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The causal effects of 1400 genetically determined 
human blood metabolites and metabolite ratios on 
the risk of gastrointestinal tumors: a Mendelian 
randomization study

Qi Fu1, Lele Zhang2, Ji Di1*

A b s t r a c t

Introduction: Recently, studies investigating the association between blood 
metabolites and gastrointestinal tumors have gained increased attention. 
A Mendelian randomization (MR) study is considered the second most per-
suasive research method to explore the causal relationship between expo-
sure and outcome after RCT. 
Material and methods: This analysis utilized the inverse variance weighted 
(IVW) method, the weighted median (WM) method, and MR-Egger regres-
sion. Initially, we analyzed GWAS data from the FinnGen database to identify 
various metabolites and their ratios. Subsequently, we repeatedly analyzed 
GWAS data from the Open GWAS database to filter out duplicate results. 
Results: 5-methyluridine (FinnGen : odds ratio (OR) = 1.16, 95% confidence 
interval (CI) = 1.02–1.31, p = 0.03, FDR-P = 0.04; Open GWAS: OR = 1.08, 
95% CI = 1.01–1.17, p = 0.03, FDR-P = 0.04) and 1-dihomo-linolenylglycerol 
(FinnGen: OR = 1.30, 95% CI = 1.02–1.65, p = 0.03, FDR-P = 0.04; Open 
GWAS: OR = 1.16, 95% CI = 1.02–1.31, p = 0.03, FDR-P = 0.04) were positive-
ly associated with the risk of gastric cancer (GC). Sphingomyelin (FinnGen: 
OR = 0.73, 95% CI = 0.54–0.98, p = 0.04, FDR-P = 0.04; Open GWAS: OR = 
0.81, 95% CI = 0.67–0.97, p = 0.02, FDR-P = 0.04) was negatively correlated 
with GC risk. Carnitine to propionylcarnitine (C3) ratio (FinnGen: OR = 1.11, 
95% CI = 1.01–1.22, p = 0.03, FDR-P = 0.04; Open GWAS: OR = 1.07, 95% CI 
= 1.01–1.14, p = 0.04, FDR-P = 0.04), arachidonate to linoleate ratio (Finn-
Gen: OR = 1.10, 95% CI = 1.02–1.19, p = 0.02, FDR-P = 0.04; Open GWAS: 
OR = 1.12, 95% CI = 1.06–1.18, p = 4.44 × 10–5, FDR-P = 3.55 × 10–4), and 
androsterone sulfate (FinnGen: OR = 1.07, 95% CI = 1.01–1.14, p = 0.03, 
FDR-P = 0.04; Open GWAS: OR = 1.05, 95% CI = 1.01–1.10, p = 0.04, FDR-P 
= 0.04) were positively associated with the risk of colorectal cancer (CRC). 
1-oleoyl-2-docosahexaenoyl-GPC (FinnGen: OR = 0.89, 95% CI = 0.81–0.98, 
p = 0.02, FDR-P = 0.04; Open GWAS: OR = 0.93, 95% CI = 0.87–0.99, p = 
0.02, FDR-P = 0.04) was negatively correlated with CRC risk. 
Conclusions: Three blood metabolites were found to be associated with the 
risk of GC; 4 blood metabolites and metabolite ratios were associated with 
the risk of CRC. These findings may provide valuable guidance for the early 
clinical diagnosis and treatment of gastrointestinal tumors.

Key words: human blood metabolites, metabolite ratios, gastrointestinal 
tumors, risk, Mendelian randomization.
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Introduction

Gastrointestinal tumors encompass gastric 
cancer (GC) and colorectal cancer (CRC) [1]. Glob-
ally, GC has the fifth highest incidence rate among 
all cancers and is the fourth leading cause of can-
cer-related deaths [2, 3]. CRC is the second leading 
cause of cancer mortality, with 1 million deaths 
attributed to CRC in 2020 [3]. This highlights that 
gastrointestinal tumors remain a significant pub-
lic health issue worldwide. Previous research has 
identified several risk factors associated with gas-
trointestinal tumors, including smoking, alcohol 
consumption, high fat intake, low fiber intake, 
genetics, age, and certain infections [4–6]. Recent-
ly, studies investigating the connection between 
blood metabolites and various diseases have 
gained increased attention.

Metabolomics has emerged as a critical area in 
the medical field. It identifies changes in metab-
olites or metabolite pathways that help uncover 
the causes of disease development from a molec-
ular perspective [7]. Metabolites can participate 
in human physiological activities as signaling 
molecules, endogenous toxins, immunomodula-
tors, and environmental sensors, promoting or 
inhibiting the occurrence of diseases [8]. Deter-
mination of metabolites can help medical staff 
find new diagnostic or prognostic biomarkers for 
various diseases [9]. With the rapid advancement 
of metabolomics, researchers are increasingly fo-
cusing on the changes in blood metabolites as-
sociated with gastrointestinal tumors. Numerous 
studies have demonstrated that blood metabo-
lites play a role in the development of these tu-
mors [10, 11]. Specifically, some primary bile ac-
ids and short-chain fatty acids have been found 
to promote the growth of gastrointestinal tu-
mors, while ursodeoxycholic acid and butyric acid 
have shown beneficial effects [12]. In addition, 
Dai et al. investigated the impact of 150 metabo-
lites on the progression of GC [13]. Furthermore, 
Coker et al. examined the relationship between 
20 metabolites and the progression of CRC [14]. 
However, the metabolites that have been studied 
represent only a small fraction of the vast num-
ber of metabolites, and the relationships between 
multitudinous metabolites and gastrointestinal 
tumors need to be explored. Traditional obser-
vational studies lack credibility due to potential 
biases, such as reverse causations and confound-
ing factors. A randomized controlled trial (RCT) is 
considered the best way to confirm causality, but 
related RCTs are rare due to the large number of 
metabolites. 

A  Mendelian randomization (MR) study is 
considered the second most persuasive re-
search method to explore the causal relation-
ship between exposure and outcome after an 

RCT [15]. MR studies use single nucleotide poly-
morphisms (SNPs) as instrumental variables 
(IVs) to infer causal associations between expo-
sures and outcomes, which can overcome the 
impact of potential biases on causal inferences 
[16]. According to Mendel’s laws of inheritance, 
parents randomly assign alleles to their off-
spring. Therefore, MR studies are less affected 
by confounding factors [17]. In addition, genetic 
variation is determined earlier than exposure, 
so MR studies do not present a  problem with 
reverse causation [18].

The relationships between blood metabolites 
and gastrointestinal tumors remain unclear, so 
further research is necessary. We used data from 
genome-wide association studies (GWAS) to con-
duct MR analyses to comprehensively screen 1400 
blood metabolites and metabolite ratios for the 
causal relationships with gastrointestinal tumor 
risk. Identifying new specific biomarkers among 
a large number of blood metabolites can guide the 
clinical diagnoses and prognoses of gastrointesti-
nal tumors.

Material and methods

Study design

We systematically assessed the potential 
causal relationships between 1400 human blood 
metabolites and metabolite ratios and gastroin-
testinal tumor risk using a two-sample random-
ization approach and designed the study based 
on the three core hypotheses of the MR analysis 
[19]: (1) Relevance assumption: The IVs selected 
must be closely related to exposures (GC, CRC). 
(2) Independence assumption: The selected IVs 
are only allowed to be related to exposures and 
should not be related to potential confounding 
factors. (3) Exclusion assumption: The selected 
IVs should influence outcomes entirely through 
exposures. 

GWAS data for 1400 human blood 
metabolites and metabolite ratios

We used the most up-to-date and comprehen-
sive GWAS datasets currently available for the 
human metabolome [20]. Based on the Canadian 
Longitudinal Study on Aging (CLSA) cohort, re-
searchers analyzed data on 1,091 blood metab-
olites and 309 metabolite ratios by examining 
8,299 participants and approximately 15.4 million 
SNPs. The full GWAS summary statistics of the 
1400 biomarkers were publicly available.

GWAS data for GC and CRC

GWAS summary data for GC and CRC are from 
the FinnGen database (https://www.finngen.fi/fi). 
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Data on GC (phenocode: C3_STOMACH_EXALLC) 
include a  total of 288,444 European participants 
(case: 1,307; control: 287,137). Data on CRC (phe-
nocode: C3_COLORECTAL_EXALLC) include a total 
of 293,646 European participants (case: 6,509; 
control: 287,137).

To further verify the results of this study, we 
repeatedly analyzed another set of GWAS summa-
ry data of GC and CRC, all from the Open GWAS 
database (https://gwas.mrcieu.ac.uk/). The lat-
est data on GC include a total of 476,116 Europe-
an participants (cases: 1,029; controls: 475,087), 
with a  total of 24,188,662 SNPs (GWAS ID: ebi-a-
GCST90018849) [21]. The latest data on CRC include 
a  total of 470,002 European participants (cases: 
6,581; controls: 463,421), with a total of 24,182,361 
SNPs (GWAS ID: ebi-a-GCST90018808) [21]. 

Selection of IVs

IVs associated with exposure should meet the 
following requirements: (1) All IVs should have 
gene-wide significance. Considering the limited 
number of SNPs with significant genome-wide 
effects, we relaxed the threshold to p < 5 × 10−5 
and obtained IVs from 1400 blood metabolites 
and metabolite ratios. This strategy is consistent 
with the approach of previous studies [22, 23].  
(2) The linkage disequilibrium threshold applied 
was R2 < 0.001, and the genomic region was within 
10,000 kb. (3) The F value represents the intensity 
of MR, and F > 10 indicates that IVs of exposure 
factors have a strong ability to predict results. The 
formula for calculating the F value is as follows:  
F = R2 (n – k – 1)/[k (1 – R2)], R2 = 2 × EAF × (1 – EAF) 
× β2 [24]. We further coordinated the SNPs of expo-
sures and outcomes and removed the SNPs with 
palindromic effects and allele discordances. Then, 
the final results were subjected to MR analyses.

MR analysis and sensitivity analysis

We mainly used the inverse variance weighted 
(IVW) method for MR analysis, which uses a me-
ta-analysis method to integrate the Wald ratios 
of individual SNPs. This can assume that IVs can 
only affect the results through specific exposures. 
Therefore, the IVW method can achieve a  ro-
bust result without polymorphism [25]. The IVW 
method uses the reciprocal of each IV variance as 
a weight to calculate weighted results. This pro-
cess is carried out on the premise of ensuring that 
all IVs are valid to evaluate level pleiotropy [26]. 
However, when there are uncertainties in genet-
ic associations and risk factors, such as weak IVs, 
the IVW method is biased to underestimate ac-
tual results [27]. Therefore, MR-Egger regression 
and weighted median (WM) methods are used as 
supplementary analytical methods. MR-Egger re-

gression uses the reciprocal of the outcome vari-
ance as a weight to fit. It adds an intercept term to 
the regression to perform weighted linear regres-
sion when IVs are invalid to produce causal esti-
mates [28]. The WM method is the median of the 
weighted empirical density function of the ratio 
estimate. It combines data from multiple genetic 
variants into a single causal estimate. When the 
proportion of invalid IVs is as high as 50%, and the 
accuracy of estimates varies widely between IVs, 
the WM method can still provide consistent effect 
estimates [29]. 

In order to further test the stability and reliabil-
ity of the results, we conducted a sensitivity analy-
sis, heterogeneity test, and pleiotropic test on the 
results. A leave-one-out analysis was used to ana-
lyze the sensitivity of the results. It removes each 
SNP in turn and then calculates the results of all 
remaining SNPs. When there is no statistically sig-
nificant difference between the results of a single 
SNP and the total results, it means that the SNP 
will not have a non-specific impact on the results 
[30]. Cochran’s Q test was used to quantify the 
heterogeneity of instrumental variables. P > 0.05 
proves no heterogeneity, and the fixed-effect IVW 
method is used; p < 0.05 indicates significant het-
erogeneity, and the random-effect IVW method is 
used [30]. MR-Egger regression was used to de-
tect horizontal pleiotropy. When its intercept term 
is close to 0 and p > 0.05, it means that there is no 
horizontal pleiotropy [31]. The MR-pleiotropy re-
sidual sum and outlier (MR-PRESSO) method was 
used to remove significant outliers and further 
reduce horizontal pleiotropy [32]. The funnel plot 
was used to detect publication bias. The roughly 
symmetrical plot illustrates that the results have 
no significant publication bias. The false discovery 
rate (FDR) method was employed to adjust the 
p-values of the final results.

Replication analysis

To further verify the credibility of candidate 
blood metabolites, we performed the same MR 
analysis on another GC and CRC GWAS dataset. 
The overlapping blood metabolites of the two MR 
analyses were considered to have a  significant 
causal relationship with GC or CRC.

Metabolic pathway analysis

To further clarify the biological mechanism of 
the impact of screened blood metabolites on GC 
and CRC, we used MetaboAnalyst 5.0 (https://
www.metaboanalyst.ca/) to conduct metabolic 
pathway analyses. The dataset for pathway anal-
ysis came from the Small Molecular Pathway Da-
tabase (SMPDB) and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG).

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90018849/
https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90018849/
https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90018808/
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Results

MR analysis of the causal relationship 
between 1400 human blood metabolites 
and metabolite ratios and the risk of GC

Preliminary analysis 

After strict quality control of the IVs, we ob-
tained SNPs for 62 metabolites and metabolite ra-
tios in the FinnGen database. (Details of SNPs are 
listed in Supplementary Table SI). The screened 
IVs contained 15–39 SNPs. The F values of all the 
SNPs were greater than 10, indicating that the 
included IVs have strong predictive capabilities. 
(Details of IVs are shown in Supplementary Ta-
ble SII). We used multiple sensitivity analysis to 
assess the heterogeneity and pleiotropy of each 
result. We finally strictly screened out 60 metab-
olites and metabolite ratios, including 38 metabo-
lites of known chemical properties, 13 metabolites 
of unknown chemical properties, and 9 metabo-
lite ratios (Supplementary Table SIII). Thirty-two 
metabolites or metabolite ratios were associated 
with a decreased risk of GC, and 28 metabolites 
or metabolite ratios were associated with an in-
creased risk of GC.

Replication analysis

To further verify the results, we used the same 
method to analyze the latest data on GC in the 
open GWAS database. Fifty-one metabolites and 
metabolite ratios were screened out by the IVW 
method. The filtered IVs contained 17–42 SNPs, 
and the F value of each SNP was greater than 10 
(Supplementary Table SIV). All the 51 metabolites 
and metabolite ratios, including 30 metabolites 
of known chemical properties, 11 metabolites of 
unknown chemical properties, and 10 metabolite 
ratios, passed the multiplex sensitivity analyses 
(Supplementary Table SV). Twenty metabolites or 
metabolite ratios were associated with reduced 
GC risk, and 31 metabolites or metabolite ratios 
were associated with increased GC risk. 

Combined with previous MR analysis from 
the FinnGen database, we found 3 overlapping 
metabolites. 5-methyluridine and 1-dihomo-lino-
lenylglycerol were associated with increased GC 
risk, and sphingomyelin was associated with de-
creased GC risk. The sensitivity analysis showed 
that none of the results had apparent heterogene-
ity or a pleiotropic effect (Table I, Figure 1), and the 
p-values after FDR correction were all less than 
0.05. The forest plots are shown in Figure 2. In 
addition, as shown in Figure 3, the leave-out-one 
analysis showed that excluding any SNP would 
not significantly affect the overall results, support-
ing the reliability and stability of the MR analysis. 
The funnel plots were approximately symmetrical, 
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Figure 1. Scatter plots depicting association of overlapped metabolites and gastric cancer. A1, A2 – 5-methyluri-
dine; B1, B2 – 1-dihomo-linolenylglycerol; C1, C2 – sphingomyelin. Each of these points represents an instrumental 
variable. The vertical and horizontal lines at the center of the dot represent 95% CI. The slope of the colored line 
represents the size of the causal relationship. SNPs – single-nucleotide polymorphisms
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indicating no publication bias in the results (Sup-
plementary Figure S1).

Metabolic pathway analysis

Unfortunately, because there are only 3 blood 
metabolites, MetaboAnalyst 5.0 cannot perform 
meaningful enrichment analysis. 

MR analysis of the causal relationship 
between 1400 human blood metabolites 
and metabolite ratios and the risk of CRC

Preliminary analysis 

After implementing strict quality control for 
each IV, we identified SNPs associated with 92 
metabolites and metabolite ratios in the FinnGen 
database. IVs contained 12–40 SNPs. The F values 
of all SNPs were greater than 10. Detailed infor-
mation about the IVs is provided in Supplementa-
ry Table SVI. We conducted the multiple sensitivity 
analysis to evaluate the heterogeneity and pleiot-
ropy of each result, ultimately rigorously filtering 
down to 81 metabolites and metabolite ratios, 
including  59 metabolites with known chemical 
properties, 10 metabolites with unknown chemi-
cal properties, and 12 metabolite ratios (Supple-
mentary Table SVII). Of these, 53 metabolites or 
metabolite ratios were negatively correlated with 
CRC risk, while 28 were positively correlated with 
CRC risk.

Replication analyses

To further validate our results, we analyzed 
the latest data on CRC from the open GWAS da-
tabase using the same method. We screened 110 
metabolites and metabolite ratios using the IVW 
method. The identified IVs included 15–45 SNPs, 
with each SNP exhibiting an F value greater than 

10 (Supplementary Table SVIII). After conducting 
thorough screenings, a  total of 82 metabolites 
and metabolite ratios passed multiple sensitiv-
ity analyses. There were 48 metabolites with 
known chemical properties, 18 metabolites with 
unknown chemical properties, and 16 metabolite 
ratios (Supplementary Table SIX). Among these,  
5 metabolites or metabolite ratios were negative-
ly correlated with CRC risk, while 47 metabolites 
or metabolite ratios showed a positive correlation 
with CRC risk.

In conjunction with the previous MR analysis 
of the FinnGen database, we identified 4 overlap-
ping metabolites and metabolite ratios associated 
with CRC risk. Carnitine to propionylcarnitine (C3) 
ratio, arachidonate to linoleate ratio, and andros-
terone sulfate were found to be positively correlat-
ed with CRC risk. In contrast, 1-oleoyl-2-docosa-
hexaenoyl-GPC exhibited a  negative correlation 
with CRC risk. The sensitivity analyses indicated 
that our results showed no significant heteroge-
neity or pleiotropy effects (Table II, Figure 4), and 
all p-values were less than 0.05 after the FDR cor-
rection. Forest plots illustrating these results can 
be seen in Figure 5. Additionally, the leave-one-out 
analysis confirmed the robustness and stability of 
the MR analysis (Figure 6). The funnel plots dis-
played a  roughly symmetrical shape, indicating 
the absence of publication biases (Supplementary 
Figure S2).

Metabolic pathway analyses

Unfortunately, because there are only 3 blood 
metabolites, MetaboAnalyst 5.0 cannot perform 
meaningful enrichment analysis. 

Discussion

We conducted a rigorous MR analysis of GWAS 
data from two separate databases to explore the 

Figure 2. Forest plots for association of overlapped metabolites and gastric cancer risk

SNPs – single-nucleotide polymorphisms, OR – odds ratio, CI – confidence interval, GWAS – genome-wide association study.

Metabolites Nsnp Forest plots OR (95% CI)  P-value
5-methyluridine 
FinnGen  28   1.16 (1.02–1.31)  0.03

Open GWAS  28   1.08 (1.01–1.17)  0.03

1-dihomo-linolenylglycerol
FinnGen  24   1.30 (1.02–1.65)  0.03

Open GWAS  24   1.16 (1.02–1.31)  0.02

Sphingomyelin
FinnGen  19   0.73 (0.54–0.98)  0.04

Open GWAS  19   0.81 (0.67–0.97)  0.02

 0.5 0.7 0.9 1.1 1.3 1.5 1.7
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Figure 3. MR leave-one-out sensitivity analyses for association of overlapped metabolites and gastric cancer risk. 
A1, A2 – 5-methyluridine; B1, B2 – 1-dihomo-linolenylglycerol; C1, C2 – sphingomyelin. There is no statistically 
significant difference between the result of a single SNP and the total result

rs7663181
rs144140959
rs117811282

rs756881
rs76221041
rs1005230

rs140816551
rs72673019

rs370086275
rs28607498
rs12163129
rs7804178

rs112281729
rs114608987

rs9616789
rs7778639

rs11687659
rs557700

rs140319072
rs4815825

rs35327803
rs35876831

rs199735292
rs3091397

All

rs17014031
rs62024448
rs4833667
rs6743660
rs3109068

rs62258668
rs114892592
rs149162700

rs6706391
rs77940074
rs7677050

rs118128109
rs17085256
rs9493310

rs61897793
rs10509326
rs28585593

All

rs62338631

rs145541747

rs11591147

rs72708651

rs2306795

rs138109583

rs4149307

rs12936152

rs6844451

rs67016154

rs116697924

rs6601893

rs35021804

rs55846031

rs9995523

All

rs3091397
rs11687659

rs756881
rs117811282

rs28607498
rs35327803

rs188232986
rs3129977
rs7663181

rs138247735
rs140319072

rs7778639
rs72673019
rs12163129

rs114608987
rs35876831

rs112281729
rs140816551
rs370086275
rs144140959

rs4815825
rs199735292

rs557700
rs76221041
rs7804178
rs9616789
rs1005230

rs76045878

All

rs17014031
rs28585593
rs1895342
rs7015094
rs7677050

rs28382094
rs4833667

rs62258668
rs17085256

rs117807391
rs6743660

rs10509326
rs62024448
rs77940074
rs61897793
rs61018188

rs114892592
rs6706391

rs118128109
rs149162700

rs9493310
rs56300950
rs71482402
rs3109068

All

rs62338631
rs112760380
rs145541747
rs11591147
rs9995523

rs138409583
rs55846031
rs6844451

rs35021804
rs116697924
rs72708651
rs12936152
rs67016154
rs6601893
rs2306795
rs4149307

rs12905732

All

A1

B1

C1

A2

B2

C2

 0 0.1 0.2 0.3

MR leave-one-out sensitivity analysis for 
5-methyluridine on gastric cancer (from FinnGen)

 0 0.2 0.4 0.6
MR leave-one-out sensitivity analysis for 1-dihomo-
linolenylglycerol on gastric cancer (from FinnGen)

 –0.6 –0.4 –0.2 0
MR leave-one-out sensitivity analysis for 

sphingomyelin on gastric cancer (from FinnGen)

 0 0.05 0.10 0.15 0.20
MR leave-one-out sensitivity analysis for 

5-methyluridine on gastric cancer (from Open GWAS)

 0 0.1 0.2 0.3
MR leave-one-out sensitivity analysis for 1-dihomo-

linolenylglycerol on gastric cancer (from Open GWAS)

 –0.4 –0.3 –0.2 –0.1 0
MR leave-one-out sensitivity analysis for 

sphingomyelin on gastric cancer (from Open GWAS)



Qi Fu, Lele Zhang, Ji Di

8 Arch Med Sci

Ta
bl

e 
II.

 S
en

si
ti

vi
ty

 a
na

ly
si

s 
re

su
lt

s 
of

 o
ve

rl
ap

pe
d 

m
et

ab
ol

it
es

/r
at

io
s 

w
it

h 
re

sp
ec

t 
to

 c
ol

or
ec

ta
l c

an
ce

r

M
et

ab
ol

it
es

M
R-

Eg
ge

r
W

M
IV

W
M

R-
Eg

ge
r 

in
te

rc
ep

t
M

R-
PR

ES
SO

 
gl

ob
al

 t
es

t
Co

ch
ra

n’
s 

Q
 t

es
t

O
R 

(9
5%

 C
I)

P-
va

lu
e

O
R 

(9
5%

 C
I)

P-
va

lu
e

O
R 

(9
5%

 C
I)

P-
va

lu
e

FD
R-

P
in

te
rc

ep
t

P-
va

lu
e

P-
va

lu
e

P-
va

lu
e

C
ar

ni
ti

ne
 t

o 
pr

op
io

ny
lc

ar
ni

ti
ne

 (
C

3)
 r

at
io

Fi
nn

G
en

1.
03

 (
0.

87
–1

.2
1)

0.
77

1.
08

 (
0.

94
–1

.2
5)

0.
27

1.
11

 (
1.

01
–1

.2
2)

0.
03

0.
04

0.
01

0.
28

0.
56

0.
59

O
pe

n 
G

W
A

S
1.

00
 (

0.
88

–1
.1

3)
0.

96
1.

04
 (

0.
95

–1
.1

4)
0.

41
 

1.
07

 (
1.

01
–1

.1
4)

0.
04

0.
04

0.
01

0.
22

0.
63

0.
63

1-
ol

eo
yl

-2
-d

oc
os

ah
ex

ae
no

yl
-G

PC
 

Fi
nn

G
en

0.
93

 (
0.

69
–1

.2
5)

0.
64

0.
85

 (
0.

75
–0

.9
8)

0.
02

0.
89

 (
0.

81
–0

.9
8)

0.
02

0.
04

–0
.0

1
0.

75
0.

78
0.

54

O
pe

n 
G

W
A

S
0.

85
 (

0.
71

–1
.0

2)
0.

10
 

0.
95

 (
0.

86
–1

.0
4)

0.
25

0.
93

 (
0.

87
–0

.9
9)

0.
02

0.
04

0.
01

0.
34

0.
32

0.
29

A
ra

ch
id

on
at

e 
to

 li
no

le
at

e 
ra

ti
o

Fi
nn

G
en

1.
11

 (
0.

97
–1

.2
6)

0.
13

1.
19

 (
1.

09
–1

.3
0)

1.
00

 ×
 1

0–4
1.

10
 (

1.
02

–1
.1

9)
0.

02
0.

04
–0

.0
02

0.
88

0.
11

0.
12

O
pe

n 
G

W
A

S
1.

17
 (

1.
08

–1
.2

7)
0.

00
1

1.
16

 (
1.

09
–1

.2
3)

1.
53

 ×
 1

0–6
1.

12
 (

1.
06

–1
.1

8)
4.

44
×1

0–5
3.

55
 ×

 1
0–4

–0
.0

1
0.

18
0.

26
0.

19

A
nd

ro
st

er
on

e 
su

lf
at

e

Fi
nn

G
en

1.
05

 (
0.

97
–1

.1
5)

0.
26

1.
07

 (
0.

99
–1

.1
6)

0.
05

1.
07

 (
1.

01
–1

.1
4)

0.
03

0.
04

0.
00

4
0.

60
0.

59
0.

27

O
pe

n 
G

W
A

S
1.

08
 (

0.
99

–1
.1

8)
0.

09
1.

07
 (

0.
99

–1
.1

6)
0.

10
1.

05
 (

1.
01

–1
.1

0)
0.

04
0.

04
0.

01
0.

47
0.

63
0.

64

O
R

 –
 o

dd
s 

ra
ti

o,
 C

I –
 c

on
fi

de
nc

e 
in

te
rv

al
, G

W
A

S 
– 

ge
no

m
e-

w
id

e 
as

so
ci

at
io

n 
st

ud
y,

 W
M

 –
 w

ei
gh

te
d 

m
ed

ia
n,

 IV
W

 –
 in

ve
rs

e 
va

ri
an

ce
 w

ei
gh

te
d.

causal relationships between 1400 blood metab-
olites and metabolite ratios and gastrointestinal 
tumor risk. In order to ensure the credibility of the 
results, we chose the intersection of the results 
of the two databases. The overlapping results 
from two authoritative databases indicated that 
5-methyluridine and 1-dihomo-linolenylglycerol 
were positively correlated with GC risk, and sphin-
gomyelin was negatively correlated with GC risk. 
Carnitine to propionylcarnitine (C3) ratio, arachi-
donate to linoleate ratio, and androsterone sul-
fate were positively correlated with CRC risk, and 
1-oleoyl-2-docosahexaenoyl-GPC was negatively 
correlated with CRC risk. 

Helicobacter pylori infection is recognized as 
a  significant high-risk factor for GC [33]. Other 
risk factors for GC include family history, alcohol 
consumption, smoking, advanced age, and a high-
salt diet [34]. For CRC, the main risk factors are 
family history, advanced age, smoking, alcohol 
consumption, obesity, long-term inflammatory 
bowel disease, a  heavy intake of red meat, and 
an imbalanced intestinal microbiome [35, 36]. 
Although many risk factors associated with gas-
trointestinal tumors have been identified, the 
underlying mechanisms of their development re-
main complex and not fully understood. Gastro-
intestinal tumors often develop insidiously, with 
no obvious clinical symptoms in the early stages. 
As a result, many patients are diagnosed only at 
advanced stages of the disease [37]. Therefore, 
early diagnosis of gastrointestinal tumors is cru-
cial in preventing further disease progression and 
improving patient survival. Identifying reliable se-
rum markers can significantly facilitate the early 
diagnosis of gastrointestinal tumors. In recent 
years, the widespread use of metabolomics has 
prompted scientists to investigate the relation-
ship between blood metabolites and tumor risk. 
However, the vast number of blood metabolites 
poses challenges, as many studies lack clinical 
validation or present conflicting results. Therefore, 
before more RCTs are conducted, this MR study 
can provide credible insights into the risk rela-
tionships between blood metabolites and gastro-
intestinal tumors, potentially identifying effective 
markers for early clinical diagnosis and treatment. 
Previously, Lu et al. examined the connection be-
tween 469 blood metabolites and the risk of gas-
trointestinal tumors [38], while Yun et al. focused 
on 486 blood metabolites in relation to colorectal 
cancer  [39]. In contrast, our study investigated 
the relationship between 1,400 blood metabolites 
and metabolite ratios concerning gastrointestinal 
tumor risk, significantly broadening the scope of 
research. Additionally, unlike previous studies that 
relied on single databases, we integrated results 
from two databases, enhancing the credibility of 
our findings.
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Figure 4. Scatter plots depicting association of overlapped metabolites/ratios and colorectal cancer risk.  
A1, A2 – carnitine to propionylcarnitine (C3) ratio; B1, B2 – 1-oleoyl-2-docosahexaenoyl-GPC; C1, C2 – arachido-
nate to linoleate ratio; D1, D2 – androsterone sulfate. Each of these points represents an instrumental variable. 
The vertical and horizontal lines at the center of the dot represent 95%CI. The slope of the colored line represents 
the size of the causal relationship

SNPs – single-nucleotide polymorphisms.
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5-methyluridine, also known as m5U, is an in-
tegral part of mRNAs, rRNAs, tRNAs, and lncRNAs 
and affects their function, which plays a  role in 
epi transcriptome variation  [40, 41]. There are 
few studies on the relationship between m5U 
and tumors. Some studies have shown that m5U 
is related to the development of breast cancer, 
but the specific mechanism has not been report-
ed [42]. m5U is the main chemical that modifies 
tRNA, which promotes protein synthesis [43]. 
The growth, invasion, and metastasis of tumor 
cells require a  large number of proteins [44, 45]. 
Therefore, we speculated that the excessive mod-
ification of m5U could provide abundant essen-
tial proteins for gastrointestinal tumor cells, thus 
promoting the occurrence and development of 

tumors. Few studies have conducted in-depth re-
search on 1-dihomo-linolenylglycerol, and its rela-
tionship with gastric cancer risk requires further 
experimental confirmation. Sphingomyelin is an 
indispensable substance for cells. It is closely relat-
ed to lipid transport and affects cell proliferation 
[46]. Recent studies have shown that sphingomy-
elin can inhibit tumor development. For instance, 
Fhaner et al. found that metastatic CRC cells ex-
hibit lower levels of sphingomyelin [47]. Similar-
ly, Wang et al. reported that the most aggressive 
breast cancer cells have lower sphingomyelin 
levels compared to normal cells [48]. Additional-
ly, sphingomyelin content in lung and esophageal 
cancer tissues has also been observed to decline 
[49, 50]. Furthermore, silencing the sphingomyelin 

Figure 5. Forest plots for association of overlapped metabolites/ratios and colorectal cancer

SNPs – single-nucleotide polymorphisms, OR – odds ratio, CI – confidence interval, GWAS – genome-wide association study.
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synthase SGMS1 disrupts adhesion and junctions 
between renal collecting duct cells, transforming 
epithelial cells into mesenchymal cells [51]. More-
over, the activation of sphingomyelin biosynthesis 
through 2-hydroxyoleic acid has been shown to 
induce cell death in glioma cell lines [52]. Sphin-
gomyelin also has the potential to enhance the 
anti-tumor effects of chemotherapeutic drugs 
that interfere with lipid metabolism. For exam-
ple, alkyl-lysophospholipid tends to accumulate in 
micro-domains rich in sphingomyelin. Increasing 
sphingomyelin levels can therefore improve the 
bioavailability of these chemotherapeutic agents, 
subsequently enhancing their anti-tumor effects 
[53]. Sphingomyelin influences tumor cell prolifer-
ation through various biological processes, includ-
ing cell cycle arrest, endoplasmic reticulum stress, 
autophagy, and sphingomyelin deposition. How-
ever, the specific mechanisms underlying these 
effects require further investigation.

Carnitine plays a  vital role in energy metabo-
lism, primarily by transporting fatty acids to the 
mitochondria for β-oxidation [54]. Increasing ev-
idence suggests that carnitine may inhibit tumor 
development. For instance, Chang et al. discovered 
that carnitine can prevent mitochondrial damage 
and impede the progression of liver cancer [55]. 
Furthermore, it has been reported that inhibiting 
carnitine metabolism can promote the stem cell-
like nature of liver cancer [56]. In contrast, there 
is limited research on the relationship between 
propionylcarnitine and tumors. Current findings 
suggest that propionylcarnitine may contribute 
to cardiovascular diseases through mechanisms 
such as insulin resistance, energy metabolism dis-
orders, and inflammation [57]. These same factors 
can also promote tumor development, indicating 
that propionylcarnitine might act as a metabolite 
that supports tumor growth. Overall, carnitine and 
propionylcarnitine exhibit different effects on tu-
mor occurrence. The combined influence of these 
two substances on tumor promotion, especially 
concerning gastrointestinal tumors, requires fur-
ther investigation through RCTs. Arachidonate is 
catalyzed by cyclooxygenase (COX)-1 and COX-2  
to produce prostaglandins and leukotrienes, 
which have been shown to induce tumor microen-
vironment remodeling and immunosuppression, 
thereby promoting the development of various tu-
mors, including CRC [58]. Research has confirmed 
that prostaglandins can enhance the proliferation 
of CRC cells through the RAS-ERK and β-catenin 
signaling pathways [59, 60]. Linoleate is an essen-
tial unsaturated fatty acid for humans; however, 
excessive intake of linoleate has been associated 
with an increased risk of CRC [61, 62]. During the 
production of prostaglandin E2, linoleate interacts 
with free radicals produced by COX, contributing to 

CRC development [63]. The ratio of arachidonate 
to linoleate is expected to serve as a potential in-
dicator for the clinical diagnosis of CRC, although 
more RCTs are needed to confirm this. Reports on 
androsterone sulfate are limited, and its physi-
ological role remains largely unknown. The few 
existing studies indicate a  close relationship to 
cardiovascular disease [64]. There are many sim-
ilarities between the mechanisms of blood vessel 
formation and tumor development, suggesting 
that androsterone sulfate may emerge as a poten-
tial tumor marker. Given the mechanistic overlaps 
between cardiovascular diseases and tumors, an-
drosterone sulfate might be a promising marker 
in tumor biology. Lastly, 1-oleoyl-2-docosahexae-
noyl-GPC is a phospholipid, with no RCTs demon-
strating an association with tumors. However, 
an MR study has confirmed that 1-oleoyl-2-do-
cosahexaenoyl-GPC serves as a protective factor 
against thoracic aortic aneurysm [65]. Our study 
concluded that 1-oleoyl-2-docosahexaenoyl-GPC 
is also protective against CRC. Further research is 
needed to explore how 1-oleoyl-2-docosahexae-
noyl-GPC exerts its protective effects.

This MR study has several notable advantages. 
First, unlike previous observational studies, MR 
studies can simulate RCTs and are not impacted 
by reverse causation or confounding factors. Sec-
ond, our study was conducted and tested for het-
erogeneity, bias, and horizontal pleiotropy in strict 
accordance with the three main assumptions of 
MR studies, and the results obtained were plau-
sible. Third, compared with previous MR studies 
with several hundred metabolites and disease 
causality, we included 1400 metabolites and me-
tabolite ratios, which explored a wider range and 
uncovered more metabolites and ratios. Fourth, 
unlike earlier MR analyses that relied on single da-
tabases, we combined results from the two largest 
and most authoritative databases, enhancing the 
understanding of the relationship between 1,400 
metabolites and metabolite ratios and the risk of 
gastrointestinal tumors. Lastly, we applied the FDR 
method to correct p-values, ensuring that our re-
sults are more rigorous.

However, there are some limitations to this 
study. Of note, the relaxation of the significance 
threshold for selecting IVs is common in MR stud-
ies, but in this case, due to the limited number of 
SNPs with genome-wide significance, it potential-
ly violates the relevance assumption of MR anal-
ysis. While the study ensured that the F-values of 
all SNPs were greater than 10 to exclude weak IVs, 
the relaxed threshold may still compromise the 
robustness of the causal inferences. Furthermore, 
genetic variations and metabolic profiles can differ 
significantly across populations, and the identified 
metabolites may not have the same associations 
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in non-European cohorts. Another limitation is the 
small number of metabolites that survived the 
rigorous screening process, which hindered mean-
ingful metabolic pathway analysis using Metabo-
Analyst 5.0. The inability to perform enrichment 
analysis limits the understanding of the biologi-
cal mechanisms underlying the observed associ-
ations.  Additionally, the sample size, while sub-
stantial, may still be insufficient to detect weaker 
associations or rare metabolic signals. Also, while 
MR studies are less susceptible to confounding 
and reverse causation compared to observational 
studies, they are not immune to horizontal plei-
otropy, where genetic variants influence the out-
come through pathways other than the exposure. 
Although the study employed multiple sensitivity 
analyses to address this issue, residual pleiotropy 
could still affect the results.  From another view-
point, the study’s focus on blood metabolites may 
not capture the full complexity of metabolic inter-
actions within the tumor microenvironment. Tis-
sue-specific metabolites or those derived from the 
gut microbiome could also play significant roles in 
gastrointestinal tumor development but were not 
addressed in this analysis. Furthermore, the study 
did not account for potential interactions between 
metabolites, such as synergistic or antagonistic 
effects, which could influence tumor risk. Lastly, 
the clinical utility of these metabolites remains to 
be established. Translating these biomarkers into 
diagnostic or prognostic tools will require exten-
sive validation in independent cohorts and exper-
imental studies to elucidate their functional roles 
in tumor biology.

In conclusion, this MR study is the first to inves-
tigate the causal relationship between 1400 blood 
metabolites and metabolite ratios and gastroin-
testinal tumor risk. The overlapping results of two 
authoritative databases show that 3 blood metab-
olites are associated with the risk of GC; 4 blood 
metabolites and ratios are associated with the risk 
of CRC. The results can guide early clinical diagno-
sis and treatment of gastrointestinal tumors. 
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