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A b s t r a c t

Introduction: Breast cancer (BC) is one of the most frequent cancers in 
women globally. Research on tRNA-related biomarkers for predicting BC sur-
vival remains notably lacking. In this study, bioinformatics analysis was used 
to identify tRNA-related gene targets. 
Material and methods: We obtained closely related mRNAs by screening BC 
prognosis-associated tRNAs from the OncotRF database. Next, we selected 
prognostically important mRNAs further using the Bruta algorithm. We de-
veloped a risk model based on these significant genes by using a variety of 
machine learning techniques and validated the expression experimentally. 
Data from the TCGA, GEO, and IMvigor210 datasets were used to validate 
the predictive efficacy of the t-mRNA characteristics. We also obtained the 
single-cell RNA sequencing (scRNA-Seq) data from the TISCH2 database and 
the RNA-Seq data from the UCSC Xena database for pan-cancer analysis. 
Results: We created a prognostic model with 12 t-mRNAs associated with 
BC. Strong predictive performance of this model was demonstrated by 
nomogram, ROC and survival analyses. Functional enrichment analysis re-
vealed differences between the low-risk and high-risk groups in immunolog-
ical-related biological processes. The high-risk group showed reduced im-
munotherapy efficiency and greater M2 macrophage infiltration, according 
to the analysis of immune infiltration and immunotherapy responsiveness. 
Furthermore, the pan-cancer investigation revealed that high-risk tumors 
typically exhibit more aggressive features. We also found differential expres-
sion of model genes between normal and cancer cells.
Conclusions: We created a  t-mRNA model that may accurately predict the 
prognosis of BC patients and promote the development of precision medi-
cine for cancer.

Key words: machine learning, tRNA, breast cancer, prognosis, 
immunotherapy, pan-cancer analysis.

Introduction

One of the most common malignant tumors that affect women world-
wide, breast cancer (BC) has a major influence on life and health [1]. The 
US is likely to see 310,720 new female BC cases in 2023, with 42,250 
deaths anticipated, according to the American Cancer Society (ACS) [2]. For 
early-stage BC, the 5-year survival rate has significantly increased [3]. Less 
than 30% of patients with metastatic breast cancer survive, however, due 
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to the intrinsic heterogeneity of the tumor, which 
frequently causes treatment resistance, post-sur-
gical recurrence, and distant metastasis [4]. This 
results in a survival rate of less than 30% for pa-
tients with metastatic breast cancer [5]. Therefore, 
enhancing clinical outcomes depends heavily on 
comprehending the molecular pathways behind 
the onset and progression of breast cancer as well 
as discovering novel biomarkers [6, 7].

We have recently investigated the molecular 
pathways connected to the development of tu-
mors, paying particular attention to the interaction 
between transfer RNA (tRNA) and messenger RNA 
(mRNA). Due to its involvement in the initiation and 
progression of tumors, this relationship is receiving 
more attention [8, 9]. A hallmark of tumors is ab-
errant cell proliferation, which is mostly controlled 
by protein translation pathways. mRNA and tRNA 
are important players in gene expression [10]. By 
matching mRNA codons and contributing particular 
amino acids to the expanding polypeptide chain at 
the ribosome, tRNA, a subclass of short non-coding 
RNA (sncRNA), stimulates the synthesis of proteins 
[11]. Beyond its conventional function in transla-
tion, recent research has highlighted that tRNAs in 
tumor cells can influence mRNA in various ways to 
regulate protein translation, thereby impacting tu-
mor biological characteristics [12, 13]. Tumor inva-
sion and aberrant proliferation can be encouraged 
by changes in tRNAs, which can change the rates at 
which mRNAs are translated [14, 15]. For example, 
Ma et al. reported that m7G-modified tRNA could 
enhance the translation of target mRNAs through 
a codon frequency-dependent mechanism, encour-
aging lung cancer cell proliferation, invasion, mi-
gration, and colony formation – a factor linked to 
a poor prognosis for patients with lung cancer [16]. 
Additionally, tRNA-derived microRNAs (miRNAs) act 
by suppressing the expression of protein-coding 
genes through sequence complementarity with 
mRNA [17]. In summary, tRNA influences cancer 
progression not only through genomic alterations 
but also by modifying the malignant phenotype 
of tumors through changes in mRNA. Research on 
the function of t-mRNAs related to BC prognosis 
in the onset and progression of breast cancer is 
still lacking. Despite recent discoveries connecting  
tRNAs with BC prognosis [14], there remains a lack 
of research on the role of BC prognosis-associated 
t-mRNAs in the development and progression of 
breast cancer.

Machine learning, a significant branch of arti-
ficial intelligence in the era of big data, excels at 
identifying relevant features from large, high-di-
mensional datasets derived from sequencing 
studies [18], and is increasingly employed to con-
struct tumor prognosis models [19, 20]. Recogniz-
ing the promising prognostic value of tRNA across 

various tumors [21, 22], our research used ten ma-
chine learning methods to generate 101 combina-
tions of machine learning algorithms to identify 
the t-mRNAs linked with BC prognosis and devel-
op a prognostic model. 

Single-cell sequencing enables us to ana-
lyze gene expression, mutations, and epigenetic 
modifications within tumors at the cellular level, 
shedding light on tumor heterogeneity and the 
complexity of tumor cell evolution. However, in 
practice, scRNA-Seq is mostly confined to studying 
individual cancer types. By integrating single-cell 
sequencing with pan-cancer analysis, we can un-
cover potential common driver genes across dif-
ferent cancers and identify subpopulations with 
similar gene expression profiles, deepening our un-
derstanding of cancer development mechanisms. 
In our study, we also tested the model’s efficacy 
in different cancers, achieving favorable outcomes.

Material and methods

Gathering and processing public data 

We obtained target tRNAs associated with 
the prognosis of BC from the OncotRF database 
(http://bioinformatics.zju.edu.cn/OncotRF). We 
downloaded the GSE20711 and GSE20685 data-
sets, which include the expression profiles of 92 
and 327 breast cancer patients’ tumor and normal 
tissues, from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo//). 
For the purpose of developing and validating our 
risk model, we accessed data on BC patients from 
TCGA-BRCA, including 64 patients with metasta-
ses and 19 patients with original tumors, from The 
Cancer Genome Atlas (TCGA) database (https://
tcga-data.nci.nih.gov/tcga/). In order to investigate 
potential relationships between t-mRPM (t-mRNA 
related prognostic model) and its model genes 
across various cancers, we also obtained the pro-
cessed RNA-Seq data of 32 solid malignant tumor 
types from the UCSC Xena database (https://xena.
ucsc.edu/). For an extensive pan-cancer analysis, 
the 32 processed scRNA-Seq datasets and annota-
tions of 32 solid malignant tumor types were addi-
tionally acquired from the TISCH2 database (http://
tisch.comp-genomics.org). The TISCH2 database 
has already undergone quality control, normaliza-
tion, unsupervised clustering, and cell type annota-
tion for these datasets.

Screening and functional analysis of 
t-mRNA related to BC prognosis

Using the OncotRF database, we screened  
tRNAs differentiating breast cancer from normal 
tissues that influence prognosis, selecting from 
3′-tRF and 5′-tRF sequences. We calculated Spear-
man correlation coefficients between these tRNAs 
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and mRNA expression profiles, defining t-mRNAs 
as those with a correlation coefficient > 0.4 and 
p < 0.01, which were then visualized using Cytos-
cape [23]. We used Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis to com-
prehend the biological roles of these mRNAs [24].

Identification of differentially expressed 
t-mRNA related to BC prognosis

We first screened prognosis-related genes from 
t-mRNAs using the Boruta algorithm [25], a  ran-
dom forest-based method for feature ranking 
and selection, to screen prognosis-related genes 
from t-mRNAs. Next, we examined the mRNA ex-
pression matrix between BC samples and normal 
breast samples using the “limma” package [26]. 
A false discovery rate (FDR) < 0.05 and an abso-
lute log2 (fold change) > 1 were the requirements 
assigned for finding differentially expressed  
mRNAs (DE-mRNAs). From these results, we ob-
tained BC-related genes and the selected t-mRNA 
genes. By intersecting these genes, we acquired 
DEt-mRNAs for further analysis.

Construction of t-mRPM using machine 
learning-based integrative approaches

Ten machine learning algorithms and their 101 
combinations were applied to guarantee great ac-
curacy and stability of our t-mRPM. Among them 
were the following: supervised principal compo-
nents (SuperPC), generalized boosted regression 
modeling (GBM), random survival forest (RSF), 
elastic net (Enet), Lasso, Ridge, stepwise Cox, Cox-
Boost, and survival support vector machine (sur-
vival-SVM). Based on the highest average concor-
dance index (C-index), the best model was chosen. 
We used three datasets (TCGA-BRCA, GSE20711, 
and GSE20685) for Kaplan-Meier analysis in order 
to verify the stability and reproducibility of the 
model. The results were displayed using survival 
curves. Additionally, we plotted the model’s 1-year, 
3-year, 5-year, 7-year, and 9-year ROC curves to 
evaluate the predictive performance. 

Association of clinical-pathological features 
and construction and validation of the 
nomogram

We examined the relationship between the 
risk model and pathological features in order to 
assess the clinical value of t-mRNA. Additionally, 
we analyzed the gene expression patterns across 
several pathological features in the risk model, 
which were shown in a  heatmap. Furthermore, 
the TCGA BC metastasis database was used to 
evaluate the predictive potential for metastasis of 
BC patients. The model was then integrated with 
clinical-pathological variables to produce the no-

mogram, and calibration and decision curves were 
used to assess the nomogram’s clinical efficacy.

Gene set variation analysis (GSVA) and 
single-sample gene set enrichment analysis 
(ssGSEA)

The R package “GSVA” [27] was used in our in-
vestigation to calculate scores for fifty HALLMARK 
pathways. The “limma” program was then used 
to examine pathways that showed notable varia-
tions between high- and low-risk groups. In order 
to determine the contribution of tumor-related 
molecular mechanisms in different risk groups, 
we used the R package “clusterProfiler” [28] to 
perform a GSEA of HALLMARK gene sets with FDR  
< 0.25 and |NES| > 1.

Immune feature correlation analysis

Using ssGSEA, we evaluated the variations in 
immune-related pathways between the groups 
[29]. The CIBERSORT and xCell algorithms [30] 
were used to quantify the relative abundance of 
tumor-infiltrating immune cells (TIICs) within tu-
mor samples. Based on recent advances in im-
munotherapy for BC [31], we used the IMgor210 
dataset to predict the effects of immunotherapy 
in BC patients using our model.

Performance of the risk model and its 
genes in pan-cancer

We sought to further assess the performance of 
the model and its genes regarding expression, mu-
tations, copy number variations, and methylation 
across various cancers. Additionally, we examined 
the impact of the t-mRPM on the prognosis of dif-
ferent cancers, affirming the model’s broad applica-
bility across various tumor types. We also assessed 
the relationship between the model and features of 
tumor malignancy such as the cell cycle, angiogen-
esis, and epithelial–mesenchymal transition (EMT). 

Expression of model genes at the pan-
cancer single-cell level

We obtained single-cell gene expression in-
formation from the TISCH2 database, which was 
used to investigate the relationship between the 
tumor microenvironment and t-mRNA by examin-
ing the single-cell expression of model genes in 32 
distinct solid malignant cancer types.

Quantitative real-time PCR (RT-qPCR)

Human mammary epithelial cells (HS578BST) 
and breast cancer cell lines (MDA-MB-231 and 
MCF-7) were procured from Fenghui Biotechnolo-
gy Co., Ltd. (Hunan, China). These cells were main-
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tained in DMEM medium supplemented with 10% 
fetal bovine serum (Gibco) and incubated at 37°C 
with 5% CO2. Total RNA was isolated from cultured 
cells using TRIzol reagent (Tiangen, Beijing, China) 
according to the manufacturer’s protocol. Then 
the total RNA was reverse-transcribed into cDNA 
using RevertAid Reverse Transcriptase (Thermo 
Fisher Scientific, Waltham, MA, USA). The RT-qPCR 
analysis was subsequently carried out on the ABI 
QuantStudio 1 Plus instrument using PerfectStart 
Green qPCR SuperMix. The reaction conditions 
were as follows: initial denaturation at 94°C for 
35 s, annealing at 60°C for 15 s, and extension 
at 72°C for 10 s. Relative gene expression levels 
were quantified using the 2–ΔΔCt method. The prim-
ers used in this study were designed by Pulateze 
Biotech (Hunan, China), as listed in Table I.

Statistical analysis

R software (version 4.1.1) was used for the anal-
ysis. Pearson’s c2 test was utilized to assess cate-

gorical data, and one-way ANOVA was employed 
to investigate continuous variables. A  p-value of 
less than 0.05 was considered statistically signifi-
cant. The OS of individuals with breast cancer was 
examined using the Kaplan-Meier method. Cox re-
gression models, both univariate and multivariate, 
were used to find independent predictive markers 
and clinical features that varied significantly be-
tween patient groups. Using the Mann-Whitney 
U test, differences in immune cell infiltration were 
evaluated. Statistical significance was defined as 
p-values < 0.05 (*p < 0.05, **p < 0.01, ***p < 0.001, 
ns: not significant).

Results

Identification of DEt-mRNAs

Using the OncotRF database, we first chose 
a  prognostically significant tRNA (5′-M-tRNA-Tyr-
GTA-7-1_L23) in BC. We next calculated the Spear-
man correlation coefficient to find 92 mRNAs that 
were significantly associated with this tRNA (Fig-
ure 1 A). Meanwhile, we also found that these 
t-mRNAs are mainly involved in pathways that in-
clude the cell cycle, infection of the human T-cell 
leukemia virus, the p53 signaling pathway, matu-
ration of oocytes through progesterone, meiosis 
of oocytes, cellular senescence, leukocyte transen-
dothelial migration, and the FoxO signaling path-
way (Figure 1 B). We identified 62 genes associ-
ated with BC prognosis using the Boruta method 
(Figures 1 C, D). In TCGA-BRCA cohorts, we found 
296 DE-mRNAs, which were visualized in a volca-
no plot (Figure 1 E). Notably upregulated genes 
in this plot include MMP11, COL10A1, COMP,  
COL11A1, and S100P. Finally, these 62 prognostic 
genes were intersected with the DE-mRNAs using 
a Venn diagram (Figure 1 F), yielding 22 key genes 
that were designated as DEt-mRNAs.

Construction and validation of t-mRPM

An integrative technique based on machine 
learning was applied to the 22 DEt-mRNAs in or-
der to generate a consensus tRNA-related mRNA 
signature. Even though Ridge had the greatest av-
erage C-index (0.616), we decided that the Lasso 
and CoxBoost combo was the best algorithm pair. 
This combination achieved the greatest average 
C-index value, 0.611, among all combinations 
that incorporated Lasso, which affected the deci-
sion. Additionally, the combination was required 
to obtain coefficient values from Lasso regression 
for a  subsequent pan-cancer study (Figure 2 A). 
According to the LOOCV framework (Figure 2 B), 
the optimal λ for the Lasso regression was found 
at the point where the partial likelihood deviance 
was lowest. A  definite collection of 12 t-mRNAs 
was identified by applying CoxBoost proportion-

Table I. RT-qPCR primer sequences used in the 
study

Primer name Primer sequence (5′→3′)

h-MELK-169-F TATTCACCTCGATGATGATTGCG

h-MELK-169-R AGAAAGCCTTAAACGAACTGGTT

h-CENPF-102-F CTCTCCCGTCAACAGCGTTC

h-CENPF-102-R GTTGTGCATATTCTTGGCTTGC

h-TSPAN7-242-F TATCTCCCTTATTGCCGAGAACT

h-TSPAN7-242-R TAGCGTCCGTGTAAGTCCTCA

h-BIRC5-118-F AGGACCACCGCATCTCTACAT

h-BIRC5-118-R AAGTCTGGCTCGTTCTCAGTG

h-NEK2-233-F CTGGATGGCAAGCAAAACGTC

h-NEK2-233-R CCAGCGAGTTCTTTCTGGCTA

h-TOP2A-129-F ACCATTGCAGCCTGTAAATGA

h-TOP2A-129-R GGGCGGAGCAAAATATGTTCC

h-GPIHBP1-194-F GCAACCTGACGCAGAACTG

h-GPIHBP1-194-R CCAGGGTGGGACATTGCAC

h-COX7A1-132-F GAGTGCGCGAGAAACAGAAG

h-COX7A1-132-R ACAAGCTGTAGACAGTGCCG

h-SCN4B-179-F CTGGGCTTTTGGTGGAAGAAG

h-SCN4B-179-R GTTGTCATTCCCCGAGGAGC

h-ANLN-130-F TGGAGAAGAGCCAAGAGGAG

h-ANLN-130-R TCTGGACTTACCACACCAACTG

h-UBE2T-226-F AGCTGCTCATGTCAGAACCC

h-UBE2T-226-R ACTAGCTGACTGGCCTTCCT

h-KIF4A-139-F ACGCCATCTGAATGACCTCC

h-KIF4A-139-R ACCACGCACTTCAGTAAGGG

hGAPDH-172-F CTGACTTCAACAGCGACACC

hGAPDH-172-R GTGGTCCAGGGGTCTTACTC
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Figure 1. Identification of DEt-mRNA. A – t-mRNA related network diagram. B – Biological process involvement 
by t-mRNA. C – t-mRNAs related to BC prognosis: identified by the Boruta algorithm. D – Feature selection detail 
diagram: shows t-mRNAs selected by the Boruta algorithm across different iterations
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al hazards regression analysis to t-mRNAs with 
nonzero Lasso coefficients. These t-mRNAs are 
MELK, CENPF, TSPAN7, BIRC5, NEK2, TOP2A, GPI-
HBP1, COX7A1, SCN4B, ANLN, UBE2T, and KIF4A  
(Figure 2 C). Next, the expression levels of these 
12 t-mRNAs, weighted by their regression coeffi-
cients in the CoxBoost model, were used to cal-
culate the risk score for each BC patient, referred 
to as the t-mRPM score. The ‘survminer’ R pack-
age was implemented to determine the optimal 
cutoff value, classifying BC patients into high-risk 
and low-risk groups. As demonstrated in the TCGA 
training dataset and the GSE20585 validation set, 
overall survival was significantly lower in the high-
risk group compared to the low-risk group (p < 
0.05) (Figures 2 D–F). However, in the GSE20711 
validation set, there was no significant difference 
in survival rates between the high- and low-risk 
groups (p = 0.21), likely due to the smaller sam-
ple size of this validation cohort. ROC analysis as-
sessed the discrimination capability of t-mRPM, 
with 1-, 3-, 5-, 7-, and 9-year AUC values of 0.72, 
0.66, 0.66, 0.66, and 0.63, respectively, in TC-
GA-BRCA, indicating the model’s effective predic-
tive power for the OS of BC patients across these 
time points (Figure 2 G).

Correlation between t-mRPM score and 
clinical-pathological features

The TCGA dataset’s analysis of the relationship 
between t-mRPM risk scores and clinical-patho-
logical features showed significant differences  
(p < 0.05) in TNM staging, pathological grading, 
survival status (fustat), and gender between the 
high- and low-risk groups (Figures 3 A, B). As seen 
in Figure 3 C, Kaplan-Meier curve analysis indicat-

ed that the high-risk group had a worse prognosis 
than the low-risk group (log-rank test, p < 0.01). 
Since early BC (stages I  and II) still accounts for 
a significant portion of diagnoses, we first looked 
at how this risk model varied across different T 
stages. Patients in later stages (T3-4) showed 
greater risk ratings than those in early stages (T1-2)  
(Figure 3 D; p < 0.01, Wilcox test). Furthermore, 
ROC curve analysis showed that the AUC value for 
t-mRNA predicting M staging was 0.668 (Figure 3 E),  
suggesting that the t-mRPM score might also pre-
dict the development of distant organ metastasis 
in BC patients. t-mRPM was also found to be pre-
dictive of M staging (M0 and M1). We investigated 
the predictive power of model genes for BC metas-
tasis using the TCGA-BRCA dataset. While individ-
ual genes were not very predictive, the risk model 
that consists of these genes showed better predic-
tive power in predicting metastases of breast can-
cer (p = 0.032) (Figure 4). According to this model, 
metastasis is more likely to occur in patients with 
higher scores. All things considered, the t-mRPM 
score enhances the prediction for BC survival and 
is a useful predictor of cancer metastasis.

Development and evaluation of nomogram

To confirm the independent predictive capabil-
ity of t-mRPM, both univariate and multivariate 
Cox regression analyses were conducted (Figures 
5 A, B). In the univariate analysis, all clinical-patho-
logical characteristics, except for gender (HR = 
0.815, 95% CI = 0.114–5.836, p = 0.839), i.e. age, 
TNM staging, pathological staging, and risk score, 
were significantly correlated with prognosis, each 
indicating a poor prognosis (all p < 0.05). These 
included age (HR = 1.034, 95% CI = 1.02–1.047, 

Figure 1. Cont. E – Volcano plot: displays DE-mRNAs between normal and tumor tissues in BC patients. F – Venn 
diagram: used to identify common genes between differentially expressed genes (DEGs) and t-mRNAs in BC
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p < 0.001), T stage (HR = 1.763, 95% CI = 1.225-
2.538, p = 0.02), M stage (HR = 5.649, 95% CI =  
3.387–9.423, p < 0.001), N stage (HR = 2.189, 
95% CI = 1.533–3.127, p < 0.001), overall stage  
(HR = 2.628, 95% CI = 1.878–3.678, p < 0.001), 
and risk score (HR = 2.576, 95% CI = 1.887–3.517, 
p < 0.001) (Figure 5 A). In the multivariate analysis, 
the risk score (HR = 2.531, 95% CI = 1.802–3.556, 
p < 0.001) and M stage (HR = 3.541, 95% CI = 
1.883–6.659, p < 0.001) emerged as independent 
prognostic factors for predicting adverse OS in BC 
patients (Figure 5 B). A predictive nomogram in-
cluding clinical-pathological variables was devel-

oped to predict an individual’s overall survival at 
1, 3, and 5 years in order to enhance clinical de-
cision-making. This nomogram closely matched 
the optimal prediction model (Figures 5 C, D), 
demonstrating high accuracy in predicting 1-year, 
3-year, and 5-year OS. The decision curve analy-
sis (DCA) (Figure 5 E) and calibration chart (Fig- 
ure 5 D) demonstrated that t-mRNA is a reliable 
prognostic indicator for BC patients, confirming 
the nomogram’s accuracy in predicting survival 
probability with real outcomes. This enhances 
predictive models and facilitates clinical judg-
ment.

Figure 2. Cont. D–F – Kaplan-Meier curves for OS based on t-mRPM in several datasets. G – The optimal model’s 
ROC curves
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Figure 3. Analysis of correlations between various clinicopathological features and the prognostic model in the 
TCGA cohort. A – Pie chart showing the relationship between clinical-pathological traits and high- and low-risk 
groups. B – Heatmap showing how six distinct clinicopathological traits are distributed along with each patient’s 
risk score determined by their signature
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To explore the difference of biological functions 
in two risk groups and the research value of mod-
el genes in multiple cancer types, we conducted 
pathway enrichment analysis, immune correlation 
analysis, and pan-cancer analysis, as detailed in 
the supplementary materials.

Validation of the 12 model genes  
with RT-qPCR assay

To delineate differential expression patterns 
of model genes between malignant and normal 
mammary epithelial cells, we conducted quanti-

tative real-time PCR (RT-qPCR) assays. As shown 
in Figure 6, compared with normal breast cells 
(HS578BST), the expression of CENPF, TSPAN7, 
NEK2, TOP2A, COX7A1, SCN4B, and ANLN was 
downregulated in tumor cell lines (MCF-7 and 
MDA-MB-231). Moreover, distinct expression pat-
terns of the signature genes were observed across 
diverse breast cancer cell subtypes. MELK, BIRC5, 
UBE2T, and KIF4A showed high expression levels in 
MDA-MB-231, but with low expression in MCF-7.  
In contrast, GPIHBP1 exhibited an inverse expres-
sion pattern.



Quan Yuan, Rongjie Ye, Hao Yu, Ge Yu, Ming Niu

10 Arch Med Sci

C D

E

1.00

0.75

0.50

0.25

0

2

1

0

–1

–2

1.0

0.8

0.6

0.4

0.2

0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Ri
sc

sc
or

e

Se
ns

it
iv

it
y

Log-rank

p = 0.0067

 0 5 10 15 20 25

Time [years]
I + II     High           Low

0.0018

 T1–2 T3–4

T.stage

 1.0 0.5 0

Specificity

Logistic ROC

0.024 (0.648, 0.682)

AUC = 0.668

Figure 3. Cont. C – Kaplan-Meier OS curves for breast 
cancer in its early stages based on t-mRPM (log-rank 
test: p = 0.0067). D – Risk scores were considerably 
greater in patients in stages T3–4 than in those in 
stages T1-2 (p = 0.0018). E – ROC curves for BC 
patients showing M stage prediction (M0 and M1,  
AUC = 0.668)

Discussion

tRNA acts as the “translator” of genetic in-
formation, uniquely recognizing mRNA codons 
through its anticodon and converting mRNA nu-
cleotide sequences into peptide chains of nascent 
proteins. As research in transcriptomics advances, 
the roles of tRNA and mRNA in cancer are draw-
ing increased attention [32]. Alterations in tRNA 
expression levels, structures, and functionalities 
can disrupt the translation of associated mRNAs 
[33, 34], influencing tumor development and 
prognosis. Therefore, tRNA and its related mRNA 
are crucial in the gene expression process with-
in tumor cells [35, 36]. Although previous studies 
have identified tRNAs that influence the prognosis 
of BC, the impact of related mRNAs on the mo-
lecular mechanisms of BC has remained largely 
unexplored. In this study, we developed a model 
of tRNA-related mRNA that influences the prog-
nosis of BC, demonstrating its potential value in 
predicting BC biological characteristics, immuno-
therapy responsiveness, and survival outcomes. 
Remarkably, our pan-cancer analysis has shown 
that this model is effective not only in predicting 
the prognosis of various other cancers but also in 
assessing the reactivity of the associated tumor 
microenvironment.

Beyond its canonical role in translational reg-
ulation, transfer RNA (tRNA) is increasingly rec-
ognized as a key modulator in diverse oncogenic 
processes, including the stabilization of mRNA, 
modulation of reverse transcription, and regu-
lation of apoptosis and cellular senescence [37]. 
During the senescence escape process of breast 
cancer cells, tRNA-Tyr is specifically upregulated 
and mediates the evasion of senescence through 
the mTOR pathway. Inhibiting mTOR can block 
this process [38]. In addition, tRNA can bind to 
RNA-binding proteins (such as YBX1) and regu-
late tumor cell metastasis and invasion [39]. We 
identified 5ʹ-M-tRNA-Tyr-GTA-7-1_L23 from the 
OncotRF database as an important prognostic 
marker for breast cancer (HR = 1.265, p < 0.001), 
which is significantly upregulated in breast cancer 
tissues [40]. Through bioinformatics analysis, we 
screened 12 characteristic genes from 92 closely 
related mRNAs and experimentally validated their 
differential expression between breast cancer 
and normal cells. Notably, MELK, BIRC5, GPIHBP1, 
UBE2T, and KIF4A were significantly upregulated 
in breast cancer cell lines; these genes have previ-
ously been implicated as potential therapeutic tar-
gets in breast cancer. The overexpression of these 
genes has been associated with unfavorable clin-
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Figure 4. Expression levels of individual model genes in the BC metastasis cohort. Green represents the non-me-
tastasis group (primary) and orange represents the metastasis group (Metastasis)
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Figure 5. Analysis of the clinical pathological characteristics of t-mRPM and its independent prognostic potential. 
A, B – Outcomes of the univariate and multivariate Cox regression analyses. C – A nomogram that can be used to 
forecast a patient’s overall survival. D – The nomogram’s decision curve values. E – The nomogram model calibra-
tion curve
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Figure 6. Validation of model genes in malignant and normal mammary epithelial cells
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ical outcomes in patients with breast cancer [41–
45]. Given their coordinated upregulation with the 
tRNA, we hypothesize that this tRNA may facilitate 
tumor progression by interacting with the corre-
sponding mRNAs and enhancing the translation 
of oncogenic transcripts. Nevertheless, the precise 

molecular mechanisms of the interaction between 
this tRNA and its mRNA targets remain to be eluci-
dated, warranting further investigation.

We also constructed a prognostic model based 
on the 12 characteristic genes and validated its 
performance using both internal and external 
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validation sets. This model accurately predicted 
BC patients’ survival outcomes. To improve the 
clinical applicability of the model, we investigat-
ed the correlation between t-mRPM and clinical 
pathological features. Our findings indicate that 
this feature can help differentiate between T and 
M stages in BC patients. Based on this relation-
ship, we constructed a  nomogram to enhance 
the ability to predict overall survival rates. Analy-
sis of the variations within HALLMARK pathways 
across different groups revealed that the high-risk 
group shows enrichment in biological processes 
and metabolic pathways associated with cancer. 
Additionally, a  positive correlation was observed 
between this risk score and the tumor’s malignant 
characteristics, including angiogenesis, malignant 
proliferation, and the cell cycle. We investigated 
the relationship between t-mRPM and immu-
nological traits in BC considering recent notable 
developments in the field of cancer immune mi-
croenvironment and immunotherapy [46–48]. The 
high-risk group exhibited a  reduced response to 
immunotherapy and high infiltration of M2 mac-
rophages, confirming the prognostic value of this 
risk model in the context of immunotherapy. Last-
ly, we performed a pan-cancer analysis to explore 
the possible use of this trait in additional tumor 
types. Our study shows that this characteristic 
has tremendous research potential as it not only 
predicts BC patients’ prognosis accurately but also 
has a strong correlation with survival markers in 
other malignancies.

Currently, the use of immune checkpoint inhib-
itors (ICIs) has revolutionized therapy for cancer 
patients [49–51]. The combination chemotherapy 
project comprising anti-PD-L1 atezolizumab and 
anti-PD-1 pembrolizumab has been approved as 
the first-line treatment for PD-L1-positive (PD-
L1+) advanced triple-negative breast cancer 
(TNBC) patients [52]. Despite this, PD-L1 evalua-

tion in tumor samples remains the sole biomarker 
currently guiding immunotherapeutic decisions in 
breast cancer. Unfortunately, many PD-L1+ tumor 
patients do not benefit from ICI treatments [53], 
highlighting the need for identifying and validat-
ing responsive biomarkers to optimize their thera-
peutic application. Our study suggests that t-mR-
NA associated with BC could serve as a potential 
biological predictor for the efficacy of ICI therapy, 
though further research is essential to validate 
this potential.

To our knowledge, this is the first study to 
construct a  prognostic model for BC from the 
perspective of t-mRNA using machine learning, 
complemented by various pan-cancer analyses 
and RT-qPCR validation. However, we must ac-
knowledge several limitations. Firstly, although 
we used multiple datasets to validate our mod-
el’s predictive potential, most of the included co-
horts are retrospective, and some datasets have 
small sample sizes. The application of this model’s 
features needs further validation in large-sample 
prospective studies and multicenter clinical trials. 
Secondly, our research relied on public databases. 
Future efforts should aim to confirm the specific 
mechanisms of these t-mRNAs through additional 
cellular and tissue experimentation. In conclusion, 
the specific mechanisms and clinical application 
value of t-mRPM in cancer require further investi-
gation and validation.

Supplementary material 

The difference of biological functions in two 
risk groups and the research value of model genes 
in pan-cancer.
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edu.cn/OncotRF), the Gene Expression Omnibus 
(GEO) database (https://www.ncbi.nlm.nih.gov/
geo//, GSE20711 and GSE20685), and the Cancer 
Genome Atlas (TCGA) database (https://tcga-da-
ta.nci.nih.gov/tcga/). 
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