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 Abstract
Introduction
Interactions between extracellular signals with the extracellular matrix (ECM) influence cellular
phenotype and molecular functions, affecting proliferation, differentiation, adhesion, apoptosis, and
migration. Deregulation of ECM remodeling contributes to the development of diseases, including
breast cancer. The study aimed was to identify microRNAs (miRNAs) that may regulate the activity of
genes involved in ECM remodeling and focal adhesion across five breast cancer subtypes in Polish
women.

Material and methods
The study enrolled patients representing five breast cancer subtypes: 130 luminal A, 100
HER2-negative luminal B, 96 HER2-positive luminal B, 36 non-luminal HER2-positive, 43 triple-
negative breast cancer (TNBC) cases. Cancer tissue samples were collected during surgery along
with adjacent healthy tissue margins (control group). The expression profiles of genes associated with
ECM remodeling and focal adhesion were evaluated with mRNA microarrays and reverse transcription
quantitative polymerase chain reaction (RT-qPCR). Protein expression was assessed using enzyme-
linked immunosorbent assay (ELISA). miRNA detection and target prediction were performed using
miRNA microarrays.

Results
Overexpression of COL1A1, FN1, ITGB1, and THBS1 may be associated with reduced levels of
miR-129, miR-432, miR-124, miR-384, respectively. Decreased COL6A6 expression may result from
increased activity of miR-1246. Additionally, the study revealed increased levels of  COL1A2, COMP,
SPP1 with reduced activity of RELN, across all five breast cancer subtypes.

Conclusions
This is the first study to comprehensively analyze miRNA-mediated regulation of ECM-related genes
across five breast cancer subtypes in a Polish cohort. Overexpression of COL1A1, FN1, and ITGB1 is
linked to reduced levels of specific miRNAs, while decreased COL6A6 expression is associated with
increased miR-1246 activity.
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INTRODUCTION 

 Breast cancer is the most commonly diagnosed cancer in women and the leading 

cause of cancer-related deaths globally [1]. According to the National Cancer Registry in 

Poland, breast cancer accounted for 23.55% of all cancers among women in 2022 and was 

the second leading cause of cancer-related deaths. Notably, it accounted for 27.6% of both 

cancer cases and deaths among young women (aged 20–44) [2]. 

 Breast cancer diagnosis involves classification based on the presence or absence of 

estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 

receptor 2 (HER2) [3]. Luminal A is the most frequently diagnosed subtype, characterized 

by the presence of ER and PR, with HER2 being absent. It is considered non-aggressive 

and has a good prognosis[4]. Luminal B subtype is ER-positive and can be either HER2-

negative or HER2-positive. It is associated with a worse prognosis due to its higher 

proliferative potential than luminal A [5]. In the case of the non-luminal HER2-positive 

subtype, HER2 is expressed, while ER and PR are absent on the cell surface [6]. Triple 

negative breast cancer (TNBC) is defined by the absence of ER, PR, and HER2, and is 

considered the most aggressive subtype [7]. 

 The main part of solid tumors is composed of cancer cells and the tumor 

microenvironment, which includes cancer-associated fibroblasts, immune cells, adipocytes, 

endothelial cells, and the extracellular matrix (ECM) [8]. Interactions of extracellular 

signals and the ECM influence cellular phenotype and molecular functions, affecting cell 

proliferation, differentiation, adhesion, apoptosis, and migration [9]. These interactions are 

primarily mediated by integrins under both physiological and pathological conditions [10]. 

The ECM mainly contains glycoproteins, proteoglycans, matricellular proteins, including 

secreted phosphoprotein 1 (SPP1) and thrombospondin (THBS), as well as structural 
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proteins such as collagen (COL), laminins (LAM), and tenascin (TN) [9, 11]. Remodeling 

of the ECM basement membrane is required for cancer cells migration into the surrounding 

stroma and for tumor formation [12]. Depending on the extent of ECM proteins 

degradation, local invasion or intravasation into the vascular system may occur, leading to 

migration to distant sites and the formation of metastases [13].  

The ECM also undergoes dynamic remodeling in breast cancer, contributing to tumor 

progression [14]. Type I collagen, encoded by COL1A1 and COL1A2, is the most abundant 

and plays a major role in maintaining tissue integrity. Its accumulation stiffens the tumor 

stroma and facilitates invasion and metastasis [15]. Cancer-associated fibroblasts (CAFs) 

are known to mediate collagen remodeling, promoting cancer cell migration and 

progression [16]. 

Studies indicate that type I collagen stiffens the ECM, which causes the stroma of cancer 

tissue to appear stiffer than that of healthy tissue [17]. Acerbi et al. demonstrated that 

collagen deposition, linearization, and thickening are associated with the development and 

progression of breast cancer. They found that stromal stiffness and its heterogeneity were 

greater in aggressive breast cancer subtypes compared to less aggressive luminal A and B 

subtypes [18]. Cao et al. further highlighted that stiffer breast cancer tissue enhances 

cancer cell growth and survival, while also activating migration-related signaling pathways 

[19]. Interestingly, the ECM also plays a role in promoting resistance to breast cancer 

treatments, including endocrine-targeted therapy, chemotherapy, and radiation. Therefore, a 

deeper understanding of ECM structure and regulation may provide novel therapeutic 

targets for breast cancer [20]. Moreover, microRNAs (miRNAs) play a significant role in 

cancer by regulating the expression of target genes, adding another layer of complexity to 

tumor biology [21]. 
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 The aim of this study was to identify miRNAs that may potentially regulate the 

activity of genes involved in ECM remodeling and focal adhesion across five subtypes of 

breast cancer in Polish women. 

 

MATERIALS AND METHODS 

Patients 

 The study enrolled 405 patients with various breast cancer subtypes. 130 samples 

were qualified as luminal A subtype, 100 samples as HER2-negative luminal B, 96 samples 

as HER2-positive luminal B, 36 samples as non-luminal HER2-positive, 43 samples as 

triple-negative breast cancer (TNBC). The control group consisted of margin samples of 

healthy tissue collected during the surgery. Tissue samples were differentiated into 

neoplastic and non-neoplastic by pathological evaluation. All patients in the study were 

classified as T1N0M0. Patient characteristics are listed in Table I. 

 The study was carried out in accordance with the 2013 Helsinki Declaration. It was 

approved on March 10, 2023 by the Bioethical Committee of the Regional Medical 

Chamber in Krakow (81/KBL/OIL/2023). Informed consent was collected from all 

patients. 

 

Total ribonucleic acid (RNA) extraction 

 TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA, USA; cat. no. 

15596026) was used to obtain total RNA. The RNeasy mini kit (QIAGEN, Hilden, 

Germany; cat. no. 74104) and DNase I (Fermentas International Inc., Burlington, ON, 

Canada; cat. no. 18047019) were used to purify the obtained extracts. To evaluate the 
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quality and quantity of the extracts, electrophoresis was performed in a 1% agarose gel and 

absorbance was measured. 

 

mRNA microarrays 

 Microarray analysis was performed using the HG-U133A 2_0 arrays (Affymetrix, 

Santa Clara, California, USA) and the GeneChip™ 3′IVT PLUS kit (Thermo Fisher 

Scientific, Inc., Waltham, Massachusetts, USA; cat. no. 902416). The Kyoto encyclopedia 

of genes and genomes (KEGG) pathway map was used to generate a gene list. From ECM-

receptor interaction (hsa04512) and focal adhesion (hsa04510), overlapping genes were 

selected. A list of 65 genes was obtained, which corresponded to 187 mRNAs on the 

microarray. 

 

Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) 

 The next step was to validate the determined expression profile using RT-qPCR 

with the SensiFast SYBR No-ROX One-Step Kit (Bioline, London, UK). 9 genes whose 

activity significantly changed in each breast cancer subtype were selected for analysis: 

collagen type I alpha 1 (COL1A1), collagen type I alpha 2 (COL1A2), collagen type VI 

alpha 6 (COL6A6), cartilage oligomeric matrix protein (COMP), fibronectin 1 (FN1), 

integrin beta-1 (ITGB1), reelin (RELN), secreted phosphoprotein 1 (SPP1), 

thrombospondin 1 (THBS1) (Table II). Calculations were performed with the 2−ΔΔCt 

method. β-actin (ACTB) was used as an endogenous control [22]. 

 

Enzyme-Linked Immunosorbent Assay (ELISA) 
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 Protein expression profile was assessed with ELISA (Abbexa, Cambridge, UK) 

using the following kits: COL1A1 kit (MyBioSource, Inc., San Diego, CA, USA; cat. no. 

MBS703198), COL1A2 kit (MyBioSource, Inc., San Diego, CA, USA; cat. no. 

MBS036858), COL6A6 kit (MyBioSource, Inc., San Diego, CA, USA; cat. no. 

MBS7269131), COMP kit (MyBioSource, Inc., San Diego, CA, USA; cat. no. 

MBS765927), FN1 kit (MyBioSource, Inc., San Diego, CA, USA; cat. no. MBS765285), 

ITGB1 kit (MyBioSource, Inc., San Diego, CA, USA; cat. no. MBS761086), RELN kit 

(MyBioSource, Inc., San Diego, CA, USA; cat. no. MBS904954), SPP1 kit (MyBioSource, 

Inc., San Diego, CA, USA; cat. no. MBS2880407), THBS1 kit (MyBioSource, Inc., San 

Diego, CA, USA; cat. no. MBS701627). 

 

miRNA profiling and prediction 

 Microarrays miRNA 2.0 (Affymetrix, Santa Clara, California, USA), FlashTag 

Biotin HSR RNA Labeling Kit (Affymetrix, Santa Clara, California, USA), Hybridization 

Wash and Stain Kit (Affymetrix, Santa Clara, California, USA) were used to identify 

miRNAs differentiating breast cancer from the control. The mirDB tool (http://mirdb.org) 

was used to predict which miRNAs could regulate the expression of COL1A1, COL1A2, 

COL6A6, COMP, FN1, ITGB1, RELN, SPP1, THBS1. To increase the reliability of 

predictions, a target score of ≥ 80 was set [23]. 

 

Statistical Analysis 

 The results of microarray experiments were analyzed using Transcriptome Analysis 

Console (Thermo Fisher Scientific, Waltham, MA, USA). One-way analysis of variance 

(ANOVA) and Tukey’s post hoc test were carried out (p<0.05; FC>2 or FC<−2). The RT-
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qPCR and ELISA results were analyzed using Statistica 13.3 (StatSoft, Krakow, Poland). 

Data distribution was evaluated using the Shapiro-Wilk test. The lack of normal 

distribution allowed the use of Kruskal-Wallis and Dunn’s tests. 

 Based on approximately 19,620 women diagnosed with breast cancer in Poland in 

2019 [24], assuming a 95% confidence level and a 5% margin of error, the recommended 

group size was 377, as calculated using the sampling calculator [25]. 

 Overall survival (OS) analysis for each breast cancer subtype was estimated using 

the Kaplan-Meier plotter (http://kmplot.com/; accessed: June 27, 2024) [26, 27]. The 

follow-up threshold was 60 months. 

 

RESULTS 

Gene Expression Profile Assessed with mRNA Microarrays 

 Among 187 mRNAs corresponding to 65 genes associated with the ECM 

remodeling and focal adhesion, one-way ANOVA revealed that 37 mRNAs significantly 

changed their expression in breast cancer compared to the control (p<0.05; FC>2 or <−2). 

Tukey’s post-hoc test showed that 14 mRNAs significantly changed their expression in 

luminal A subtype, 20 mRNAs in HER2-negative luminal B subtype, 22 mRNAs in HER2-

positive luminal B subtype, 32 mRNAs in non-luminal HER2-positive subtype, 34 mRNAs 

in TNBC. Figure 1 shows a Venn diagram of characteristic and common genes. 

 The analysis showed that overexpression of LAMA4 and THBS2 significantly 

differentiated TNBC from the control. For the remaining subtypes, no characteristic genes 

meeting the conditions adopted in the study were recorded. IBSP overexpression was 

observed in luminal A and B subtypes. In addition, high levels of LAMC2 with reduced 

activity of ITGA7, TNXA, TNXB were observed in all subtypes except luminal A. 
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Interestingly, significant overexpression was also noted for VWF in HER2-positive luminal 

B, non-luminal HER2-positive and TNBC. High levels of COL6A1, COL6A2, COL6A3, 

ITGB4, ITGB6, LAMB1, TNC common to non-luminal HER2-positive and TNBC were 

also reported. Furthermore, 9 genes significantly changed expression regardless of breast 

cancer subtype: COL1A1, COL1A2, COL6A6, COMP, FN1, ITGB1, RELN, SPP1, THBS1 

(Table III). 

 Regardless of the cancer subtype, significant overexpression of COL1A1, COL1A2, 

COMP, FN1, ITGB1, SPP1, THBS1 with reduced activity of COL6A6 and RELN was 

reported in the study. 

 

COL1A1, COL1A2, COL6A6, COMP, FN1, ITGB1, RELN, SPP1, THBS1 expression 

evaluated with RT-qPCR and ELISA 

 RT-qPCR was then used to assess the expression profile of COL1A1, COL1A2, 

COL6A6, COMP, FN1, ITGB1, RELN, SPP1, THBS1 differentiating breast cancer 

regardless of its subtype (Figure 2). 

 The expression profile determined by RT-qPCR corresponded to the microarray 

results. The next step included assessing the concentration of the studied genes at the 

protein level (Table IV). 

 The level of COL1A1, COL1A2, COMP, FN1, ITGB1, SPP1, THBS1 proteins was 

significantly increased in all breast cancer subtypes compared to the control group, which 

was consistent with the microarray and RT-qPCR analysis. COL6A6 protein reached level 

below detection in all cancer samples, whereas the protein concentration of RELN was also 

decreased and possible to detect only in luminal A cancer. 

 

Prep
rin

t



 8 

miRNA Target Prediction 

 The last step of the study was to verify whether miRNAs differentiating breast 

cancer from the control could be involved in the regulation of the expression of COL1A1, 

COL1A2, COL6A6, COMP, FN1, ITGB1, RELN, SPP1, THBS1 (Table V). 

 The analysis showed that the expression of COL1A2, COMP, RELN, SPP1 is 

probably not regulated by miRNAs identified by microarrays and prediction criteria. 

Overexpression of COL1A1, FN1, ITGB1, THBS1 may be associated with reduced levels 

of miR-129, miR-432, miR-124, miR-384, respectively. The analysis also showed that 

decreased COL6A6 expression may be a consequence of increased activity of miR-1246. 

 

Overall Survival (OS) Analysis 

 Overall survival analysis was carried out for 9 genes selected in the study: of 

COL1A1, COL1A2, COL6A6, COMP, FN1, ITGB1, RELN, SPP1, THBS1. For each cancer 

subtype, only graphs with p < 0.05 were presented (Figure 3-7). 

 In luminal A cancer, worse survival was associated with downregulated COL1A1, 

COL6A6, and overexpression of FN1 (Figure 3). 

 In HER2-negative luminal B cancer, reduced levels of COL6A6 and SPP1 

negatively impacted overall survival (Figure4). 

 In HER2-positive luminal B cancer, decreased COL1A2 activity and overexpressed 

ITGB1 were associated with worse prognosis (Figure 5). 

 The analysis also revealed a negative impact of COL1A2, COMP, ITGB1, RELN 

overexpression on overall survival in non-luminal HER2-positive cancer. (Figure 6). 
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 In TNBC, a high level of COMP was linked to worse overall survival. In addition, 

decreased activity of SPP1 may also negatively affect the prognosis, although caution 

should be exercised due to the p-value close to 0.05 (Figure 7). 

 

DISCUSSION 

 In our study, we analyzed the expression levels of ECM remodeling and focal 

adhesion-related genes across 5 molecular subtypes of breast cancer: luminal A, HER2-

negative luminal B, HER2-positive luminal B, non-luminal HER2-positive, TNBC. We 

identified 9 genes that were consistently dysregulated regardless of the subtype. These 

findings were confirmed at both the mRNA and protein levels. Overexpression was 

observed for COL1A1, COL1A2, COMP, FN1, ITGB1, SPP1, THBS1, while COL6A6 and 

RELN were downregulated. Further miRNA target predictions revealed potential regulators 

contributing to these changes. 

Recent studies have highlighted the diagnostic and prognostic relevance of miRNA–

mRNA interactions in breast cancer. For instance, Kong et al. demonstrated that circPLK1 

promotes TNBC progression by sponging miR-296-5p, thereby reducing its tumor-

suppressive activity [28]. Similarly, Wu et al. identified a novel circKIF4A–miR-637–

STAT3 axis that facilitates brain metastasis in TNBC, emphasizing the clinical importance 

of miRNA-mediated regulatory networks [29]. Lu et al. further reported that miR-214-3p 

suppresses breast cancer cell proliferation and improves the tumor immune 

microenvironment by downregulating B7H3, revealing its dual role as a tumor suppressor 

and immune modulator [30]. These findings emphasize the emerging importance of 

noncoding RNA networks in breast cancer progression and treatment resistance. While 

earlier studies have primarily investigated individual miRNA–mRNA pairs, our integrated 
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analysis across transcriptomic, proteomic, and predictive miRNA layers offers a broader, 

subtype-specific perspective on ECM remodeling in breast cancer. 

COL1A1 and COL1A2, which encode the main chains of type I collagen, were consistently 

overexpressed across all subtypes in our study. Type I collagen accumulation, largely 

mediated by CAFs, increases ECM stiffness, thereby promoting cancer cell invasion and 

metastasis [16]. Liu et al. reported elevated COL1A1 levels in breast cancer, particularly in 

ER-positive tumors, and linked this to poor survival outcomes [31]. Ma et al. demonstrated 

that downregulation of COL1A1 inhibits tumor growth by inhibiting CAFs activation and 

ECM remodeling in the tumor microenvironment [32]. Yang et al. reported elevated 

COL1A2 expression across all breast cancer subtypes and linked it to poor overall survival 

and relapse-free survival in HER2-positive patients [33]. Our results support these findings 

and further demonstrate that COL1A2 overexpression is significantly associated with 

reduced overall survival in non-luminal HER2-positive patients. In silico analysis also 

suggests that downregulation of miR-129 may contribute to the observed COL1A1 

upregulation, while no miRNAs meeting our criteria were identified as regulators of 

COL1A2. Previous studies confirm reduced miR-129 levels in breast cancer and its tumor-

suppressive role, including the inhibition of proliferation and chemoresistance [34–37]. 

However, Serijono et al. described miR-129 overexpression in TNBC, proposing a possible 

context-dependent oncogenic function [38]. 

 We also observed downregulation of COL6A6 and RELN in all breast cancer 

subtypes. Low COL6A6 has been associated with reduced overall survival in luminal A and 

HER2-negative luminal B cancers. Known as a tumor suppressor, COL6A6 has been 

reported to inhibit growth and metastasis in other cancer types [39, 40], and its loss has 

been described in breast cancer cohorts [41, 42]. Yeh et al. identified both COL6A6 and 
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RELN as downregulated in breast cancer [42], consistent with our observations across all 

subtypes. Our analysis showed that miR-1246 overexpression may contribute to COL6A6 

downregulation. Multiple studies highlight miR-1246 as a biomarker of breast cancer [43] 

and a promoter of a drug resistance and invasiveness [44], though conflicting evidence 

suggests a suppressive role in TNBC metastasis via epithelial-mesenchymal transition 

(EMT) [45]. Notably, miR-1246 derived from TNBC exosomes can activate stromal 

fibroblasts, enhancing invasion and migration [46]. 

 COMP and SPP1 were overexpressed across all subtypes and have been linked to 

breast cancer aggressiveness. Hanitrarimalala et al. showed that COMP, a member of the 

thrombospondin family, has been implicated in promoting breast cancer stemness and 

invasiveness [47]. It is considered a potential predictive marker of metastasis, particularly 

in ER+ and HER2-positive tumors [48, 49]. In our cohort, high COMP expression was 

associated with reduced survival in non-luminal HER2-positive and TNBC patients. SPP1 

is similarly implicated in invasion and metastasis [50, 51]. Interestingly, reduced SPP1 

levels were associated with poorer survival in HER2-negative luminal B and marginally in 

TNBC, suggesting a dual role that may depend on tumor context. Our findings extend 

previous reports by demonstrating that COMP overexpression is not only relevant in ER+ 

or HER2+ tumors but also carries prognostic significance in TNBC. Neither gene was 

predicted to be regulated by the miRNAs selected in our analysis. 

 miRNA predictions for FN1, ITGB1, THBS1 suggest that their overexpression may 

result from the downregulation of miR-432, miR-124, miR-384, respectively. FN1 is 

involved in host defense, adhesion, proliferation, wound healing, metastasis [52], with 

elevated expression linked to poor prognosis [53]. Notably, FN1 correlates with immune 

cell infiltration and immune checkpoint activity, offering potential for immunotherapy 
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stratification [54]. LINC02381 and miR-1271 interactions [55], as well as miR-200b 

suppression in doxorubicin-resistant breast cancer cells [56], have been implicated in FN 

regulation. In our analysis, we found a potential link between FN1 and miR-432, whose 

low activity promotes proliferation, invasion, and migration of breast cancer cells [57]. 

 ITGB1, which connects ECM to the cytoskeleton and mediates signal transduction, 

plays a central role in metastasis and therapy resistance [58, 59]. Rana et al. identified 

WAVE2/miR-29/ITGB1 signaling axis, critical for tumor growth regulation and metastasis 

in TNBC. It was also confirmed that increased ITGB1 expression is associated with worse 

survival [60]. Our analysis showed that ITGB1 overexpression negatively affected overall 

survival in luminal and non-luminal HER2-positive subtypes. We also found potential 

regulation by miR-124, whose loss has been widely linked to increased proliferation and 

chemoresistance [61–63]. 

 THBS1 presents a dual role in cancer. While it inhibits angiogenesis and may 

suppress tumor growth, its expression in stromal cells may facilitate metastasis [64]. Li et 

al. reported that overexpression of serum THBS1 in HER2-positive patients was linked to 

brain metastases [65]. Furthermore, THBS1 inhibition could interfere with metastasis and 

improve the efficacy of TNBC immunotherapy [66]. Our findings suggest that miR-384 

downregulation may contribute to THBS1 overexpression. Low miR-384 levels promote 

the proliferation and invasion of breast cancer cells [67, 68]. 

Taken together, our findings highlight a consistent ECM-related signature across all breast 

cancer subtypes, with subtype-specific survival associations and potential miRNA 

regulators. In summary, our findings complement and expand the existing literature by 

identifying both shared and subtype-specific ECM gene dysregulation patterns, linking 

them with predicted miRNA regulators and clinical outcomes. These insights may support 
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the development of personalized therapeutic strategies, particularly for aggressive or 

treatment-resistant subtypes.  

The limitation of our study may be the different group sizes, with the smallest number of 

non-luminal HER-positive and TNBC patients. The material collected for the study comes 

from Polish women, which may potentially reduce the applicability of the presented 

results. 

  

CONCLUSIONS 

 This study comprehensively characterized the expression of ECM remodeling and 

focal adhesion-related genes across five molecular subtypes of breast cancer in Polish 

patients. Nine genes (COL1A1, COL1A2, COMP, FN1, ITGB1, SPP1, THBS1, COL6A6, 

RELN) were consistently dysregulated regardless of subtype, with expression patterns 

correlating with patient survival. Bioinformatic miRNA prediction identified five miRNAs 

(miR-129, miR-1246, miR-432, miR-124, miR-384) potentially responsible for modulating 

these genes. 

The observed changes highlight a common ECM-related signature in breast cancer that 

intensifies with tumor aggressiveness. These findings provide new insight into the 

molecular landscape of breast cancer and suggest that targeting ECM–miRNA interactions 

could offer novel therapeutic opportunities, particularly in subtypes characterized by poor 

prognosis or treatment resistance. 
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Table 1. Characteristics of patients included in the study. 

Subtype 

Grade Age 

BMI [kg/m2] 

G1 G2 G3 < 50 years > 50 years 

Luminal A 23 (18%) 48 (37%) 59 (45%) 43 (33%) 87 (67%) 30.78 ± 2.76 

HER2-negative 

luminal B 
31 (31%) 57 (57%) 12 (12%) 32 (32%) 68 (68%) 30.18 ± 4.56 

HER2-positive 

luminal B  
23 (24%) 57 (59%) 16 (17%) 19 (20%) 77 (80%) 32.09 ± 6.19 

Non-luminal 

HER2-positive 
9 (25%) 12 (33%) 15 (42%) 9 (25%) 27 (75%) 33.18 ± 5.67 

TNBC 14 (32%) 21 (49%) 8 (19%) 10 (23%) 33 (77%) 34.67 ± 2.98 

HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer; BMI, 

body mass index 

Prep
rin

t



Table 2. RT-qPCR primers. 

mRNA RT-qPCR Primers (5′-3′) Melting temperature (°C) 

COL1A1 
Forward: GAGGGCCAAGACGAAGACATC 

Reverse: CAGATCACGTCATCGCACAAC 

58 

58 

COL1A2 
Forward: CCTGGTGCTAAAGGAGAAAGAGG 

Reverse: ATCACCACGACTTCCAGCAGGA 

59 

60 

COL6A6 
Forward: GGATCGTTCGCAACATCTGTACC 

Reverse: GCTGACCTTCAAGCAAAGTCTGC 

59 

61 

COMP 
Forward: GGAGATGCTTGTGACAGCGATC 

Reverse: TGAGTCCTCCTGGGCACTGTTA 

60 

59 

FN1 
Forward: ACAACACCGAGGTGACTGAGAC 

Reverse: GGACACAACGATGCTTCCTGAG 

58 

59 

ITGB1 
Forward: GGATTCTCCAGAAGGTGGTTTCG 

Reverse: TGCCACCAAGTTTCCCATCTCC 

58 

58 

RELN 
Forward: GTCTACCTTCCACTCTCCACCA 

Reverse: GTCCAGCATCACAAATCCCTCG 

57 

59 

SPP1 
Forward: CGAGGTGATAGTGTGGTTTATGG 

Reverse: GCACCATTCAACTCCTCGCTTTC 

57 

60 

THBS1 
Forward: GCTGGAAATGTGGTGCTTGTCC 

Reverse: CTCCATTGTGGTTGAAGCAGGC 

59 

59 

ACTB 
Forward: TCACCCACACTGTGCCCATCTACGA 

Reverse: CAGCGGAACCGCTCATTGCCAATGG 

63 

66 

COL1A1, collagen type I alpha 1; COL1A2, collagen type I alpha 2; COL6A6, collagen type 

VI alpha 6; COMP, cartilage oligomeric matrix protein; FN1, fibronectin 1; ITGB1, integrin 

beta-1; RELN, reelin; SPP1, secreted phosphoprotein 1; THBS1, thrombospondin 1; ACTB, β-

actin. 
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Table 3. List of mRNAs representing ECM remodeling and focal adhesion-related genes 

differentiating breast cancer from the control regardless of its subtype determined with RT-

qPCR (p<0.05; FC >2 or <−2). 

ID mRNA 

Fold change 

LumA 

vs. C 

HER2- 

negative 

LumB vs. C 

HER2- 

positive 

LumB vs. C 

HER2-

positive vs. 

C 

TNBC 

vs. C 

202310_s_at 

202311_s_at 

217430_x_at 

COL1A1 

3.41 

3.77 

2.98 

3.84 

4.12 

3.55 

5.11 

5.38 

4.89 

6.9 

5.68 

5.17 

7.51 

6.56 

6.11 

202404_s_at COL1A2 3.83 4.06 5.09 5.63 7.74 

230867_at COL6A6 −4.67 −6.06 −6.35 −7.43 −8.72 

205713_s_at COMP 2.23 2.88 3.06 5.5 8.39 

1558199_at 

210495_x_at 

211719_x_at 

212464_s_at 

FN1 

2.59 

3.08 

3.1 

3.26 

3.11 

4.58 

4.76 

4.01 

4.01 

5.6 

6.08 

5.31 

4.96 

7.1 

7.01 

6.17 

6.68 

8.73 

7.62 

6.79 

1553678_a_at ITGB1 5.71 6.33 6.78 9.12 10.73 

205923_at RELN −2.47 −3.14 −4.04 −4.99 −5.11 

209875_s_at SPP1 3.99 5.09 6.43 7.67 9.11 

201108_s_at 

201109_s_at 

201110_s_at 

THBS1 

2.84 

2.55 

3.64 

3.51 

3.13 

4.96 

4.23 

4.02 

5.27 

5.93 

5.1 

5.86 

7.08 

6.71 

6.24 

ID, number of the probe; LumA, luminal A; LumB, luminal B; HER2, human epidermal growth 

factor receptor 2; TNBC, triple-negative breast cancer; C, control; COL1A1, collagen type I 

alpha 1; COL1A2, collagen type I alpha 2; COL6A6, collagen type VI alpha 6; COMP, cartilage 

oligomeric matrix protein; FN1, fibronectin 1; ITGB1, integrin beta-1; RELN, reelin; SPP1, 

secreted phosphoprotein 1; THBS1, thrombospondin 1. 
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Table 4. Concentration of COL1A1, COL1A2, COL6A6, COMP, FN1, ITGB1, RELN, SPP1, 

THBS proteins in breast cancer subtypes and control group determined by ELISA (p<0.05). 

Protein 

[ng/mL] 
Control LumA 

HER2-

negative 

LumB 

HER2-

positive 

LumB 

HER2-

positive 
TNBC 

COL1A1 
3.7 ± 

0.31 

7.91 ± 

0.19* 

11.98 ± 

0.27* 

14.42 ± 

0.27* 

19.38 ± 

0.34* 

24.33 ± 

0.31* 

COL1A2 
7.19 ± 

0.19 

17.41 ± 

0.17* 

21.04 ± 

0.21* 

25.32 ± 

0.26* 

31.49 ± 

0.34* 

35.49 ± 

0.23* 

COL6A6 
2.05 ± 

0.2 

below 

detection 

threshold* 

below 

detection 

threshold* 

below 

detection 

threshold* 

below 

detection 

threshold* 

below 

detection 

threshold* 

COMP 
3.08 ± 

0.15 
6.61 ± 0.2* 

6.86 ± 

0.19* 

7.14 ± 

0.18* 

10.71 ± 

0.25* 

16.64 ± 

0.16* 

FN1 
6.23 ± 

0.13 

10.93 ± 

0.22* 

11.19 ± 

0.24* 

12.01 ± 

0.19* 

16.2 ± 

0.24* 

25.19 ± 

0.19* 

ITGB1 
0.07 ± 

0.01 

0.21 ± 

0.01* 

0.26 ± 

0.01* 

0.27 ± 

0.01* 
0.4 ± 0.01* 

0.52 ± 

0.01* 

RELN 
1.52 ± 

0.11 
0.65 ± 0.1* 

below 

detection 

threshold* 

below 

detection 

threshold* 

below 

detection 

threshold* 

below 

detection 

threshold* 

SPP1 
0.84 ± 

0.08 

1.87 ± 

0.09* 

3.01 ± 

0.18* 

3.43 ± 

0.17* 

4.44 ± 

0.19* 

6.13 ± 

0.17* 

THBS1 
7.42 ± 

0.18 

12.12 ± 

0.13* 

16.61 ± 

0.19* 

18.64 ± 

0.16* 

24.04 ± 

0.16* 

27.82 ± 

0.21* 

LumA, luminal A; LumB, luminal B; HER2, human epidermal growth factor receptor 2; TNBC, 

triple-negative breast cancer; C, control; COL1A1, collagen type I alpha 1; COL1A2, collagen 

type I alpha 2; COL6A6, collagen type VI alpha 6; COMP, cartilage oligomeric matrix protein; 

FN1, fibronectin 1; ITGB1, integrin beta-1; RELN, reelin; SPP1, secreted phosphoprotein 1; 

THBS1, thrombospondin 1. * p < 0.05 vs. control. 
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Table 5. Expression of miRNAs determined by miRNA microarray (p<0.05; FC >2 or <-2) and 

their potential mRNA targets identified using mirDB tool (target score ≥80). 

mRNA miRNA 
Target 

score 

Fold change 

LumA 

vs. C 

HER2-

negative 

LumB vs. C 

HER2-

positive 

LumB vs. C 

HER2-

positive 

vs. C 

TNBC 

vs. C 

COL1A1 
miR-

129 
90 −2.04 −2.22 −2.25 −2.98 −3.31 

COL6A6 
miR-

1246 
87 2.11 2.48 2.56 3.44 6.79 

FN1 
miR-

432 
82 −2.02 −2.18 −2.63 −2.82 −3.13 

ITGB1 
miR-

124 
100 −2.36 −2.73 −2.71 −3.66 −4.14 

THBS1 
miR-

384 
86 −2.19 −2.62 −3.03 −3.87 −4.55 

LumA, luminal A; LumB, luminal B; HER2, human epidermal growth factor receptor 2; TNBC, 

triple-negative breast cancer; C, control; COL1A1, collagen type I alpha 1; COL6A6, collagen 

type VI alpha 6; FN1, fibronectin 1; ITGB1, integrin beta-1; THBS1, thrombospondin 1. 
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Figure 1. Venn diagram showing differentially expressed mRNAs (p<0.05; FC>2 or <−2)
associated with ECM remodeling and focal adhesion across five breast cancer subtypes
compared to control samples determined using mRNA microarray. LumA, luminal A; LumB,
luminal B; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast
cancer; C, control; COL1A1, collagen type I alpha 1; COL1A2, collagen type I alpha 2;
COL6A1, collagen type VI alpha 1; COL6A2, collagen type VI alpha 2; COL6A3, collagen
type VI alpha 3; COL6A6, collagen type VI alpha 6; COMP, cartilage oligomeric matrix
protein; FN1, fibronectin 1; IBSP, integrin binding sialoprotein; ITGA7, integrin alpha-7;
ITGB1, integrin beta-1; ITGB4, integrin beta-4; ITGB6, integrin beta-6; LAMB1, laminin
subunit beta 1; LAMC2, laminin subunit gamma 2; RELN, reelin; SPP1, secreted
phosphoprotein 1; THBS1, thrombospondin 1; TNC, tenascin c; TNXA, tenascin XA; tenascin
XB; VWF, von Willebrand factor.
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Figure 2. Expression profile of COL1A1, COL1A2, COL6A6, COMP, FN1, ITGB1, RELN,
SPP1, THBS1 determined by RT-qPCR. LumA, luminal A; LumB, luminal B; HER2, human
epidermal growth factor receptor 2; TNBC, triple-negative breast cancer; C, control; COL1A1,
collagen type I alpha 1; COL1A2, collagen type I alpha 2; COL6A6, collagen type VI alpha 6;
COMP, cartilage oligomeric matrix protein; FN1, fibronectin 1; ITGB1, integrin beta-1; RELN,
reelin; SPP1, secreted phosphoprotein 1; THBS1, thrombospondin 1. Data are presented as
mean ± standard deviation.
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Figure 3. Kaplan–Meier overall survival analysis for selected genes in luminal A subtype,
based on publicly available data (kmplot.com). Only statistically significant associations
(p<0.05) are presented. COL1A1, collagen type I alpha 1; COCOL6A6, collagen type VI
alpha 6; FN1, fibronectin 1.
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Figure 4. Kaplan–Meier overall survival analysis for selected genes in HER2-negative luminal
B subtype, based on publicly available data (kmplot.com). Only statistically significant
associations (p<0.05) are presented. COL6A6, collagen type VI alpha 6; SPP1, secreted
phosphoprotein 1.
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Figure 5. Kaplan–Meier overall survival analysis for selected genes in HER2-positive luminal
B subtype, based on publicly available data (kmplot.com). Only statistically significant
associations (p<0.05) are presented. COL1A2, collagen type I alpha 2; ITGB1, integrin
beta-1.
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Figure 6. Kaplan–Meier overall survival analysis for selected genes in non-luminal
HER2-positive subtypem based on publicly available data (kmplot.com). Only statistically
significant associations (p<0.05) are presented. COL1A2, collagen type I alpha 2; COMP,
cartilage oligomeric matrix protein; ITGB1, integrin beta-1; RELN, reelin.
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Figure 7. Kaplan–Meier overall survival analysis for selected genes in triple-negative breast
cancer, based on publicly available data (kmplot.com). Only statistically significant
associations (p<0.05) are presented. COMP, cartilage oligomeric matrix protein; SPP1,
secreted phosphoprotein 1.
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