124)	6.307e-03	0.556	0.446
Galactonate	6		1.192 (1.069 to 1.329)	1.617e-03	0.509	0.929
Glycerate	23	-	1.072 (1.002 to 1.148)	4.514e-02	0.607	0.864
Hexadecenedioate (C16:1-DC)	19	-	1.060 (1.013 to 1.110)	1.188e-02	0.298	0.498
Hydantoin-5-propionate	9		1.139 (1.027 to 1.264)	1.382e-02	0.453	0.501
Isovalerate (i5:0)	15		1.125 (1.034 to 1.225)	6.194e-03	0.542	0.361
Metabolonic lactone sulfate	23	+	1.067 (1.026 to 1.109)	1.065e-03	0.158	0.082
N-acetylserine	20		1.099 (1.008 to 1.198)	3.136e-02	0.938	0.720
Octadecadienedioate (C18:2–DC)	26	-	1.086 (1.041 to 1.134)	1.660e-04	0.917	0.434
Octadecenedioate (C18:1–DC)	14	-	1.082 (1.024 to 1.144)	5.410e-03	0.825	0.209
Octadecenedioylcarnitine (C18:1–DC)	13		1.065 (1.015 to 1.117)	1.090e-02	0.583	0.057
Pyridoxal	26		1.096 (1.027 to 1.170)	5.753e-03	0.817	0.436
Sphingomyelin (d18:0/18:0, d19:0/17:0)	21		1.112 (1.037 to 1.193)	3.016e-03	0.808	0.568
2,2'-Methylenebis(6-tert-butyl-p-cresol)	14	_	0.910 (0.837 to 0.989)	2.644e-02	0.780	0.368
Adenosine 5'-diphosphate (ADP)	22 -	H.	0.935 (0.880 to 0.994)	3.076e-02	0.277	0.600
Glutarate (C5-DC)	15 -	-	0.917 (0.842 to 1.000)	4.918e-02	0.906	0.427
Glycocholate	29 -	-	0.923 (0.862 to 0.987)	1.964e-02	0.084	0.664
Glycohyocholate	12	-1	0.869 (0.772 to 0.979)	2.078e-02	0.065	0.824
Glycoursodeoxycholate	19 🛶	-	0.892 (0.827 to 0.963)	3.236e-03	0.702	0.476
N-formylphenylalanine	27 -	-	0.935 (0.876 to 0.998)	4.209e-02	0.383	0.543
N-palmitoyl-heptadecasphingosine (d17:1/16:0)	20 -	-	0.937 (0.878 to 1.000)	4.857e-02	0.956	0.407
Oleate/vaccenate (18:1)	13	-	0.865 (0.784 to 0.954)	3.667e-03	0.761	0.328
Sphingomyelin (d18:2/23:1)	18 -	-!	0.894 (0.819 to 0.975)	1.163e-02	0.430	0.661

Protective Risk

Exposure	SNPs	OR (95% CI)	Pval	Q_pval_IVW	Egger_intercept_pval
1-oleoyl-GPI (18:1)	22	1.429 (1.151 to 1.773)	1.204e-03	0.433	0.875
11beta-hydroxyandrosterone glucuronide	21	1.382 (1.134 to 1.683)	1.315e-03	0.497	0.650
2'-deoxyuridine	17	1.228 (1.010 to 1.495)	3.980e-02	0.935	0.333
2-linoleoylglycerol (18:2)	19	1.324 (1.078 to 1.625)	7.488e-03	0.763	0.434
4-vinylguaiacol sulfate	17		4.875e-03	0.320	0.734
Arachidonoylcholine	16	1.291 (1.037 to 1.607)	2.227e-02	0.682	0.880
Argininate	21		9.204e-03	0.486	0.265
Carnitine C18:2	18	1.210 (1.013 to 1.445)	3.589e-02	0.620	0.426
Creatinine	17		4.026e-02	0.254	0.074
Galactonate	6	1.403 (1.022 to 1.928)	3.648e-02	0.411	0.624
Glycerate	24		3.237e-02	0.291	0.992
Glyco-beta-muricholate	18	1.167 (1.033 to 1.318)	1.296e-02	0.808	0.241
Hippurate	14	1.374 (1.039 to 1.819)	2.604e-02	0.426	0.944
Laurate (12:0)	14		2.792e-02	0.947	0.878
Margaroylcarnitine (C17)	21	1.273 (1.013 to 1.600)	3.823e-02	0.711	0.217
Pyridoxal	26		1.711e-02	0.954	0.827
Pyridoxate	13		3.365e-02	0.411	0.353
Sulfate of piperine metabolite C16H19NO3 (2)	20		1.823e-02	0.991	0.862
Sulfate of piperine metabolite C18H21NO3 (1)	18	1.292 (1.027 to 1.626)	2.852e-02	0.973	0.668
Tauro-beta-muricholate	19	1.178 (1.051 to 1.319		0.268	0.498
Trans-4-hydroxyproline	18		5.919e-03	0.965	0.639
Umbelliferone sulfate	16	1.302 (1.066 to 1.590)		0.187	0.312
1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (p-16:0/18:2)	19	0.742 (0.608 to 0.904	3.155e-03	0.480	0.143
1-(1-enyl-palmitoyl)-GPE (p-16:0)	18	0.773 (0.611 to 0.978)	3.162e-02	0.992	0.583
2-hydroxyphenylacetate	19	0.816 (0.676 to 0.985	3.406e-02	0.898	0.243
3-methoxycatechol sulfate (2)	12	0.689 (0.484 to 0.981)	3.886e-02	0.092	0.347
4-guanidinobutanoate	16	0.852 (0.737 to 0.986)	3.190e-02	0.841	0.700
5-acetylamino-6-formylamino-3-methyluracil	16	0.898 (0.806 to 1.000)	4.973e-02	0.515	0.970
5alpha-androstan-3alpha,17beta-diol monosulfate (1)	12	0.902 (0.826 to 0.986)	2.369e-02	0.924	0.348
5alpha-androstan-3beta,17beta-diol monosulfate (2)	20	0.852 (0.767 to 0.947)	2.944e-03	0.676	0.947
Androstenediol (3beta, 17beta) monosulfate (2)	21	0.803 (0.657 to 0.981)	3.167e-02	0.600	0.129
Androsterone sulfate	27	0.903 (0.835 to 0.976)	9.953e-03	0.876	0.602
Behenoyl dihydrosphingomyelin (d18:0/22:0)	29	0.758 (0.609 to 0.945)	1.358e-02	0.005	0.940
Behenoylcarnitine (C22)	20	0.776 (0.627 to 0.961)	2.006e-02	0.240	0.826
Bilirubin degradation product, C16H18N2O5 (1)	15	0.877 (0.777 to 0.989)	3.202e-02	0.928	0.851
Bilirubin degradation product, C16H18N2O5 (2)	19	0.863 (0.756 to 0.985)	2.946e-02	0.236	0.345
Carnitine C14	17	0.704 (0.543 to 0.914)	8.338e-03	0.275	0.062
Decanoylcarnitine (C10)	18	0.834 (0.704 to 0.986)	3.412e-02	0.937	0.678
Epiandrosterone sulfate	19	0.891 (0.813 to 0.976)	1.317e-02	0.795	0.708
Gamma-glutamylglutamine	24	0.833 (0.696 to 0.997)	4.681e-02	0.900	0.364
Glycerophosphorylcholine (GPC)	24	0.819 (0.673 to 0.996)	4.545e-02	0.446	0.953
Glycodeoxycholate	14	0.742 (0.574 to 0.960)	2.293e-02	0.549	0.806
Glycolithocholate	16	0.763 (0.596 to 0.977)	3.225e-02	0.378	0.739
N-acetylalliin	22	0.811 (0.689 to 0.955)	1.204e-02	0.814	0.449
N-lactoyl tyrosine	20	0.805 (0.658 to 0.985)	3.539e-02	0.623	0.689
Sphingomyelin (d18:0/18:0, d19:0/17:0)	22	0.783 (0.638 to 0.960)	1.857e-02	0.380	0.092
Sphingomyelin (d18:0/20:0, d16:0/22:0)	32	0.841 (0.719 to 0.982)	2.874e-02	0.083	0.816
Sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0)	24	0.795 (0.650 to 0.973)	2.639e-02	0.895	0.299
Sphingomyelin (d18:1/18:1, d18:2/18:0)	22	0.776 (0.633 to 0.951)	1.461e-02	0.743	0.711
Sphingomyelin (d18:1/20:2, d18:2/20:1, d16:1/22:2)	19	0.798 (0.649 to 0.981)	3.259e-02	0.938	0.828
Sphingomyelin (d18:1/24:1, d18:2/24:0)	14	0.659 (0.498 to 0.873)	3.617e-03	0.507	0.475
Stearoyl sphingomyelin (d18:1/18:0)	26	0.838 (0.711 to 0.987)	3.481e-02	0.998	0.839
		1 2			
	<u> </u>				
	Protective	Risk			

