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 Abstract
Introduction
The relationship between inflammatory response and osteoporosis has been the subject of extensive
research; yet, their genetic link remains unclear. This study utilized IR-related genes as instrumental
variables to represent IR, while summary data of OP served as the outcome to explore their genetic
relationship.

Material and methods
IR-related genes were retrieved from the GeneCards database. OP transcriptome datasets were
collected from the Gene Expression Omnibus database and meta-analyzed to identify differentially
expressed genes related to IR in OP. Genetic proxy instruments for IR-related genes were derived
from studies of corresponding gene expressionand DNA methylation quantitative trait loci,
respectively. Aggregated data for OP were extracted from the largest genome-wide association study
of OP. We integrated QTL data with OP GWAS data to estimate their genetic associations using
summary data-based Mendelian randomization analysis. Additionally, Bayesian colocalization analysis
was employed to reveal the potential relationships between IR gene expression and inflammatory
factors, as well as various hormones. Finally, to further validate whether the statistical evidence
provided in GWAS were true-positive findings, a replication study  was conducted here through
genotype-phenotype associations.

Results
Through SMR analysis, we found that the expression levels of two IR-related genes were associated
with OP risk. Specifically, elevated gene expression levels of FAS increased the risk of OP.
Conversely, increased expression levels of CHUK decreased the risk of OP.

Conclusions
In summary, this multi-omics integration study reveals a genetic link between IR and OP, as
represented by IR-related genes, and provides new insights into the potential pathogenic mechanisms
of OP.
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Exploring causal correlations between inflammatory response related 

genes and Osteoporosis: A Multi-Omics Mendelian Randomization 

Study 

 

Abstract 

 

Background The relationship between inflammatory response (IR) and osteoporosis 

(OP) has been the subject of extensive research; yet, their genetic link remains unclear. 

This study utilized IR-related genes as instrumental variables (IVs) to represent IR, 

while summary data of OP served as the outcome to explore their genetic relationship. 

Methods IR-related genes were retrieved from the GeneCards database. OP 

transcriptome datasets were collected from the Gene Expression Omnibus (GEO) 

database and meta-analyzed to identify differentially expressed genes (DEGs) related 

to IR in OP. Genetic proxy instruments for IR-related genes were derived from studies 

of corresponding gene expression (n = 31,684) and DNA methylation (n = 1,980) 

quantitative trait loci (eQTLs and mQTLs), respectively. Aggregated data for OP (1,351 

OP cases and 209,313 controls) were extracted from the largest genome-wide 

association study (GWAS) of OP. We integrated QTL data with OP GWAS data to 

estimate their genetic associations using summary data-based Mendelian randomization 

analysis (SMR). Additionally, Bayesian colocalization analysis was employed to reveal 

the potential relationships between IR gene expression and inflammatory factors, as 

well as various hormones. Finally, to further validate whether the statistical evidence 

provided in GWAS were true-positive findings, a replication study (1,955 cases and 

278,169 controls) was conducted here through genotype-phenotype associations. 

Results A meta-analysis of four datasets identified 115 IR-related DEGs in OP out of 

612 IR-related genes. Through SMR analysis, we found that the expression levels of 

two IR-related genes were associated with OP risk. Specifically, elevated gene 

expression levels of FAS (odds ratio [OR] = 1.094; 95% confidence interval [CI] = 

0.892–1.341; false discovery rate [FDR] = 0.034) increased the risk of OP. Conversely, 

increased expression levels of CHUK decreased the risk of OP (OR = 0.518; 95% CI = 

0.424–0.637; FDR = 0.039). Colocalization analysis identified potential interactions 

between the FAS gene and estradiol (PP.H4 = 0.95) as well as interleukin-1α (IL-1α) 

(PP.H4 = 0.65). Potential interactions were also observed between the CHUK gene and 

growth hormone (PP.H4 = 0.59) as well as macrophage inflammatory protein-1α (MIP-

1α) (PP.H4 = 0.62). In addition, consistent results were observed in the replication study, 

further demonstrating the reliability of our findings. 

Conclusions In summary, this multi-omics integration study reveals a genetic link 

between IR and OP, as represented by IR-related genes, and provides new insights into 

the potential pathogenic mechanisms of OP. Additionally, these identified candidate 

genes offer avenues for future targeted functional studies aimed at developing 

appropriate therapeutic interventions and preventing OP. 
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1. Introduction  

 

Osteoporosis (OP) is a chronic systemic disease characterized by a decrease in bone 

density and mass, increasing the risk of fractures and significantly impacting patients' 

quality of life while also elevating the socioeconomic burden[1]. The number of 

individuals at high risk for osteoporotic fractures is rising worldwide, with over 9 

million people experiencing osteoporotic fractures each year[2]. Although previous 

studies have investigated various aspects of the pathogenesis of OP, such as 

environmental factors, immune responses, nutritional status, medications, and 

epigenetic changes[3], the underlying mechanism is not fully understood. Therefore, 

further research on the genetic mechanisms is necessary to deepen our understanding 

of the pathogenesis of OP. 

Bone is a tissue that undergoes constant remodeling, involving both formation and 

destruction. This process is tightly regulated and can be disrupted by various factors, 

including hormonal changes. Furthermore, inflammation disrupts bone metabolism and 

promotes bone resorption. An increasing body of research on bone remodeling 

processes suggests that IR plays a significant role in the development of OP[4]. 

Inflammation is characterized by the overproduction of cytokines such as tumor 

necrosis factor (TNF), IL-1, IL-6, and IL-17. The overexpression of these cytokines 

during inflammation leads to excessive bone resorption, primarily through the 

overactivation of osteoclasts. Additionally, certain cytokines can impair osteoblast 

function. In inflammatory conditions, bone resorption is enhanced by the activation of 

inflammatory cells and mediators, leading to a compromised balance in bone 

remodeling[5]. This condition may also adversely affect the skeletal system, leading to 

OP, fractures, and other bone-related diseases. In concrete terms, activated T cells 

specifically secrete a significant amount of the osteoclastogenic factor, which is 

encoded by the threonine synthase-like 2 gene homolog[6]. This factor is released and 

directly stimulates the formation of osteoclasts, resulting in bone resorption and damage, 

ultimately accelerating the progression of OP. Marasekara et al. found that the IR gene 

regulates the metabolism of osteocyte populations[7]. Zhang et al. discovered that 

inhibiting inflammatory pathways can increase bone mass by preventing osteoclast-

mediated bone resorption[8]. Moreover, numerous studies have shown that IR-related 

genes, such as IL-10 and Nucleotide-binding oligomerization domain 2 (NOD2) are 

related to OP[9, 10]. IR is a complex physiologic process that involves multiple 

cytokine responses and gene expression. Although the promotion of OP by IR has been 

extensively studied, the specific mechanism remains unclear, necessitating further 

research. 

Mendelian randomization (MR) serves as a significant approach for determining 

causal relationships between exposures and outcomes, utilizing genetic variation as  

IVs[11]. This methodology is notably accurate and dependable, as it effectively 

mitigates the influence of confounding factors and minimizes the risks of reverse 
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causation[12]. However, the intricate structure of linkage disequilibrium (LD) within 

the genome may lead to closely related variants that are not necessarily causally 

associated[13]. Furthermore, these genetic variants have the potential to influence 

DNAm, gene expression, hormone levels, and the levels of inflammatory factors. 

Consequently, multi-omics integration has emerged as a promising approach in the 

post-GWAS era for identifying critical regulators and exploring therapeutic targets in 

OP. For instance, building on the MR analysis, the SMR method was introduced to 

enhance the inference of genetic associations between various molecular traits (such as 

gene expression, DNAm, or protein abundance) and relevant diseases[14]. Compared 

with traditional MR analyses, SMR, using the top cis-QTL as the exposure, can achieve 

greater statistical power when the exposure and outcome are derived from two 

independent samples with substantial sample sizes[14]. Up to now, limited MR studies 

had identified the potential genetic association between IR and OP. Therefore, this study 

aimed to explore the genetic relationship between IR proxied by IR-related genes and 

OP using multi-omics data (including eQTL data and mQTL data). 

 

2. Materials and methods 

 

2.1. Ethical considerations 

 

Data used in our study were publicly available, and further ethical approval was not 

required. 

 

2.2. Study design 

 

Figure 1 presents the design and workflow of this study. Initially, 612 genes with a 

relevance score of 15 or higher were identified as IR genes by retrieving from the 

GeneCards database (v5.10, https://www.genecards.org) by using “inflammatory 

response” as the keyword. Four OP transcriptome datasets were found in the GEO 

database[15–17], and meta-analyzed to identify DEGs related to IR in OP. Then, IVs of 

the IR-related genes extracted from eQTLs and mQTLs were used as proxies for IR. 

Their association with OP was investigated through SMR analysis. Furthermore, to 

enhance the reliability of our findings, we conducted the Heterogeneity in Dependent 

Instruments (HEIDI) test and Bayesian colocalization analysis. Only IR-related genes 

that passed both the HEIDI test and colocalization analysis were deemed candidate 

genes for OP. In present study, summarized GWAS data of OP from both the FinnGen 

and the UK Biobank were used as the primary discovery dataset, while summarized 

GWAS data of OP from the UK Biobank were utilized as the replication dataset to 

validate our results. Finally, colocalization analysis was performed to evaluate the 

shared genetic effects between blood gene expression and inflammatory factors as well 

as various hormones. 
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Fig. 1 Workflow of the study. A series of analyses were performed to identify candidate 

causal IR genes associated with OP onset. IR-related genes were sourced from the 

GeneCards database. Transcriptome datasets including OP cases and controls (HC) 

were obtained from the GEO database and meta- analysis was conducted to identify 

DEGs, followed by cell type-specific expression analysis (CSEA). Integration of 

GWAS summary and cis-eQTLs/cis-mQTLs data from the blood by using three-step 

SMR methods, which prioritized putative blood IR genes and their regulatory elements 

associated with the risk of OP (FDR < 0.05; P_HEIDI > 0.01). The UK Biobank 

database was used to validate the aforementioned genes and their regulatory 

components. Additionally, colocalization analysis was conducted to reveal potential 

interactions between the gene expression of presumed causal genes and inflammatory 

factors as well as various hormones (PP.H4 > 0.5). 

 

 

2.3. Data sources 

 

The eQTL IVs of IR-related genes were sourced from eQTLGen and included the 

genetic data of blood gene expression in 31,684 individuals derived from 37 

datasets[18]. The mQTL IVs of IR-related genes were generated from a meta-analysis 

of two European cohorts: the Brisbane Systems Genetics Study (n = 614) and the 

Lothian Birth Cohorts (n = 1366)[13]. The current study focused only on cis-eQTLs 

and cis-mQTLs, which constituted single-nucleotide polymorphisms (SNPs) within a 1 

Mb distance from the start and end of the gene (FDR < 0.05).  

  GWAS data of OP for discovery study were obtained by integrating two databases, 

namely, FinnGen and UK Biobank. This summary data for OP included 8 international 
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cohorts and 210,664 individuals (1,351 cases and 209,313 controls)[19, 20]. To validate 

our findings, we used different OP GWAS data (1,955 cases and 278,169 controls) 

provided by the UK Biobank for the replication study[19]. More data information was 

presented in Supplementary File: Table S13). 

 

2.4. Statistical analysis 

 

We used SMR analysis to investigate the genetic relationship between IR, as 

represented by IR-related genes, and OP. In the current SMR analysis, the most 

significantly associated top cis-QTLs of IR-related genes were chosen as IVs. 

Importantly, for specific IR-related genes that presented multiple significant cis-QTLs 

with identical P-values, we selected the cis-QTL with the highest absolute Z-score as 

the primary cis-QTL. Additionally, we checked the consistency of allele frequency of 

each SNP between pairwise datasets, including QTL data, GWAS data, and LD 

reference data. SNPs with allele frequency differences < 0.20 between any pair of the 

data sets were included. Furthermore, to minimize bias caused by heterogeneity, the 

HEIDI test was rationally employed. Of note, a P-value of HEIDI > 0.01 suggested no 

heterogeneity, implying that the result was reliable[21]. Finally, we used FDR 

correction to avoid false genetic association. Only IR-related cis-QTLs that passed FDR 

correction (P_SMR corrected by FDR < 0.05) and HEIDI test (P_HEIDI > 0.01) were 

allowed to undergo further colocalization analyses. Both SMR analysis and HEIDI tests 

were performed using SMR software for Windows version 1.3.1. 

 

2.5. Meta-analysis of DEGs 

 

Four transcriptome datasets (GSE56815, GSE13850, GSE35958, and GSE7158) (67 

cases and 68 controls) were obtained from the GEO database. A linear regression model 

was employed to identify DEGs. Confounding factors such as age, sex and menopause 

may affect the results[22], so we chose them as covariables for correction. DEGs were 

analyzed individually in the four gene expression datasets and subsequently integrated 

through a fixed-effects meta-analysis using the R package metafor. 

 

2.6. SMR and colocalization analysis 

 

Multiple SMR tools were developed to determine whether the effects of SNPs on 

phenotypes are mediated by molecular features such as gene expression or DNAm. 

Colocalization analyses were performed to examine common variants that may be 

responsible for multiple traits; integration of GWAS data with other molecular QTL 

data through SMR and colocalization improved identification of causal SNPs via 

specific pathways. 

Blood tissue analysis used the SMR multi-tool to determine the causal inference of 

IR genes and the 1000 Genomes European reference to calculate LD. A three-step SMR 

analysis was performed: (1) SNPs were instruments, blood gene expression was 

exposure, and OP was the outcome; (2) SNPs were instruments, blood DNAms were 
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exposure, and OP was the outcome; (3) SNPs were instruments, blood DNAms were 

exposure, and blood gene expression was the outcome. The third step included only 

significant signals from steps 1 and 2. The final candidate signals were defined as those 

that (1) passed the three-step SMR analysis (FDR < 0.05); (2) were suggestively 

significant genome-wide (P < 1×10−5) in all eQTLs and mQTLs; and (3) had no HEIDI 

test results, with P > 0.01. 

We selected colocalization analysis to assess the potential interactions between the 

expression of IR genes and inflammatory factors as well as various hormones in blood 

tissues. This method is used to assess the presence of a shared causal variant in the 

region for two traits. Analysis was performed using the coloc R package with PP.H4 > 

0.5 as the threshold for the shared genetic effects between the two traits. The sources of 

GWAS data for inflammatory factors and hormones can be found in Supplementary 

File. 

 

2.7. Cell type-specific enrichment and regulatory component annotation 

 

The Cell type-Specific Enrichment Analysis Database (CSEA-DB, https://bioin 

fo.uth.edu/CSEADB/) was used to investigate whether DEGs are specific to any cell 

type. We focused on cell types present in blood, bone, and muscles.  

The regulatory signature enrichment of DNAm sites was assessed using eFORGE 

(http://eforge.cs.ucl.ac.uk/), including chromatin status (active and inactive) and 

histone marker (H3K4me1) annotation. The regions of individual DNAm sites were 

annotated at http://grch37.ensembl.org/. 

 

3. Results 

 

3.1. Meta-analysis of differentially expressed IR-related genes between patients 

with OP and HC 

 

Using the linear regression model, we individually analyzed four OP transcriptome 

datasets (GSE56815, GSE13850, GSE35958, and GSE7158) (67 OP cases and 68 

controls) (Supplementary File: Table S1) to identify DEGs in patients with OP. 

Meanwhile, 612 IR genes with correlation score≥ 15 were obtained from the 

GeneCards database (Methods section; Supplementary File: Table S2). A meta-analysis 

was conducted to identify 115 differentially expressed IR-related genes in patients with 

OP (P < 0.05; Figure 2A, Supplementary File: Table S3). In addition, we conducted 

CSEA for 115 DEGs. Among the 12 enriched cell types, we found significant 

enrichment of IR genes in smooth muscle cells (Figure 2B, Supplementary File: Table 

S4).  
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Fig. 2 Meta-analysis of four gene expression datasets between patients with OP and HC. 

2A In total, 115 of 612 genes presented in all four OP transcriptome data were assessed 

for expression differences between patients with OP and HC. The volcano plot shows 

the meta effect sizes on the x-axis, while the y-axis indicates the -log10-transformed 

meta P values. Red dots represent 116 significant DEGs, and black dots represent non-

significantly expressed genes. The dashed line indicates the significant threshold with 

P < 0.05 corrected for the number of gene tests. 2B Cell type-Specific Enrichment 

Analysis Database was used to investigate whether DEGs were specific to any cell type. 

The y-axis indicates the cell types derived from the blood. Dots represent 12 cell types. 

The dashed line is the significant threshold with P < 0.05. 

 

  

3.2. Integration of OP GWAS and IR-related eQTL/mQTL data from the blood 

 

A three-step SMR method was used, and only the significant results in all three SMR 

analyses that passed sensitivity checks were interpreted as suggestive causal genes 

(“Methods” section). A total of 115 IR-related DEG cis-eQTLs and their cis-mQTLs 

were integrated with the largest available GWAS summary statistics for OP. 

In the first step, 13 IR-related genes (FDR < 0.05, P_HEIDI > 0.01) were identified 

by integrating blood eQTLGen data (n = 31,684) with OP GWAS data (Supplementary 

File: Table S5). In the second step, we identified 1638 DNAm probes by integrating the 

same OP GWAS results and mQTL summary statistics from the meta-analysis of 

Brisbane Systems Genetics Study and Lothian Birth Cohorts (n = 1980) 

(Supplementary File: Table S6). In the third step, further integration analysis of putative 

OP-causal cis-eQTL and cis-mQTL data prioritized 7 DNAm probes potentially 

regulating 5 neighboring genes, namely, ARPC1B, FAS, CHUK, TRPC6, and TRPV1 

(FDR < 0.05, P_HEIDI > 0.01) (Supplementary File: Table S7). These CpG sites are 

significantly enriched in the transcription start sites of peripheral blood cells. Examples 

are (1) primary monocytes from peripheral blood (P = 9.3×10−3), (2) primary B cells 

from peripheral blood (P = 1.42×10−3), and (3) primary T cells from cord blood (P = 

6.81×10−3) (Supplementary File: Table S8). An evident enrichment of the transcription 

start sites was found in the three cell types. 
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3.3. Putative OP-causal genes mediated by blood methylation regulation on gene 

expression 

 

Through a three-step SMR analysis, we first considered the FAS gene as a potential 

pathogenic gene. The present study demonstrates that significant SNP signals 

associated with the FAS gene were identified during OP GWAS, eQTL, and mQTL data 

analysis. The DNAm probe cg09221159 is located in the region upstream of the FAS 

gene by 718 kbp. The methylation level in this region is negatively correlated with FAS 

gene expression (betaSMR = -0.162; FDR = 0.002; P_HEIDI = 0.19) and OP incidence 

(betaSMR = -0.579; FDR = 0.021; P_HEIDI = 0.98), while FAS gene expression is 

positively correlated with OP incidence (betaSMR = 0.089; FDR = 0.034; P_HEIDI = 

0.24). Overall, the findings suggest that low DNAm levels of the FAS gene may 

upregulate its expression, thereby increasing the risk of OP (Figure 3A, B). 

Another gene deemed to be crucial is the CHUK gene (Figure 3C, D). The DNAm 

probe cg03679755 is located in the region 73 kbp upstream of the CHUK gene. A higher 

level of methylation at this site would inhibit the transcription of the CHUK gene 

(betaSMR = -0.031; FDR = 8.23 ×10-5; P_HEIDI = 0.16), thereby increasing the risk of 

developing OP (betaSMR = 0.011; FDR = 0.049; P_HEIDI = 0.07). Conversely, a higher 

level of transcription of the CHUK gene would decrease the risk of developing the 

disease (betaSMR = -0.656; FDR = 0.039; P_HEIDI = 0.16). 
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Fig. 3 Three-step SMR analysis prioritized putative causal IR genes and mechanisms 

in OP by using blood tissue. A, C Locus zoom plots showing the consistent genetic 

effects from OP GWAS, cis-mQTL, and cis-eQTL nearby FAS and CHUK (from upper 

to lower panels, all minimum P < 1×10−5). B, D Three-step SMR indicating significant 

causal relationships between gene expression and OP onset mediated by methylation 

(FDR < 0.05, P_HEIDI > 0.01). From left to right: SMR between gene expression and 

OP GWAS, SMR between gene methylation and OP GWAS, and SMR between gene 

methylation and expression. 

 

 

3.4. Putative OP-causal genes involved in inflammatory factors and multiple 

hormone interactions 

We classify 0.5 < PP.H4 < 0.8 as moderate-strength colocalization evidence, and PP.H4 > 

0.8 as high-strength colocalization evidence. Factors that meet the criteria for moderate-

strength evidence include TNF-related activation cytokine, IL-1α, Interleukin-12 

subunit beta, Growth hormone levels, Osteoprotegerin levels, Free androgen index, and 

C-X-C motif chemokine 9. Factors that meet the criteria for high-strength evidence 

include T-cell surface glycoprotein CD5 and Estradiol levels (to be interpreted with 

caution). 

Based on SMR and colocalization analysis, we prioritized FAS as a candidate IR 

causal gene in OP associated with inflammatory factors and several hormones (Fig. 4A) 

(Supplementary File: Table S9, S11). Our findings indicate that increased expression of 
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FAS likely contributes to the onset of OP (betaSMR = 0.089; FDR = 0.034; P_HEIDI = 

0.24). Additionally, SNPs that regulate FAS expression may influence the levels of 

inflammatory cytokines and hormones, as observed in the colocalization analysis. The 

expression of the FAS gene facilitates the onset and progression of OP. After excluding 

hormones and inflammatory factors with weaker associations to bone metabolism, we 

found that both estrogen (PP.H4 = 0.95) and IL-1α (PP.H4 = 0.65) exert a shared genetic 

influence on FAS gene expression (Supplementary File: Table S10, S12). 

The CHUK gene (Figure 4B) (Supplementary File: Table S9, S11) represents another 

significant gene that is closely associated with the risk of OP (betaSMR = -0.656; FDR = 

0.039; P_HEIDI = 0.16). After excluding hormones and inflammatory factors with 

weaker associations to bone metabolism, we found that CHUK exhibits a shared genetic 

effect with growth hormone (PP.H4 = 0.59) and MIP-1α (PP.H4 = 0.62) (Supplementary 

File: Table S10, S12). Consequently, genetic variations in the CHUK gene may 

modulate its expression, influence hormone levels, and alter inflammatory factor levels, 

all of which are closely associated with the risk of OP. 

 

 

Fig.4 SMR and colocalization analyses prioritized blood causal IR genes and 

interactions with inflammatory factors and various hormones in OP. The left panels 

indicate the SMR between gene expression and OP GWAS (all SMR FDR < 0.05, 

P_HEIDI > 0.01), while the right panels show the locus comparisons between cis-

eQTLs and mbQTLs by colocalization analysis (all PP.H4 > 0.5). The r2 value indicates 

the LD between the variants and the top SNPs. A and B represent the FAS and CHUK 

genes, respectively. 

 

 

4. Discussion 
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To our knowledge, this is the first study to identify the putative IR-causing genes and 

underlying mechanisms in OP from blood tissue samples using a multi-omics integrated 

approach. We identified 115 IR-related DEGs in OP from a pool of 612 potential IR-

related genes, based on a comprehensive meta-analysis of transcriptome data. Utilizing 

large-scale QTL data and GWAS summary data, we conducted SMR analysis to 

investigate the association between IR genes and the risk of OP. By integrating the SMR 

analysis with the HEIDI test, we found that the expression levels of two IR-related 

genes were associated with the risk of OP. Specifically, elevated expression levels of 

the FAS gene were associated with an increased risk of OP, while higher expression 

levels of the CHUK gene were linked to a decreased risk of OP. Additionally, 

colocalization analysis demonstrated that FAS shares genetic variants with estrogen and 

IL-1α, whereas CHUK shares variants with growth hormone and MIP-1α. 

Consequently, this study enhances our understanding of the causal relationship between 

IR genes and OP, elucidating the underlying genetic interaction mechanisms. 

The human FAS gene/CD95 is located on chromosomal region 10q23.31 and 

encodes a mature protein composed of 319 amino acids[23]. As a member of the TNF 

receptor family, it plays a critical role in the nuclear factor kappa-light-chain-enhancer 

of activated B cells (NF-κB) signaling pathway[24].Previous studies have confirmed 

its significant role in human physiology. In recent decades, genetic variants of FAS have 

been associated with autoimmune diseases[25], osteoarthritis[26], and acute lung 

injury[27]. However, limited reports exist on the relationship between FAS and OP. In 

the present study, we found that high expression of the FAS gene is associated with an 

increased risk of OP. Additionally, we discovered that DNAm in the upstream region of 

FAS negatively regulates FAS expression, suggesting a connection between DNAm, 

FAS expression, and the risk of OP. The association can be reasonably explained 

through two possible mechanisms. First, FAS plays a key role in the receptor activator 

of nuclear factor kappaB (RANK)/RANK ligand (RANKL) signaling pathway[28], 

which promotes osteoclast differentiation and induces bone resorption[29]. Notably, 

bone loss is primarily regulated by the RANK/RANKL system, the main mechanism 

responsible for the induction, activation, and survival of osteoclasts[30, 31]. Some 

studies have demonstrated that inhibiting the RANKL/RANK axis can enhance bone 

mass by preventing osteoclast-mediated bone resorption[8]. AS2690168, a 

RANK/RANKL signaling pathway inhibitor, has been shown to alleviate pain 

associated with OP and slow its progression[32]. Furthermore, several tests have 

revealed that stimulating RANKL expression in osteocytes can increase bone resorption, 

resulting in bone loss in mice[33].Secondly, FAS induces the process of apoptosis, 

which may be influenced by oxidative stress(OS)[29, 34]. OS leads to dysfunction of 

bone marrow mesenchymal stem cells, resulting in decreased osteogenic ability and 

increased differentiation into adipose tissue[35]. Osteoblasts can produce antioxidants, 

such as glutathione peroxidase, to protect cells from damage caused by reactive oxygen 

species[36]. During bone resorption, osteoclasts generate superoxide, and OS enhances 

the differentiation and function of osteoclasts[37]. Melatonin is an antioxidant that has 

been shown to inhibit the generation of osteoclasts[38]. In in vivo experiments, 

melatonin supplementation has a positive effect on the bone mass of ovariectomized 
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mice[39]. Other studies have shown that the FAS gene may promote the differentiation 

of bone marrow mesenchymal stem cells by regulating the expression of peroxisome 

proliferator-activated receptor gamma and fatty acid-binding protein 4, inhibit lipid 

accumulation during the differentiation process, thereby increasing bone mass and 

maintaining the health of the bone microenvironment[40, 41]. In summary, most studies 

suggest that FAS may accelerate OP progression by promoting the RANK/RANKL 

signaling pathway or by inducing OS. Other studies indicate that the FAS gene could 

regulate the expression of peroxisome proliferator-activated receptor gamma and fatty 

acid-binding protein 4, promoting the differentiation of bone marrow mesenchymal 

stem cells, inhibiting lipid accumulation during the differentiation process, thereby 

increasing bone mass and slowing the progression of OP. This may explain why, despite 

the causal relationship between FAS and osteoporosis being statistically significant 

(FDR < 0.05), the 95% confidence interval of the OR still includes 1. 

The CHUK gene encodes the inhibitor of kappa B kinase complex, a direct upstream 

activator of the NF-κB signaling pathway. During mitochondrial stress, the NF-κB 

essential modulator is recruited to the mitochondria, this recruitment triggers two 

processes: mitochondrial autophagy and the reverse recruitment of the inhibitor of 

kappa B kinase complex, leading to the activation of the NF-κB signaling pathway[42]. 

Thus, CHUK may trigger an IR while maintaining bone homeostasis and reducing the 

risk of OP through the mitochondrial autophagy pathway. Previous research on CHUK 

has predominantly focused on tumors[43], developmental disorders[44] and 

inflammation-related diseases[45]. However, studies examining the relationship 

between CHUK and OP remain limited. This study suggests that elevated CHUK 

expression may correlate with a reduced risk of OP, while DNAm inhibits CHUK 

expression. Mitochondrial autophagy is widely observed in bone tissue. Mitochondria 

play a critical role in regulating intracellular calcium transport and ion homeostasis by 

providing adenosine triphosphate and facilitating calcium signaling[46]. In osteoblasts, 

mitochondria secrete vesicles that promote bone formation, thereby influencing the 

osteogenic process[47]. Mitochondrial autophagy is essential for maintaining 

mitochondrial function. Recent studies have indicated that under conditions of chronic 

inflammation, the inhibition of Mitochondrial autophagy can activate the Wingless 

Integrated/β-catenin signaling pathway, which, in conjunction with Runt-related 

transcription factor 2 and bone morphogenetic proteins, triggers the differentiation of 

osteoblasts[48, 49]. Thus, mitophagy plays a pivotal role in bone remodeling. 

Researches demonstrated that the activation of mitochondrial autophagy via the 

inhibition of the mechanistic target of rapamycin/phosphoinositide 3-kinase pathway 

suppresses senescence in bone marrow mesenchymal stem cells and enhances their 

osteogenic function[50–52]. Additionally, research has shown that resveratrol protects 

osteoblast function by activating the Sirtuin 1-mediated mitochondrial autophagy 

pathway[53]. Furthermore, mitophagic cell death in osteoclasts may be associated with 

the expression of bone resorption-related proteins[54]. In conclusion, CHUK may 

impede the progression of osteoporotic conditions by regulating mitochondrial 

autophagy; however, further research is required to elucidate the specific mechanisms 

through which CHUK decelerates the development of OP. 
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By integrating multi-omics studies from various tissues, researchers can analyze 

GWAS signals to prioritize relevant genes and disease mechanisms. Our study 

identified the colocalization of genetic regulations of FAS expression and hormones, as 

well as inflammatory factors. Estradiol, IL-1α, and FAS gene expression exhibit 

common genetic effects, indicating a potential interaction among this gene, hormones, 

and inflammatory factors. Estradiol can induce the apoptosis of pre-osteoclasts by 

regulating Fas ligand in osteoblasts, thereby maintaining bone homeostasis[55]. 

Additionally, estradiol intake has been shown to stimulate osteoblast proliferation and 

collagen gene expression, thereby Slowing down the progression of OP in 

postmenopausal women[56, 57]. IL-1α stimulates bone turnover by increasing bone 

resorption and blood calcium levels, exerting long-term local effects mediated by 

prostaglandins[58]. CHUK has common genetic effects with growth hormone and MIP-

1α. Growth hormone increases bone density, promotes bone formation, and enhances 

the biomechanical strength of fracture healing by stimulating osteoblast proliferation 

and activity, showing significant effects in the treatment of osteoporotic fractures[59]. 

MIP-1α plays a critical role in bone remodeling and metabolism by promoting the 

formation and activity of osteoclasts[60]. The high expression in various bone 

destruction-related diseases makes it a potential target for bone disease treatment. 

Tissue- and cell-specific gene expression has been shown to yield valuable insights 

into regulatory mechanisms and biological processes underlying disease. The site of 

onset for OP is in the bone, and studying the genetic influence on gene expression using 

eQTL data from bone tissue may be more meaningful. However, there is currently a 

lack of public databases related to bone tissue. This study conducted CSEA on 115 

DEGs related to IR. Among the 12 enriched cell types, smooth muscle cells were 

significantly enriched. This finding suggests that smooth muscle cells may be involved 

in the regulation of skeletal inflammation. Previous studies have found that smooth 

muscle cells may influence bone metabolism by altering the bone 

microenvironment[61]. Further exploration is needed into the mechanisms between IR-

related genes and OP, and future studies could utilize public databases on smooth 

muscle tissue for in-depth analysis. 

Some limitations of this study are worth acknowledging. First, the dataset used in 

our research integrates four OP transcriptome datasets, and the quality and 

measurement errors of different data sources may not be consistent, which could 

potentially affect the reliability of the results. Therefore, we conducted linear regression 

model analysis on each dataset separately and adjusted for potential confounding 

factors that could affect gene expression levels, such as age, gender, and menopausal 

status, to ensure the authenticity of the research data. Although we adjusted for available 

covariates in the datasets, including age, gender, and menopausal status, some potential 

confounding factors, such as medication use, could not be accounted for due to their 

absence in the original studies. A common challenge in the field is the varying degree 

of standardization of phenotype information across public databases such as GEO. 

Second, although the OP outcome indicators in this study encompass populations from 

various ethnic groups, the blood eQTL and mQTL data used as exposure factors are 

predominantly derived from European populations. To enhance the robustness and 
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generalizability of the study's findings, we chose to rely on data from European 

populations. However, this approach may introduce issues such as insufficient sample 

size and population stratification bias. Therefore, future research should consider 

including more data from diverse population groups to produce more reliable 

conclusions. Third, although peripheral blood samples are convenient and non-invasive, 

they may not fully capture tissue-specific gene expression and epigenetic changes that 

occur in bone cells, which are directly related to the pathophysiology of OP. Bone tissue, 

with its unique cellular composition and microenvironment, may contain specific eQTL 

and mQTL that are more closely related to the processes driving bone metabolism and 

remodeling. We reviewed the literature, but unfortunately, we were unable to find data 

related to bone tissue. Nevertheless, there are several reasons explaining why peripheral 

blood data were chosen. First, obtaining bone tissue samples from OP patients presents 

challenges and is highly invasive, especially in large clinical cohorts where such tissue-

specific data are more difficult to obtain. Second, peripheral blood can reflect systemic 

biological changes, including factors that may influence bone health, such as 

inflammation, endocrine signals, and metabolic alterations. Therefore, although 

peripheral blood may not provide direct insights into bone-specific molecular pathways, 

it still offers valuable information regarding the broader systemic factors contributing 

to the risk of OP. We acknowledge that the lack of bone tissue data represents a 

significant gap in this study. In future research, the use of bone biopsies or imaging 

techniques to analyze gene expression and DNAm in bone tissue holds the potential to 

provide more targeted efforts in directly understanding the molecular mechanisms of 

OP. Third, there is currently no universally accepted threshold standard for 

colocalization analysis. Different studies set thresholds based on their specific 

objectives to balance sensitivity and specificity. For instance, Jie Chen et al. defined 

PP.H4 > 0.5 as "moderate evidence" for the preliminary identification of potential 

colocalization signals[62]. This threshold is particularly useful in multi-tissue or cross-

omics analyses, as it helps reduce the risk of false negatives[63–66]. Similarly, Shu Xu 

et al., in a comparable multi-omics study, directly adopted PP.H4 > 0.5 as the criterion 

for colocalization evidence[67]. Most studies tend to use higher thresholds (e.g., 0.75 

or 0.8) to increase specificity. However, such an approach may miss true signals, 

especially in the presence of heterogeneity or weak effect sizes. Our study integrates 

multi-omics data (mQTL, eQTL, pQTL, and GWAS), and thus requires a balance 

between discovery potential and false positive control during the exploratory phase. 

Therefore, we retained signals with moderate confidence to guide subsequent 

experimental validation. Finally, while trans-regulatory elements, including 

transcription factors, enhancers, and noncoding RNA, play key roles in regulating gene 

expression and may influence susceptibility to OP by affecting key biological pathways. 

However, considering that cis-regulatory elements have more direct and specific 

biological effects than trans-regulatory elements[68], we used cis-eQTL/cis-mQTL 

data from human bloodas the exposure factor. Future studies could explore the 

interaction of these genes with trans-regulatory elements by using transcriptomics data, 

chromatin immunoprecipitation sequencing, or crispr-based techniques to identify 

enhancer regions, transcription factors, and noncoding RNA involved in their regulation. 
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These studies will provide greater insight into the complex regulation of gene 

expression in OP and identify potential therapeutic targets. 

 

5. Conclusion 

 

In summary, this study explored the genetic association between IR and OP based on a 

multi-omics MR approach. The findings highlighted the significant role of IR-related 

genes, such as FAS and CHUK, in the pathogenesis of OP. Moreover, the newly 

discovered IR-related genes interacting with multiple hormones and inflammatory 

factors warrant further functional-level investigation to elucidate the underlying 

biological mechanisms. This research contributes to the understanding of IR in OP and 

identifies potentially novel therapeutic targets for clinical application. 
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Table S1 Characteristics of four transcriptome datasets used in the study 

Table S2 612 inflammatory response (IR) -related genes with a relevance score ≥ 

15 obtained from GeneCards 

Table S3 Meta-analysis of 115 differentially expressed IR-related genes from four 

datasets (P < 0.05) 

Table S4 Cell type-specific expression analysis (CSEA) of 115 IR-related DEGs 

Table S5 Summary-based Mendelian randomization (SMR) analysis from blood 

gene expression to OP (FDR < 0.05, P_HEIDI > 0.01) 

Table S6 SMR analysis from blood DNA methylation to OP (FDR< 0.05, 

P_HEIDI > 0.01) 

Table S7 SMR analysis from blood DNA methylation to gene expression (FDR< 
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Table S8 Regulatory component annotation of 1638 DNA methylation sites 
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Table S12 Colocalization analysis between blood gene expression and hormone 

(PPH4 > 0.5) 

Table S13 External validation of the ukbb database 

Supplementary figures descriptions 

 

Fig. 1 Workflow of the study. A series of analyses were performed to identify 

candidate causal IR genes associated with OP onset. IR-related genes 

were sourced from the GeneCards database. Transcriptome datasets 

including OP cases and Healthy controls (HC) were obtained from the 

GEO database and meta- analysis was conducted to identify DEGs, 

followed by cell type-specific expression analysis (CSEA). Integration 

of GWAS summary and cis-eQTLs/cis-mQTLs data from the blood by 

using three-step SMR methods, which prioritized putative blood IR 

genes and their regulatory elements associated with the risk of OP (FDR 

< 0.05; P_HEIDI > 0.01). The UK Biobank database was used to 

validate the aforementioned genes and their regulatory components. 

Additionally, colocalization analysis was conducted to reveal potential 

interactions between the gene expression of presumed causal genes and 

inflammatory factors as well as various hormones (PP.H4 > 0.5). IR = 

Inflammatory response, OP = Osteoporosis, GEO = Gene expression 

omnibus, DEG = Differentially expressed genes, eQTL = Gene 

expression quantitative trait locus, mQTL = DNA methylation 

quantitative trait locus, GWAS = Genome-wide association study, SMR 

= Summary data-based Mendelian randomization analysis, FDR = False 

discovery rate, HEIDI = Heterogeneity in Dependent Instruments. 

Fig. 2 Meta-analysis of four gene expression datasets between patients with OP 

and HC. 2A In total, 115 of 612 genes presented in all four OP 

transcriptome data were assessed for expression differences between 

patients with OP and HC. The volcano plot shows the meta effect sizes 

on the x-axis, while the y-axis indicates the -log10-transformed meta P 

values. Red dots represent 116 significant DEGs, and black dots 

represent non-significantly expressed genes. The dashed line indicates 

the significant threshold with P < 0.05 corrected for the number of gene 

tests. 2B Cell type-Specific Enrichment Analysis Database was used to 

investigate whether DEGs were specific to any cell type. The y-axis 

indicates the cell types derived from the blood. Dots represent 12 cell 

types. The dashed line is the significant threshold with P < 0.05. OP = 

Osteoporosis, HC = Healthy controls, DEG = Differentially expressed 

genes. 

Fig. 3  Three-step SMR analysis prioritized putative causal IR genes and 

mechanisms in OP by using blood tissue. A, C Locus zoom plots 

showing the consistent genetic effects from OP GWAS, cis-mQTL, and 

cis-eQTL nearby FAS and CHUK (from upper to lower panels, all 
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minimum P < 1×10−5). B, D Three-step SMR indicating significant 

causal relationships between gene expression and OP onset mediated by 

methylation (FDR < 0.05, P_HEIDI > 0.01). From left to right: SMR 

between gene expression and OP GWAS, SMR between gene 

methylation and OP GWAS, and SMR between gene methylation and 

expression. IR = Inflammatory response, OP = Osteoporosis, eQTL = 

Gene expression quantitative trait locus, mQTL = DNA methylation 

quantitative trait locus, GWAS = Genome-wide association study, SMR 

= Summary data-based Mendelian randomization analysis, FDR = False 

discovery rate, HEIDI = Heterogeneity in Dependent Instruments. 

Fig.4  SMR and colocalization analyses prioritized blood causal IR genes and 

interactions with inflammatory factors and various hormones in OP. The 

left panels indicate the SMR between gene expression and OP GWAS 

(all SMR FDR < 0.05, P_HEIDI > 0.01), while the right panels show the 

locus comparisons between cis-eQTLs and mbQTLs by colocalization 

analysis (all PP.H4 > 0.5). The r2 value indicates the LD between the 

variants and the top SNPs. A and B represent the FAS and CHUK genes, 

respectively. IR = Inflammatory response, OP = Osteoporosis, eQTL = 

Gene expression quantitative trait locus, mQTL = DNA methylation 

quantitative trait locus, GWAS = Genome-wide association study, SMR 

= Summary data-based Mendelian randomization analysis, FDR = False 

discovery rate, LD = Linkage disequilibrium, HEIDI = Heterogeneity in 

Dependent Instruments, SNPs = Single-nucleotide polymorphisms. 
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