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 Abstract
Introduction
Recently, studies investigating the connection between blood metabolites and gastrointestinal tumors
have gained increased attention. A Mendelian randomization (MR) study is considered the second
most persuasive research method to explore the causal relationship between exposure and outcome
after RCT.

Material and methods
This analysis utilized the inverse variance weighted (IVW) method, the weighted median (WM)
method, and MR-Egger regression. Initially, we analyzed GWAS data from the FinnGen database to
identify various metabolites and their ratios. Subsequently, we repeatedly analyzed GWAS data from
the Open GWAS database to filter out duplicate results.

Results
5-methyluridine [FinnGen : odds ratio (OR) =1.16, 95% confidence interval (CI) =1.02-1.31, P=0.03,
FDR-P=0.04; Open GWAS: OR=1.08, 95%CI=1.01-1.17, P=0.03, FDR-P=0.04] and 1-dihomo-
linolenylglycerol (FinnGen: OR=1.30, 95%CI=1.02-1.65, P=0.03, FDR-P=0.04; Open GWAS:
OR=1.16, 95%CI=1.02-1.31, P=0.03, FDR-P=0.04) are positively associated with the risk of gastric
cancer (GC). Sphingomyelin (FinnGen: OR=0.73, 95%CI=0.54-0.98, P=0.04, FDR-P=0.04; Open
GWAS: OR=0.81, 95%CI=0.67-0.97, P=0.02, FDR-P=0.04) is negatively correlated with GC risk.
Carnitine to propionylcarnitine (C3) ratio (FinnGen: OR=1.11, 95%CI=1.01-1.22, P=0.03, FDR-P=0.04;
Open GWAS: OR=1.07, 95%CI=1.01-1.14, P=0.04, FDR-P=0.04), Arachidonate to linoleate ratio
(FinnGen: OR=1.10, 95%CI=1.02-1.19, P=0.02, FDR-P=0.04; Open GWAS: OR=1.12,
95%CI=1.06-1.18, P=4.44×10-5, FDR-P=3.55×10-4), and Andro steroid monosulfate (FinnGen:
OR=1.07, 95%CI=1.01-1.14, P=0.03, FDR-P=0.04; Open GWAS: OR=1.05, 95%CI=1.01-1.10,
P=0.04, FDR-P=0.04) are positively associated with the risk of colorectal cancer (CRC).
1-oleoyl-2-docosahexaenoyl-GPC (FinnGen: OR=0.89, 95%CI=0.81-0.98, P=0.02, FDR-P=0.04; Open
GWAS: OR=0.93, 95%CI=0.87-0.99, P=0.02, FDR-P=0.04) is negatively correlated with CRC risk.

Conclusions
3 blood metabolites are associated with the risk of GC; 4 blood metabolites and metabolite ratios are
associated with the risk of CRC.
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The causal effects of genetically determined 1400 human blood 

metabolites and metabolite ratios on the risk of gastrointestinal 

tumors：a Mendelian randomization study 

 

Abstract 

Introduction 

Recently, studies investigating the connection between blood metabolites and 

gastrointestinal tumors have gained increased attention. A Mendelian randomization 

(MR) study is considered the second most persuasive research method to explore the 

causal relationship between exposure and outcome after RCT.  

Material and methods 

This analysis utilized the inverse variance weighted (IVW) method, the weighted 

median (WM) method, and MR-Egger regression. Initially, we analyzed GWAS data 

from the FinnGen database to identify various metabolites and their ratios. 

Subsequently, we repeatedly analyzed GWAS data from the Open GWAS database to 

filter out duplicate results.  

Results 

5-methyluridine [FinnGen : odds ratio (OR) =1.16, 95% confidence interval (CI) 

=1.02-1.31, P=0.03, FDR-P=0.04; Open GWAS: OR=1.08, 95%CI=1.01-1.17, P=0.03, 

FDR-P=0.04] and 1-dihomo-linolenylglycerol (FinnGen: OR=1.30, 95%CI=1.02-1.65, 

P=0.03, FDR-P=0.04; Open GWAS: OR=1.16, 95%CI=1.02-1.31, P=0.03, 

FDR-P=0.04) are positively associated with the risk of gastric cancer (GC). 

Sphingomyelin (FinnGen: OR=0.73, 95%CI=0.54-0.98, P=0.04, FDR-P=0.04; Open 

GWAS: OR=0.81, 95%CI=0.67-0.97, P=0.02, FDR-P=0.04) is negatively correlated 

with GC risk. Carnitine to propionylcarnitine (C3) ratio (FinnGen: OR=1.11, 

95%CI=1.01-1.22, P=0.03, FDR-P=0.04; Open GWAS: OR=1.07, 95%CI=1.01-1.14, 

P=0.04, FDR-P=0.04), Arachidonate to linoleate ratio (FinnGen: OR=1.10, 

95%CI=1.02-1.19, P=0.02, FDR-P=0.04; Open GWAS: OR=1.12, 95%CI=1.06-1.18, 

P=4.44×10-5, FDR-P=3.55×10-4), and Andro steroid monosulfate (FinnGen: 

OR=1.07, 95%CI=1.01-1.14, P=0.03, FDR-P=0.04; Open GWAS: OR=1.05, 

95%CI=1.01-1.10, P=0.04, FDR-P=0.04) are positively associated with the risk of 

colorectal cancer (CRC). 1-oleoyl-2-docosahexaenoyl-GPC (FinnGen: OR=0.89, 

95%CI=0.81-0.98, P=0.02, FDR-P=0.04; Open GWAS: OR=0.93, 95%CI=0.87-0.99, 

P=0.02, FDR-P=0.04) is negatively correlated with CRC risk.  

Conclusion 

3 blood metabolites are associated with the risk of GC; 4 blood metabolites and 

metabolite ratios are associated with the risk of CRC. These findings may provide 

valuable guidance for the early clinical diagnosis and treatment of gastrointestinal 

tumors. 
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1. Introduction 

Gastrointestinal tumors encompass gastric cancer (GC) and colorectal cancer 

(CRC) [0]. Globally, GC has the fifth highest incidence rate among all cancers and is 

the fourth leading cause of cancer-related deaths [2,3]. CRC is the second leading 

cause of cancer mortality, with 1 million deaths attributed to CRC in 2020 [4]. This 

highlights that gastrointestinal tumors remain a significant public health issue 

worldwide. Previous research has identified several risk factors associated with 

gastrointestinal tumors, including smoking, alcohol consumption, high fat intake, low 

fiber intake, genetics, age, and certain infections [5,6,7]. Recently, studies 

investigating the connection between blood metabolites and various diseases have 

gained increased attention. 

 Metabolomics has emerged as a critical area in the medical field. It identifies 

changes in metabolites or metabolite pathways that help uncover the causes of disease 

development from a molecular perspective [8]. Metabolites can participate in human 

physiological activities as signaling molecules, endogenous toxins, 

immunomodulators, and environmental sensors, promoting or inhibiting the 

occurrence of diseases [9]. Determination of metabolites can help medical staff find 

new diagnostic or prognostic biomarkers for various diseases [10]. With the rapid 

advancement of metabolomics, researchers are increasingly focusing on the changes 

in blood metabolites associated with gastrointestinal tumors. Numerous studies have 

demonstrated that blood metabolites play a role in the development of these tumors 

[11,12]. Specifically, some primary bile acids and short-chain fatty acids have been 

found to promote the growth of gastrointestinal tumors, while ursodeoxycholic acid 

and butyric acid have shown beneficial effects [13]. In addition, Dai D et al. 

investigated the impact of 150 metabolites on the progression of GC [14]. 

Furthermore, Coker OO et al. examined the relationship between 20 metabolites and 

the progression of CRC [15]. However, the metabolites that have been studied are 

only a tiny part of the vast number of metabolites, and the relationships between 

multitudinous metabolites and gastrointestinal tumors need to be explored. Traditional 

observational studies lack credibility due to potential biases, such as reverse 

causations and confounding factors. A randomized controlled trial (RCT) is 

considered the best way to confirm causality, but related RCTs are rare due to the 

large number of metabolites.  

A Mendelian randomization (MR) study is considered the second most 

persuasive research method to explore the causal relationship between exposure and 

outcome after RCT [16]. MR studies use single nucleotide polymorphisms (SNPs) as 

instrumental variables (IVs) to infer causal associations between exposures and 

outcomes, which can overcome the impact of potential biases on causal inferences 

[17]. According to Mendel's laws of inheritance, parents randomly assign alleles to 

their offspring. Therefore, MR studies were unaffected by confounding factors [18]. 
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In addition, genes are earlier than exposure, so MR studies do not present a problem 

with reverse causation [19].   

The relationships between blood metabolites and gastrointestinal tumors remain 

unclear, so further research is necessary. We used data from genome-wide association 

studies (GWAS) to conduct MR analyses to comprehensively screen 1400 blood 

metabolites and metabolite ratios for the causal relationships between gastrointestinal 

tumor risk. Identifying new specific biomarkers among a large number of blood 

metabolites can guide the clinical diagnoses and prognoses of gastrointestinal tumors. 

 

2. Methods and materials 

2.1 Study design 

We systematically assessed the potential causal relationships between 1400 

human blood metabolites and metabolite ratios and gastrointestinal tumor risk using a 

two-sample randomization approach and designed the study based on the three core 

hypotheses of the MR analysis [20]: (1) Relevance assumption: The IVs selected must 

be closely related to exposures (GC, CRC). (2) Independence assumption: The 

selected IVs are only allowed to be related to exposures and should not be related to 

potential confounding factors. (3) Exclusion assumption: The selected IVs should 

influence outcomes entirely through exposures.  

 

2.2 GWAS data for 1400 human blood metabolites and metabolite ratos 

We utilized the most up-to-date and comprehensive GWAS datasets currently 

available for the human metabolome[21]. Based on the Canadian Longitudinal Study 

on Aging (CLSA) cohort, researchers analyzed data on 1,091 blood metabolites and 

309 metabolite ratios by examining 8,299 participants and approximately 15.4 million 

SNPs. The full GWAS summary statistics of the 1400 biomarkers were publicly 

available. 

 

2.3 GWAS data for GC and CRC 

GWAS summary data for GC and CRC are from the FinnGen database 

(https://www.finngen.fi/fi). Data on GC (phenocode: C3_STOMACH_EXALLC) 

include a total of 288,444 European participants (case: 1,307; control: 287,137). Data 

on CRC (phenocode: C3_COLORECTAL_EXALLC) include a total of 293,646 

European participants (case: 6,509; control: 287,137). 

To further verify the results of this study, we repeatedly analyzed another set of 

GWAS summary data of GC and CRC, all from the Open GWAS database 

(https://gwas.mrcieu.ac.uk/). The latest data on GC include a total of 476,116 

European participants (case: 1,029; control: 475,087), with a total of 24,188,662 SNPs 

(GWAS ID: ebi-a-GCST90018849) [22]. The latest data on CRC includes a total of 

470,002 European participants (case: 6,581; control: 463,421), with a total of 

24,182,361 SNPs (GWAS ID: ebi-a-GCST90018808) [22].  

 

2.4 Selection of IVs 
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IVs associated with exposure should meet the following requirements: (1) All 

IVs should have gene-wide significance. Considering the limited number of SNPs 

with significant genome-wide effects, we relaxed the threshold to P < 5×10
−5 and 

obtained IVs from 1400 blood metabolites metabolite ratos. This strategy is consistent 

with the approach of previous studies [23,24]. (2) The parameter of linkage 

disequilibrium (R2) < 0.001, and the genomic region ranges within 10000kb. (3) The 

F value represents the intensity of MR, and F > 10 indicates that IVs of exposure 

factors have a strong ability to predict results. The formula for calculating the F value 

is as follows: F=R2 (n-k-1) / [k (1-R2 )], R2 = 2×EAF×(1−EAF)×β2 [25]. We 

further coordinated the SNPs of exposures and outcomes and removed the SNPs with 

palindromic effects and allele discordances. Then, the final results were subjected to 

MR analyses. 

 

2.5 MR analysis and sensitivity analysis 

We mainly used the inverse variance weighted (IVW) method for MR analysis, 

which uses a meta-analysis method to integrate the Wald ratios of individual SNPs. 

This can assume that IVs can only affect the results through specific exposures. 

Therefore, the IVW method can achieve a robust result without polymorphism [26]. 

The IVW method uses the reciprocal of each IV variance as a weight to calculate 

weighted results. This process is carried out on the premise of ensuring that all IVs are 

valid to evaluate level pleiotropy [27]. However, when there are uncertainties in 

genetic associations and risk factors, such as weak IVs, the IVW method is biased to 

underestimate actual results [28]. Therefore, MR-Egger regression and weighted 

median (WM) method are used as supplementary analytical methods. MR-Egger 

regression uses the reciprocal of the outcome variance as a weight to fit. It adds an 

intercept term to the regression to perform weighted linear regression when IVs are 

invalid to produce causal estimates [29]. The WM method is the median of the 

weighted empirical density function of the ratio estimate. It combines data from 

multiple genetic variants into a single causal estimate. When the proportion of invalid 

IVs is as high as 50%, and the accuracy of estimates varies widely between IVs, the 

WM method can still provide consistent effect estimates [30].  

In order to further test the stability and reliability of the results, we conducted a 

sensitivity analysis, heterogeneity test, and pleiotropic test on the results. A 

Leave-one-out analysis was used to analyze the sensitivity of the results. It removes 

each SNP in turn and then calculates the results of all remaining SNPs. When there is 

no significant statistical difference between the results of a single SNP and the total 

results, it means that the SNP will not have a non-specific impact on the results [31]. 

Cochran's Q test was used to quantify the heterogeneity of instrumental variables. P > 

0.05 proves no heterogeneity, and the fixed-effect IVW method is used. While P < 

0.05 indicates significant heterogeneity, and the random-effect IVW method is used 

[31]. MR-Egger regression was used to detect horizontal pleiotropy. When its 

intercept term is close to 0 and P > 0.05, it means that there is no horizontal 

pleiotropy [32]. The MR-pleiotropy residual sum and outlier (MR-PRESSO) method 

was used to remove significant outliers and further reduce horizontal pleiotropy [33]. 
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The funnel plot was used to detect publication bias. The roughly symmetrical plot 

illustrates that the results have no significant publication bias. The False Discovery 

Rate (FDR) method was employed to adjust the P-values of the final results. 

 

2.6 Replication analysis 

To further verify the credibility of candidate blood metabolites, we performed the 

same MR analysis on another GC and CRC GWAS data. The overlapping blood 

metabolites of the two MR analyses were considered to have a significant causal 

relationship with GC or CRC. 

 

2.7 Metabolic pathway analysis 

To further clarify the biological mechanism of the impact of screened blood 

metabolites on GC and CRC, we used MetaboAnalyst 5.0 

(https://www.metaboanalyst.ca/) to conduct metabolic pathway analyses. The dataset 

for pathway analysis came from the Small Molecular Pathway Database (SMPDB) 

and the Kyoto Encyclopedia of Genes and Genomes (KEGG). 

 

3. Results 

3.1 MR Analysis of the causal relationship between 1400 human blood 

metabolites and metabolite ratios and the risk of GC 

3.1.1 Preliminary analysis  

After strictly controlling the qualities of IVs, we obtained SNPs for 62 

metabolites and metabolite ratios in the FinnGen database (Details of SNPs are listed 

in Table S1). The screened IVs contained 15-39 SNPs. The F values of all the SNPs 

were greater than 10, indicating that the included IVs have strong predictive 

capabilities (Details of IVs are shown in Table S2). We used the multiple sensitivity 

analysis to assess the heterogeneity and pleiotropy of each result. We finally strictly 

screened out 60 metabolites and metabolite ratios, including 38 metabolites of known 

chemical properties, 13 metabolites of unknown chemical properties, and 9 metabolite 

ratios (Table S3). 32 metabolites or metabolite ratios were associated with a decreased 

risk of GC, and 28 metabolites or metabolite ratios were associated with an increased 

risk of GC 

 

3.1.2 Replication analysis 

To further verify the results, we used the same method to analyze the latest data 

on GC in the open GWAS database. 51 metabolites and metabolite ratios were 

screened out by the IVW method. The filtered IVs contained 17-42 SNPs, and the F 

value of each SNP was greater than 10 (Table S4). All the 51 metabolites and 

metabolite ratios, including 30 metabolites of known chemical properties, 11 

metabolites of unknown chemical properties and 10 metabolite ratios, passed the 

multiplex sensitivity analyses (Table S5). 20 metabolites or metabolite ratios were 

associated with reduced GC risk, and 31 metabolites or metabolite ratios were 

associated with increased GC risk.  
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Combined with previous MR analysis from the FinnGen database, we found 3 

overlapping metabolites. 5-methyluridine and 1-dihomo-linolenylglycerol were 

associated with increased GC risk, and sphingomyelin was associated with decreased 

GC risk. The sensitivity analysis showed that none of the results had apparent 

heterogeneity or pleiotropic effect (Table 1, Figure 1), and the P values after FDR 

correction were all less than 0.05. The forest plots are shown in Figure 2. In addition, 

as shown in Figure 3, the leave-out-one analysis showed that excluding any SNP 

would not significantly affect the overall results, supporting the reliability and 

stability of the MR analysis. The funnel plots were approximately symmetrical, 

indicating no publication biases in the results (Figure S1). 

 

3.1.3 Metabolic pathway analysis 

Unfortunately, because there are only 3 blood metabolites, MetaboAnalyst 5.0 

cannot perform meaningful enrichment analysis.  

 

3.2 MR Analysis of the causal relationship between 1400 human blood 

metabolites and metabolite ratios and the risk of CRC 

3.2.1 Preliminary analysis  

After implementing strict quality control for each IV, we identified SNPs 

associated with 92 metabolites and metabolite ratios in the FinnGen database. IVs 

contained 12-40 SNPs. The F values of all SNPs were greater than 10. Detailed 

information about the IVs is provided in Table S6. We conducted the multiple 

sensitivity analysis to evaluate the heterogeneity and pleiotropy of each result, 

ultimately rigorously filtering down to 81 metabolites and metabolite ratios, 

including 59 metabolites with known chemical properties, 10 metabolites with 

unknown chemical properties, and 12 metabolite ratios (Table S7). Of these, 53 

metabolites or metabolite ratios were negatively correlated with CRC risk, while 28 

were positively correlated with CRC risk. 

 

3.2.2 Replication analyses 

To further validate our results, we analyzed the latest data on CRC from the open 

GWAS database using the same method. We screened 110 metabolites and metabolite 

ratios using the IVW method. The identified IVs included 15-45 SNPs, with each SNP 

exhibiting an F value greater than 10 (Table S8). After conducting thorough 

screenings, a total of 82 metabolites and metabolite ratios passed multiple sensitivity 

analyses. There are 48 metabolites with known chemical properties, 18 metabolites 

with unknown chemical properties, and 16 metabolite ratios (Table S9). Among these, 

5 metabolites or metabolite ratios were negatively correlated with CRC risk, while 47 

metabolites or metabolite ratios showed a positive correlation with CRC risk. 

In conjunction with the previous MR analysis of the FinnGen database, we 

identified 4 overlapping metabolites and metabolite ratios associated with CRC risk. 

Carnitine to propionylcarnitine (C3) ratio, arachidonate to linoleate ratio, and andro 

steroid monosulfate were found to be positively correlated with CRC risk. In contrast, 

1-oleoyl-2-docosahexaenoyl-GPC exhibited a negative correlation with CRC risk. 
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The sensitivity analyses indicated that our results showed no significant heterogeneity 

or pleiotropy effects (Table 2, Figure 4), and all P-values were less than 0.05 after the 

FDR correction. Forest plots illustrating these results can be seen in Figure 5. 

Additionally, the leave-one-out analysis confirmed the robustness and stability of the 

MR analysis (Figure 6). The funnel plots displayed a roughly symmetrical shape, 

indicating the absence of publication biases (Figure S2). 

 

3.2.3 Metabolic pathway analyses 

Unfortunately, because there are only 3 blood metabolites, MetaboAnalyst 5.0 

cannot perform meaningful enrichment analysis.  

 

4. Discussion 

We conducted a rigorous MR analysis of GWAS data from two separate 

databases to explore the causal relationships between 1400 blood metabolites and 

metabolite ratios and gastrointestinal tumor risk. In order to ensure the credibility of 

the results, we chose the intersection of the results of the two databases. The 

overlapping results from two authoritative databases indicated that 5-methyluridine 

and 1-dihomo-linolenylglycerol were positively correlated with GC risk and,  

sphingomyelin was negatively correlated with GC risk. Carnitine to 

propionylcarnitine (C3) ratio, arachidonate to linoleate ratio and, andro steroid 

monosulfate were positively correlated with CRC risk and,  

1-oleoyl-2-docosahexaenoyl-GPC was negatively correlated with CRC risk.  

Helicobacter pylori infection is recognized as a significant high-risk factor for 

GC [34]. Other risk factors for GC include family history, alcohol consumption, 

smoking, advanced age, and a high-salt diet [35]. For CRC, the main risk factors are 

family history, advanced age, smoking, alcohol consumption, obesity, long-term 

inflammatory bowel disease, a heavy intake of red meat, and an imbalanced intestinal 

microbiome [36,37]. Although many risk factors associated with gastrointestinal 

tumors have been identified, the underlying mechanisms of their development remain 

complex and not fully understood. Gastrointestinal tumors often develop insidiously, 

with no obvious clinical symptoms in the early stages. As a result, many patients are 

diagnosed only at advanced stages of the disease [38]. Therefore, early diagnosis of 

gastrointestinal tumors is crucial in preventing further disease progression and 

improving patient survival. Identifying reliable serum markers can significantly 

facilitate the early diagnosis of gastrointestinal tumors. In recent years, the 

widespread use of metabolomics has prompted scientists to investigate the 

relationship between blood metabolites and tumor risk. However, the vast number of 

blood metabolites poses challenges, as many studies lack clinical validation or present 

conflicting results. Therefore, before more RCTs are conducted, this MR study can 

provide credible insights into the risk relationships between blood metabolites and 

gastrointestinal tumors, potentially identifying effective markers for early clinical 

diagnosis and treatment. Previously, Lu J et al. examined the connection between 469 

blood metabolites and the risk of gastrointestinal tumors [39], while Yun Z et al. 
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focused on 486 blood metabolites in relation to colorectal cancer [40]. In contrast, our 

study investigates the relationship between 1,400 blood metabolites and 

metabolite ratios concerning gastrointestinal tumor risk, significantly broadening the 

scope of research. Additionally, unlike previous studies that relied on single databases, 

we integrated results from two databases, enhancing the credibility of our findings. 

5-methyluridine, also known as m5U, is an integral part of mRNAs, rRNAs, 

tRNAs, and incRNAs and affects their function, which plays a role in epi 

transcriptome variation [41,42]. There are few studies on the relationship between 

m5U and tumors. Some studies have shown that m5U is related to the development of 

breast cancer, but the specific mechanism has not been reported [43]. m5U is the main 

chemical that modifies tRNA, which promotes protein synthesis [44]. The growth, 

invasion, and metastasis of tumor cells require a large number of proteins [45,46]. 

Therefore, we speculated that the excessive modification of m5U could provide 

abundant essential proteins for gastrointestinal tumor cells, thus promoting the 

occurrence and development of tumors. Few studies have conducted in-depth research 

on 1-dihomo-linolenylglycerol, and its relationship with gastric cancer risk requires 

further experimental confirmation. Sphingomyelin is an indispensable substance for 

cells. It is closely related to lipid transport and affects cell proliferation [47]. Recent 

studies have shown that sphingomyelin can inhibit tumor development. For instance, 

Fhaner CJ et al. found that metastatic CRC cells exhibit lower levels of 

sphingomyelin [48]. Similarly, Wang S et al. reported that the most aggressive breast 

cancer cells have lower sphingomyelin levels compared to normal cells [49]. 

Additionally, sphingomyelin content in lung and esophageal cancer tissues has also 

been observed to decline [50,51]. Furthermore, silencing the sphingomyelin synthase 

SGMS1 disrupts adhesion and junctions between renal collecting duct cells, 

transforming epithelial cells into mesenchymal cells [52]. Moreover, the activation of 

sphingomyelin biosynthesis through 2-hydroxyoleic acid has been shown to induce 

cell death in glioma cell lines [53]. Sphingomyelin also has the potential to enhance 

the anti-tumor effects of chemotherapeutic drugs that interfere with lipid metabolism. 

For example, alkyl-lysophospholipid tends to accumulate in micro-domains rich in 

sphingomyelin. Increasing sphingomyelin levels can therefore improve the 

bioavailability of these chemotherapeutic agents, subsequently enhancing their 

anti-tumor effects [54]. Sphingomyelin influences tumor cell proliferation through 

various biological processes, including cell cycle arrest, endoplasmic reticulum stress, 

autophagy, and sphingomyelin deposition. However, the specific mechanisms 

underlying these effects require further investigation. 

Carnitine plays a vital role in energy metabolism, primarily by transporting fatty 

acids to the mitochondria for β-oxidation [54]. Increasing evidence suggests that 

carnitine may inhibit tumor development. For instance, Chang et al. discovered that 

carnitine can prevent mitochondrial damage and impede the progression of liver 

cancer [55]. Furthermore, it has been reported that inhibiting carnitine metabolism can 

promote the stem cell-like nature of liver cancer [56]. In contrast, there is limited 

research on the relationship between propionylcarnitine and tumors. Current findings 

suggest that propionylcarnitine may contribute to cardiovascular diseases through 
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mechanisms such as insulin resistance, energy metabolism disorders, and 

inflammation [58]. These same factors can also promote tumor development, 

indicating that propionylcarnitine might act as a metabolite that supports tumor 

growth. Overall, carnitine and propionylcarnitine exhibit different effects on tumor 

occurrence. The combined influence of these two substances on tumor promotion, 

especially concerning gastrointestinal tumors, requires further investigation through 

RCTs. Arachidonate is catalyzed by cyclooxygenase (COX)-1 and COX-2 to produce 

prostaglandins and leukotrienes, which have been shown to induce tumor 

microenvironment remodeling and immunosuppression, thereby promoting the 

development of various tumors, including CRC [59]. Research has confirmed that 

prostaglandins can enhance the proliferation of CRC cells through the RAS-ERK and 

β-catenin signaling pathways [60,61]. Linoleate is an essential unsaturated fatty acid 

for humans; however, excessive intake of linoleate has been associated with an 

increased risk of CRC [61,63]. During the production of prostaglandin E2, linoleate 

interacts with free radicals produced by COX, contributing to CRC development [64]. 

The ratio of arachidonate to linoleate is expected to serve as a potential indicator for 

the clinical diagnosis of CRC, although more RCTs are needed to confirm this. 

Reports on androsterone monosulfate are limited, and its physiological role remains 

largely unknown. The few existing studies indicate a close relationship to 

cardiovascular disease [64]. There are many similarities between the mechanisms of 

blood vessel formation and tumor development, suggesting that androsterone 

monosulfate may emerge as a potential tumor marker. Given the mechanistic overlaps 

between cardiovascular diseases and tumors, androsterone monosulfate might be a 

promising marker in tumor biology. Lastly, 1-oleoyl-2-docosahexaenoyl-GPC is a 

phospholipid with no RCTs demonstrating an association with tumors. However, a 

MR study has confirmed that 1-oleoyl-2-docosahexaenoyl-GPC serves as a protective 

factor against thoracic aortic aneurysm [65]. Our study concluded that 

1-oleoyl-2-docosahexaenoyl-GPC is also protective against CRC. Further research is 

needed to explore how 1-oleoyl-2-docosahexaenoyl-GPC exerts its protective effects. 

This MR study has several notable advantages. First, unlike previous 

observational studies, MR studies can simulate RCTs and are not impacted by reverse 

causation or confounding factors. Second, our study was conducted and tested for 

heterogeneity, bias, and horizontal pleiotropy in strict accordance with the three main 

assumptions of MR studies, and the results obtained were plausible. Third, compared 

with previous MR studies with several hundred metabolites and disease causality, we 

included 1400 metabolites and metabolite ratios, which explored a wider range and 

uncovered more metabolites and ratios. Fourth, unlike earlier MR analyses that relied 

on single databases, we combined results from the two largest and most authoritative 

databases, enhancing the understanding of the relationship between 1,400 metabolites 

and metabolite ratios and the risk of gastrointestinal tumors. Lastly, we applied the 

FDR method to correct P-values, ensuring our results are more rigorous. 

However, there are some limitations to this study. Of note, the relaxation of the 

significance threshold for selecting IVs is common in MR studies but in this case, due 

to the limited number of SNPs with genome-wide significance, it potentially violates 
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the relevance assumption of MR analysis. While the study ensured that the F-values 

of all SNPs were greater than 10 to exclude weak IVs, the relaxed threshold may still 

compromise the robustness of the causal inferences. Furthermore, genetic variations 

and metabolic profiles can differ significantly across populations, and the identified 

metabolites may not have the same associations in non-European cohorts. Another 

limitation is the small number of metabolites that survived the rigorous screening 

process, which hindered meaningful metabolic pathway analysis using 

MetaboAnalyst 5.0. The inability to perform enrichment analysis limits the 

understanding of the biological mechanisms underlying the observed 

associations. Additionally, the sample size, while substantial, may still be insufficient 

to detect weaker associations or rare metabolic signals. Also, while MR studies are 

less susceptible to confounding and reverse causation compared to observational 

studies, they are not immune to horizontal pleiotropy, where genetic variants 

influence the outcome through pathways other than the exposure. Although the study 

employed multiple sensitivity analyses to address this issue, residual pleiotropy could 

still affect the results. From another viewpoint, the study's focus on blood metabolites 

may not capture the full complexity of metabolic interactions within the tumor 

microenvironment. Tissue-specific metabolites or those derived from the gut 

microbiome could also play significant roles in gastrointestinal tumor development 

but were not addressed in this analysis. Furthermore, the study did not account for 

potential interactions between metabolites, such as synergistic or antagonistic effects, 

which could influence tumor risk. Lastly, the clinical utility of these metabolites 

remains to be established. Translating these biomarkers into diagnostic or prognostic 

tools will require extensive validation in independent cohorts and experimental 

studies to elucidate their functional roles in tumor biology. 

 

5. Conclusions 

This MR study is the first to investigate the causal relationship between 1400 

blood metabolites and metabolite ratios and gastrointestinal tumor risk. The 

overlapping results of two authoritative databases show that 3 blood metabolites are 

associated with the risk of GC; 4 blood metabolites and ratios are associated with the 

risk of CRC. The results can guide early clinical diagnosis and treatment of 

gastrointestinal tumors.  
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OR (95% CI) P OR (95% CI) P

FinnGen 1.08 (-0.11-0.28) 0,39 1.18 (0.002-0.33) 0,05

Open GWAS 1.12(-0.01-0.24) 0,09 1.06 (-0.05-0.16) 0,20

FinnGen 1.27 (-0.30-0.78) 0,39 1.35 (-0.05-0.65) 0,09

Open GWAS 1.29 (-0.15-0.66) 0,22 1.05 (-0.12-0.21) 0,59

FinnGen 0.78 (0.43-1.44) 0,45 0.87 (0.58-1.29) 0,49

Open GWAS 0.53 (0.28-0.99) 0,06 0.91 (0.71-1.16) 0,43

Table 1 Sensitivity analysis results of overlapped metabolites on gastric cancer

MR-Egger WM

5-methyluridine

1-dihomo-linolenylglycerol

Sphingomyelin

OR, Odds ratio; CI, Confidence interval; P , P -value; GWAS, Genome-wide association study; WM: Weighted median; IVW, Inverse variance weighted

Metabolites
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MR-PRESSO

global test

Cochran’s

Q test

OR (95% CI) P FDR-P intercept P P P

1.16 (1.02-1.31) 0.03 0,04 0,01 0,42 0,78 0,72

1.08 (1.01-1.17) 0.03 0,04 -0,01 0,52 0,38 0,35

1.30 (1.02-1.65) 0.03 0,04 0,003 0,94 0,68 0,57

1.16 (1.02-1.31) 0.02 0,04 -0,01 0,58 0,11 0,08

0.73 (0.54-0.98) 0,04 0,04 -0,01 0,80 0,84 0,75

0.81 (0.67-0.97) 0,02 0,04 0,04 0,19 0,39 0,31

Table 1 Sensitivity analysis results of overlapped metabolites on gastric cancer

IVW
MR-Egger 

intercept

5-methyluridine

1-dihomo-linolenylglycerol

Sphingomyelin

OR, Odds ratio; CI, Confidence interval; P , P -value; GWAS, Genome-wide association study; WM: Weighted median; IVW, Inverse variance weighted
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OR (95% CI) P OR (95% CI) P

FinnGen 1.03 (0.87-1.21) 0,77 1.08 (0.94-1.25) 0,27

Open GWAS 1.00 (0.88-1.13) 0,96 1.04 (0.95-1.14) 0,41

FinnGen 0.93 (0.69-1.25) 0,64 0.85 (0.75-0.98) 0,02

Open GWAS 0.85 (0.71-1.02) 0,10 0.95 (0.86-1.04) 0,25

FinnGen 1.11 (0.97-1.26) 0,13 1.19 (1.09-1.30) 1.00×10
-4

Open GWAS 1.17 (1.08-1.27) 0,001 1.16 (1.09-1.23) 1.53×10
-6

FinnGen 1.05 (0.97-1.15) 0,26 1.07 (0.99-1.16) 0,05

Open GWAS 1.08 (0.99-1.18) 0,09 1.07 (0.99-1.16) 0.10

Table 2 Sensitivity analysis results of overlapped metabolites/ratios on colorectal cancer

MR-Egger WM
Metabolites

Carnitine to propionylcarnitine (C3) ratio

1-oleoyl-2-docosahexaenoyl-GPC 

Arachidonate to linoleate ratio

Andro steroid monosulfate

OR, Odds ratio; CI, Confidence interval; P , P -value; GWAS, Genome-wide association study; WM: Weighted median; IVW, Inverse variance weighted
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MR-PRESSO

global test

Cochran’s

Q test

OR (95% CI) P FDR-P intercept P P P

1.11 (1.01-1.22) 0,03 0,04 0,01 0,28 0,56 0,59

1.07 (1.01-1.14) 0,04 0,04 0,01 0,22 0,63 0,63

0.89 (0.81-0.98) 0,02 0,04 -0,01 0,75 0,78 0,54

0.93 (0.87-0.99) 0,02 0,04 0,01 0,34 0,32 0,29

1.10 (1.02-1.19) 0,02 0,04 -0,002 0,88 0,11 0,12

1.12 (1.06-1.18) 4.44×10
-5

3.55×10
-4 -0,01 0,18 0,26 0,19

1.07 (1.01-1.14) 0,03 0,04 0,004 0.60 0,59 0,27

1.05 (1.01-1.10) 0,04 0,04 0,01 0.47 0,63 0,64

Table 2 Sensitivity analysis results of overlapped metabolites/ratios on colorectal cancer

IVW
MR-Egger 

intercept

Carnitine to propionylcarnitine (C3) ratio

1-oleoyl-2-docosahexaenoyl-GPC 

Arachidonate to linoleate ratio

Andro steroid monosulfate

OR, Odds ratio; CI, Confidence interval; P , P -value; GWAS, Genome-wide association study; WM: Weighted median; IVW, Inverse variance weighted

Prep
rin

t



Scatter plots depicting association of overlapped metabolites and gastric cancer. (A1,A2)
5-methyluridine; (B1,B2) 1-dihomo-linolenylglycerol; (C1,C2) Sphingomyelin. Each of these
points represents an instrumental variable. The vertical and horizontal lines at the center of
the dot represent 95%CI. The slope of the colored line represents the size of the causal
elationship. SNPs, Single-nucleotide polymorphisms.
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Forest plots for association of overlapped metabolites and gastric cancer risk. SNPs, Single-
nucleotide polymorphisms; OR, Odds ratio; CI, Confidence interval; P, P-value; GWAS,
Genome-wide association study.
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MR leave-one-out sensitivity analyses for association of overlapped metabolites and gastric
cancer risk. (a1,a2) 5-methyluridine; (b1,b2) 1-dihomo-linolenylglycerol; (c1,c2)
Sphingomyelin. There is no significant statistical difference between the result of a single
SNP and the total result.
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Scatter plots depicting association of overlapped metabolites/ratios and colorectal cancer
risk. (D1,D2) Carnitine to propionylcarnitine (C3) ratio; (E1,E2) 1-oleoyl-2-docosahexaenoyl-
GPC; (F1,F2) Arachidonate to linoleate ratio; (G1,G2) Andro steroid monosulfate. Each of
these points represents an instrumental variable. The vertical and horizontal lines at the
center of the dot represent 95%CI. The slope of the colored line represents the size of the
causal elationship. SNPs, Single-nucleotide polymorphisms.
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Forest plots for association of overlapped metabolites/ratios and colorectal cancer. SNPs,
Single-nucleotide polymorphisms; OR, Odds ratio; CI, Confidence interval; P, P-value;
GWAS, Genome-wide association study.
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MR leave-one-out sensitivity analyses for overlapped metabolites/ratios and colorectal
cancer. (d1,d2) Carnitine to propionylcarnitine (C3) ratio; (e1,e2) 1-oleoyl-2-docosahexaenoyl-
GPC; (f1,f2) Arachidonate to linoleate ratio; (g1,g2) Andro steroid monosulfate. There is no
significant statistical difference between the result of a single SNP and the total result.
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