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 Abstract
Introduction
Observational studies on sex hormones and oral cavity cancer show inconsistent results. This two-
sample Mendelian randomization(MR) study investigated potential causal associations between
genetically predicted levels of six key sex hormone-related factors : total testosterone(TT), sex
hormone-binding globulin(SHBG), estradiol(E2), estrogen receptor(ESR), estrogen
sulfotransferase(EST), and breast cancer anti-estrogen resistance protein 3 (BCAR3), and oral cavity
cancer risk.

Material and methods
Summary-level data from genome-wide association studies(GWAS) for exposures and oral cavity
cancer, obtained via the IEU OpenGWAS were analyzed using inverse variance weighted(IVW) as the
primary method, complemented by weighted median, weighted mode, and MR-Egger regression.
Sensitivity analyses included MR-Egger regression (directional pleiotropy), Cochran's
Q(heterogeneity), and MR-PRESSO (outlier detection/correction).

Results
IVW analysis linked genetically predicted higher EST (OR = 1.24, 95% CI: 1.04 – 1.48, P = 0.02) and
BCAR3 (OR = 1.38, 95% CI: 1.14 – 1.68, P < 0.01) to increased oral cavity cancer risk. After removing
one outlier SNP, a significant association was also observed between E2 and oral cavity cancer (OR =
1.45, 95% CI: 1.06 – 1.97, P = 0.02). No significant relationships were found for TT, ESR, and SHBG.
These findings were consistent across weighted median, weighted mode, and MR-Egger regression.
MR-Egger regression did not indicate significant directional pleiotropy. For E2, initial heterogeneity
was resolved after outlier correction, while EST and BCAR3 showed no significant heterogeneity.

Conclusions
To our knowledge, this is the first comprehensive MR study linking sex hormone-related factors (E2,
EST, BCAR3) to increased oral cavity cancer risk. Further validation is needed to explore prevention
and treatment implications.
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Abstract 

Objective: Observational studies on sex hormones and oral cavity cancer show inconsistent 

results. This two-sample Mendelian randomization (MR) study investigated potential causal 

associations between genetically predicted levels of six key sex hormone-related factors : total 

testosterone (TT), sex hormone-binding globulin (SHBG), estradiol (E2), estrogen receptor 

(ESR), estrogen sulfotransferase (EST), and breast cancer anti-estrogen resistance protein 3 

(BCAR3), and oral cavity cancer risk. 

Methods: Summary-level data from genome-wide association studies (GWAS) for exposures 

and oral cavity cancer, obtained via the IEU OpenGWAS were analyzed using inverse variance 

weighted (IVW) as the primary method, complemented by weighted median, weighted mode, 

and MR-Egger regression. Sensitivity analyses included MR-Egger regression (directional 

pleiotropy), Cochran's Q (heterogeneity), and MR-PRESSO (outlier detection/correction). 

Results: IVW analysis linked genetically predicted higher EST (OR = 1.24, 95% CI: 1.04 – 

1.48, P = 0.02) and BCAR3 (OR = 1.38, 95% CI: 1.14 – 1.68, P < 0.01) to increased oral cavity 

cancer risk. After removing one outlier SNP, a significant association was also observed 

between E2 and oral cavity cancer (OR = 1.45, 95% CI: 1.06 – 1.97, P = 0.02). No significant 

relationships were found for TT, ESR, and SHBG. These findings were consistent across 

weighted median, weighted mode, and MR-Egger regression. MR-Egger regression did not 

indicate significant directional pleiotropy. For E2, initial heterogeneity was resolved after 

outlier correction, while EST and BCAR3 showed no significant heterogeneity. 

Conclusion: To our knowledge, this is the first comprehensive MR study linking sex hormone-

related factors (E2, EST, BCAR3) to increased oral cavity cancer risk. Further validation is 

needed to explore prevention and treatment implications. 

 

Keywords: sex hormone, oral cavity cancer, Mendelian randomization, biochemical indices  
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Highlights:  

MR study supports provides novel genetic evidence supporting the etiological role of specific 

sex hormone-related pathways in oral cancer. 

Genetically predicted higher levels of E2, EST, BCAR3 and an increased risk of oral cavity 

cancer. 

The findings highlight E2, EST, and BCAR3 as potential targets for further investigation in 

oral cavity cancer prevention or therapy based on genetic evidence. 

 

Abbreviations 

AR: Androgen Receptor 

BCAR3: Breast Cancer Anti-estrogen Resistance Protein 3 

CI: Confidence Interval 

E2: Estradiol 

ER/ESR: Estrogen Receptor 

EST/SULT1E1: Estrogen Sulfotransferase  

GWAS: Genome-Wide Association Studies 

ICD: International Classification of Diseases 

IVs: Instrumental Variables 

IVW: Inverse Variance Weighted 

LD: Linkage Disequilibrium 

MAF: Minor Allele Frequency 

MR: Mendelian Randomization 

MR-PRESSO: MR Pleiotropy Residual Sum and Outlier 

OR: Odds Ratio 

OSCC: Oral Squamous Cell Carcinoma 
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SCC: Squamous Cell Carcinoma 

SHBG: Sex Hormone-Binding Globulin 

SNP: Single Nucleotide Polymorphism 

SULTs: Sulfotransferase family 

TT: Total Testosterone   
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Introduction 

Oral cavity cancer is a significant global health concern, with squamous cell carcinoma (SCC) 

being the predominant histological type, primarily linked to tobacco and alcohol use [1, 2]. 

Oral SCC (OSCC) often presents at advanced stages despite relative ease of early detection, 

and has a higher male prevalence with poorer prognosis [3-5]. However, its complete etiology 

and full risk factor spectrum remain incompletely understood, demanding further research into 

underlying mechanisms for improved diagnosis and treatment [6].  

Sex hormones influence various neoplasms, including breast, prostate, and cervical cancers [7-

9], and emerging evidence suggests their potential role in oral cavity cancer. For instance, 

elevated estradiol levels have been observed in OSCC patients, independent of sex [10]. 

Nevertheless, the precise role of hormone receptors, including androgen and estrogen receptors 

(ERα, ESRβ, GPR30) in oral and salivary gland cancers is complex and not fully established. 

Studies in oral squamous cell carcinoma and salivary gland tumors have reported controversial 

or varied expression patterns and associations, differing from classical hormone-dependent 

cancers, underscoring the complexity of their carcinogenic role [11-13]. The causal relationship 

between systemic sex hormones and oral cavity cancer thus remains a critical knowledge gap. 

Mendelian randomization (MR) uses genetic variants as instrumental variables to infer 

causality [14], mitigating confounding and reverse causation inherent in observational studies 

[15-17], thereby offering valuable etiological insights.  

To address the existing uncertainty and provide novel insights from a genetic perspective, this 

study aimed to employ a two-sample MR approach to investigate the potential causal effects 

of genetically predicted levels of total testosterone (TT), sex hormone-binding globulin 

(SHBG), estradiol (E2), estrogen receptor (ESR), estrogen sulfotransferase (EST), and breast 

cancer anti-estrogen resistance protein 3 (BCAR3) on the risk of oral cavity cancer. 
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Methods 

Study design 

The exposures analyzed in this study included TT, SHBG, E2, ESR, EST, and BCAR3. The 

primary outcome of interest was oral cavity cancer. Our MR analysis is based on three key 

assumptions: (1) instrument variables (IVs) have a direct and meaningful relationship with the 

exposure, (2) IVs are not associated with any confounders, and (3) IVs affect the outcome 

exclusively through their association with the exposure [18, 19]. An overview of the study 

design is shown in Figure 1. Data were sourced from previously published studies, all of which 

had obtained ethics approval; no additional approval was required.  

Data source 

Summary-level data from GWAS were utilized for all exposures and the outcome. All 

participants in the source GWASs were of European descent. The GWAS data for the outcome, 

oral cavity cancer (GWAS ID: ieu-b-94; N = 4,151, 1,223 cases, 2,928 controls; 7,510,833 

SNPs), were obtained from the IEU OpenGWAS project (https://gwas.mrcieu.ac.uk/). This 

dataset originates from a large-scale meta-analysis by the Oncoarray oral cavity and 

oropharyngeal cancer consortium [20]. While the broader consortium study included various 

head and neck cancer sites, the ieu-b-94 dataset specifically pertains to cancers of the oral 

cavity, primarily defined by the International Classification of Diseases (ICD) codes C02.0-

C02.9, C03.0-C03.9, C04.0-C04.9, and C05.0-C06.9 [20]. 

For the exposures, GWAS summary statistics for TT (GWAS ID: GCST90012114; N=425,097), 

SHBG (GWAS ID: GCST90012111; N=370,125) were derived from a study published in 

Nature Medicine (Ruth et al., 2020) [21], and summary statistics for E2 (GWAS ID: 

GCST90020091; N=147,690) were derived from a study published in Journal of Clinical 

Endocrinology & Metabolism (Schmitz et al.,2021) [22]. Both of these source studies for TT, 

SHBG, and E2 utilized data from the UK Biobank. Summary statistics for ESR (GWAS ID: 
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prot-a-991; N=3,301), EST (GWAS ID: prot-a-2892; N=3,301), and BCAR3 (GWAS ID: prot-

a-234; N=3,301) were obtained from a study published in Nature (Sun et al., 2018), which 

utilized data from the INTERVAL study, a genomic bioresource of blood donors in England 

[23]. All exposure data were also accessed via the IEU OpenGWAS database. Detailed 

information is provided in Table S1.  

Instrumental variables 

In this study, inclusion of IVs was guided by the following criteria: 1) SNPs demonstrating a 

significant association with EL was identified (P < 5*10−8) [24]. SNPs significantly associated 

with TT, SHBG, ESR, EST, and BCAR3 were chosen using a threshold of P < 5*10−6 due to 

limited number of SNPs [25]. 2) SNPs exhibiting a minor allele frequency (MAF) greater than 

0.01 [24]. 3) Linkage Disequilibrium (LD) was eliminated based on an R2 threshold of < 0.001 

and a window size of 10,000 kb [26]. 4) In instances where selected IVs were absent in the 

summary data for the outcome, high-LD (R2 > 0.8) SNPs serving as proxies were sought and 

substituted [27]. 5) The F-statistic was computed for each SNP within the IV to assess the 

strength of each IV and mitigate potential weak instrument bias between the IV and the 

exposure, the formula for the calculation of F-statistic was: F = R2 * (N – 2) / (1 – R2), where 

R2 represents the proportion of variance in the exposure explained by the SNPs in the IV. An 

F-value greater than 10 was considered a requirement for inclusion [28]. 

MR analysis 

The inverse variance weighted (IVW) method was used as the primary analytical approach, 

utilizing odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) to assess 

the causal relationship between hormone and the risk of oral cavity cancer [29]. The IVW 

method, being the predominant method for interpreting MR results, calculates the weighted 

average of effect sizes by assigning weights proportional to the inverse variance of each SNP 

[29]. Additionally, the robustness of the findings was examined using MR-Egger, weight-
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median, and weight-mode methods [30-32]. The MR-Egger approach accounts for the presence 

of an intercept, allowing for accurate causal effect estimation even in the presence of 

pleiotropic bias [30]. The weight-median method assumes that half of the instrumental 

variables are valid and investigates the causal link between exposure and outcome [32]. The 

weight-mode approach estimates the causal effect of the subset with the greatest number of 

SNPs by clustering the SNPs into subsets based on the similarity of causal effects [31]. All 

analyses in this study were conducted using the “TwoSampleMR” package in R software 

(version 4.0.5) [24]. Visual representations of the data were generated via scatter plots and 

sensitivity analysis graphs. 

Sensitivity Analysis 

Within this study, we employed Cochran's Q test to detect heterogeneity among the IVs [33]. 

A P value less than 0.05 was regarded significant heterogeneity. Considering the impact of 

genetic pleiotropy on the estimation of association effects, we adopted the MR-Egger 

regression technique and the MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) 

approach to probe for horizontal pleiotropy [34, 35]. An intercept close to zero or statistically 

insignificant in the MR-Egger regression would indicate the absence of directional pleiotropy 

[34]. Furthermore, we used the MR-PRESSO approach to identify and remove possible outliers 

(SNPs with P < 0.05), and then re-estimated the causal link to rectify horizontal pleiotropy [35]. 

To ensure the robustness of our results, we conducted a leave-one-out sensitivity analysis, 

iteratively removing each IV and recalculating the effect size to evaluate the influence of 

individual IVs on the overall MR estimates [36]. 

 

Results 

Inclusion of IVs 
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For MR analysis with TT, E2, SHBG, ESR, EST, and BCAR3 as the exposure, 180, 15, 396, 9, 

16, and 9 relevant IVs were selected. The F statics ranged from were 29.22 to 1409.01, 30.25 

to 269.83, 23.58 to 1457.55, 21.48 to 23.30, 18.3 to 164.57, and 20.95 to 334.57, respectively. 

All F statics were greater than 10. All individual F-statistics were greater than the conventional 

threshold of 10, indicating that the selected IVs were sufficiently strong and thus less likely to 

suffer from weak instrument bias. Detailed information regarding the selected SNPs for each 

exposure, including their effect alleles, effect sizes, and standard errors, is provided in Table 

S2. 

MR Analysis of Sex Hormones and Oral Cavity Cancer Risk 

The primary MR analysis using the IVW method showed significant associations between EST 

(OR = 1.24, 95% CI: 1.04 – 1.48, P = 0.02), BCAR3 (OR = 1.38, 95% CI: 1.14 – 1.68, P < 

0.01) and oral cavity cancer (Table 1 and Figures 2, 3). In contrast, the IVW analysis did not 

identify significant causal relationships for genetically predicted levels of TT (OR = 1.17, 95% 

CI: 0.53 – 2.60, P = 0.70), initial E2 analysis (OR = 1.21, 95% CI: 0.84 – 1.74, P = 0.30), ESR 

(OR = 1.31, 95% CI: 0.94 – 1.83, P = 0.11), or SHBG (OR = 0.89, 95% CI: 0.50 – 1.58, P = 

0.69) with the risk of oral cavity cancer (Table 1). The results from complementary MR 

methods, including MR-Egger, weighted median, and weighted mode, are also shown in Table 

1. For EST and BCAR3, the direction of effect was largely consistent across these sensitivity 

methods, although not all reached statistical significance, which can be expected given their 

different underlying assumptions and statistical power. 

Notably, sensitivity analyses indicated the presence of an outlier SNP for E2. After removing 

one outlier SNP (rs11160915), a significant association was found between E2 and oral cavity 

cancer (OR = 1.45, 95% CI: 1.06 – 1.97, P = 0.02) (Table 1 and Figures 2, 3).  

Sensitivity analyses 
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Sensitivity analyses were performed to assess the robustness of our findings. For E2, Cochran’s 

Q test indicated significant heterogeneity among the IVs (Q = 21.594, P = 0.028). However, 

after removing the outlier SNP (rs11160915) identified by MR-PRESSO, heterogeneity was no 

longer significant in the adjusted analysis (Q = 12.22, P = 0.271). No significant heterogeneity 

was observed for EST (P = 0.554), BCAR3 (P = 0.570), ESR (P = 0.891), or SHBG (P = 0.135) 

(Table S3).  

The MR-Egger intercept test showed no evidence of directional horizontal pleiotropy for any 

of the exposures, as all intercepts were close to zero and non-significant (all P > 0.05) (Table 

S3). 

The MR-PRESSO test was employed to detect and correct for potential horizontal pleiotropy 

by identifying outlier SNPs (Table S4). One outlier SNP (rs11160915) was identified for E2 

(Global P = 0.039). After correcting for this outlier, the association between E2 and oral cavity 

cancer became statistically significant (OR = 1.445, 95% CI: 1.058 – 1.974, P = 0.043), and 

this adjusted estimate was used in subsequent analyses (Table 1). For TT, one outlier SNP 

(rs9272309) was detected (Global P = 0.019); however, the corrected association remained 

non-significant (OR = 0.963, 95% CI: 0.450 – 2.060, P = 0.923). No significant outliers were 

found for BCAR3, EST, ESR, or SHBG (all Global P > 0.05) (Table S4).  

Leave-one-out sensitivity analyses confirmed that no single instrumental variable 

disproportionately influenced the overall causal estimates for EST, BCAR3, or adjusted E2, 

further supporting the robustness of these associations (Figures 4, 5). 

 

Discussion 

The current MR study investigated the relationship between sex hormones including TT, E2, 

SHBG, ESR, EST, and BCAR3 and oral cavity cancer. Results of the MR estimates revealed 

that levels of E2, EST, and BCAR3 were risk factors for the development of oral cavity cancer. 
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Our MR estimates provided evidence suggesting that genetically predicted higher levels of E2 

(after outlier removal), EST, and BCAR3 are associated with an increased risk for the 

development of oral cavity cancer. 

17β-Estradiol (E2) is a primary estrogen that exerts its effects primarily by binding to the 

estrogen receptor (ER) [37]. Previous studies have reported associations between estradiol 

levels and cancer development, including OSCC. For instance, Thakare et al. found that serum 

estradiol levels were significantly elevated in patients with OSCC compared to controls, 

suggesting a potential role for E2 in tumor progression [10]. Furthermore, estrogen receptor 

expression has been linked to anoikic resistance and invasion in squamous cell carcinoma, 

indicating that E2 may influence cancer cell behavior by modulating these pathways [38]. Our 

MR findings lend genetic support to the hypothesis that higher E2 levels may contribute to an 

increased risk of developing oral cavity cancer. Supporting this, tamoxifen, an ER antagonist, 

has been shown to enhance cytotoxicity and apoptosis in OSCC cells when combined with 

chemotherapy [39]. Therefore, it is plausible that higher E2 levels, through ER activation, lead 

to enhanced cellular proliferation and reduced apoptosis, thereby promoting tumor growth [40]. 

Additionally, the pro-inflammatory properties of E2 could further exacerbate this risk by 

fostering a microenvironment conducive to cancer progression [41]. 

EST, a member of the sulfotransferase family (SULTs), also known as SULT1E1, is a key 

enzyme in estrogen metabolism, catalyzing the sulfation and thereby inactivation of estrogens 

[42, 43]. While direct evidence linking EST levels to oral cavity cancer risk is limited, its 

involvement in other hormone-related cancers, such as breast, endometrial, and ovarian cancer, 

has been demonstrated, with genetic polymorphisms in the SULT1E1 gene influencing 

susceptibility [42, 44, 45]. In the context of oral cavity cancer, our finding of a positive 

association between genetically predicted EST levels and cancer risk is intriguing. One 

hypothesis could be that elevated systemic EST levels might reflect a compensatory 
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upregulation in response to high local estrogen activity, stimulating cell proliferation and 

potentially facilitating carcinogenesis. Similarly, we investigated BCAR3, a signaling adapter 

protein crucial for cell motility and hormone resistance [46, 47]. While direct evidence linking 

BCAR3 to oral cavity cancer is limited, its established role in breast cancer, especially in 

modulating ER signaling and contributing to anti-estrogen resistance, offers insights into 

potential mechanisms [48]. Our MR study linked higher genetically predicted BCAR3 levels 

to increased oral cavity cancer risk. This suggests BCAR3 may also modulate estrogen-related 

pathways in oral cancer, potentially by enhancing ER activity through interactions with 

BCAR1 and activation of c-Src, PI3K/AKT, and ERK1/2 pathways, as seen in breast cancer 

[47]. Furthermore, studies have demonstrated that estrogen can affect the oral 

microenvironment by influencing epithelial cell proliferation and inflammation, which are 

critical factors in cancer development [49]. It is plausible that increased BCAR3 activity could 

contribute to a microenvironment conducive to carcinogenesis through such estrogen-related 

pathways. These potential mechanisms warrant further investigation. 

The findings of this study have several potential clinical implications. The identification of 

genetically predicted higher levels of E2, EST, and BCAR3 as risk factors for oral cavity cancer 

suggests that these molecules could serve as potential biomarkers for risk stratification or early 

detection, although this requires substantial further validation. If these causal relationships are 

confirmed, interventions targeting these hormonal pathways might offer novel avenues for the 

prevention or treatment of oral cavity cancer. For example, modulating estrogen activity or the 

pathways influenced by EST and BCAR3 could be explored as therapeutic strategies, 

particularly in susceptible individuals. However, translating these MR findings into clinical 

practice will necessitate a deeper understanding of the underlying biological mechanisms and 

rigorous clinical trials. 
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In this study, genetically predicted levels of TT, SHBG, and ESR were not found to be causally 

related to oral cavity cancer. This could be due to the complex interplay between different 

hormones and their receptors, or the involvement of alternative pathways such as inflammation, 

oxidative stress, and DNA damage repair mechanisms, which might mask or supersede the 

effects of these specific hormones in oral carcinogenesis. It underscores the need for larger and 

more diverse studies, potentially employing advanced multi-omics technologies, to further 

clarify the comprehensive role of sex hormones in oral cancer.  

To our knowledge, this is the first MR study to explore the causal relationship between sex 

hormone and oral cavity cancer. The strengths of our study include the application of an MR 

design, which minimizes confounding and reverse causation inherent in observational studies, 

the use of multiple MR techniques to validate findings, and the conduction of thorough 

sensitivity and heterogeneity tests to ensure the reliability of the results. 

Nonetheless, several limitations of this study should be acknowledged. First, the GWAS 

summary data utilized in this study were exclusively derived from European populations, 

limiting the generalizability of our findings to other ethnic groups. Second, the genetic 

instruments used in our study may not fully capture the complexity of sex hormone levels, 

limiting the precision of our estimates. For instance, GWAS for hormone levels often reflect 

circulating levels, which may not perfectly represent tissue-specific hormonal action in the oral 

cavity. Third, our analyses assume linear relationships between genetically predicted hormone 

levels and oral cancer risk; non-linear effects might not be fully captured. Fourth, the GWAS 

data for some exposures, particularly the proteins, were derived from smaller sample sizes than 

those for the hormones, which could affect statistical power and the robustness of IVs. Finally, 

although we observed statistically significant associations, the biological mechanisms linking 

levels of E2, EST, and BCAR3 to oral cavity cancer require further experimental validation to 

confirm causality and elucidate the precise pathways involved. 

Prep
rin

t



14 

 

Conclusions 

In conclusion, our two-sample MR study provides evidence suggesting potential causal 

associations between genetically predicted elevated levels of E2, EST, and BCAR3 and an 

increased risk of oral cavity cancer. These findings highlight these factors as potentially 

important in oral cancer pathogenesis and suggest they could be explored as biomarkers or 

therapeutic targets. However, these findings should be interpreted with caution due to the 

acknowledged limitations, including the European-centric nature of the data and the need for 

further mechanistic understanding. Future research, including functional studies to elucidate 

biological pathways, validation in diverse populations, and investigation into a broader array 

of related biomarkers, is essential to confirm these results and explore their full implications 

for the prevention and treatment of oral cavity cancer. 
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Figure legends 

Figure 1. Description of the study design for the two-sample Mendelian randomization 

analysis. 

This schematic illustrates the overall workflow, including the selection of genetic variants 

(Single Nucleotide Polymorphisms, SNPs) as instrumental variables (IVs) for sex hormone-

related exposures, and their use to estimate the causal effect on oral cavity cancer. The three 

core assumptions of MR (relevance, independence, and exclusion restriction) are also depicted. 

Figure 2. Scatter plots illustrating the causal association between genetically predicted 

sex hormone levels and oral cavity cancer risk.  A: EST; B: BCAR3; C: E2; D: E2(adjusted) 

Each point represents a single instrumental SNP, with the x-axis showing the SNP effect size 

on the respective exposure (EST, BCAR3 and E2) and the y-axis showing the SNP effect size 

on oral cavity cancer. The slopes of the fitted lines represent the causal estimate from different 

MR methods: inverse variance weighted (IVW), MR-Egger, weighted median, and weighted 

mode. A steeper slope indicates a larger estimated causal effect. 

Figure 3. Forest plots of the Mendelian randomization estimates for the association 

between sex hormones and oral cavity cancer. A: EST; B: BCAR3; C: E2; D: E2(adjusted) 

Each horizontal black line represents the causal effect estimate (odds ratio and 95% confidence 

interval) of an individual SNP on oral cavity cancer for the respective exposure (EST, BCAR3 

and E2)  The red horizontal lines at the bottom represent the overall causal estimates derived 

from the IVW method and the MR-Egger method, respectively, with their 95% confidence 

intervals. The vertical dashed line indicates an odds ratio of 1 (no effect). 

Figure 4. Funnel plots for assessing small-study bias or directional pleiotropy in the 

Mendelian randomization analyses. A: EST; B: BCAR3; C: E2; D: E2(adjusted). 

For each exposure (EST, BCAR3 and E2), the plot displays the causal effect estimate of 

individual SNPs (x-axis) against their precision (1/Standard Error, y-axis). In the absence of 
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bias or pleiotropy, the points are expected to form a symmetrical inverted funnel shape around 

the summary estimate.  

Figure 5. Leave-one-out sensitivity analysis plots for the association between sex 

hormones and oral cavity cancer. A: EST; B: BCAR3; C: E2; D: E2(adjusted) 

For each exposure (EST, BCAR3 and E2), the plot displays the causal effect estimate of 

individual SNPs (βIV, x-axis) against the inverse of their standard error (1/SEIV, y-axis). Each 

black point represents an individual SNP. In the absence of bias, the points are expected to form 

a symmetrical inverted funnel shape. The vertical solid lines indicate the overall causal 

estimates from the IVW method and the MR-Egger method. 

 

Graphical Abstract: Genetically predicted higher levels of estradiol (E2), estrogen 

sulfotransferase (EST), and breast cancer anti-estrogen resistance protein 3 (BCAR3) are 

causally associated with an increased risk of oral cavity cancer  
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Table 1. The association between genetically predicted levels of sex hormones and the risk of developing oral cavity cancer 

outcome exposure N.SNP Methods OR_CI P-value 

Oral cavity cancer EST 14 Inverse variance weighted 1.24 ( 1.04 - 1.48 ) 0.02 

Oral cavity cancer EST 14 MR Egger 1.33 ( 0.92 - 1.94 ) 0.16 

Oral cavity cancer EST 14 Weighted median 1.22 ( 0.94 - 1.57 ) 0.14 

Oral cavity cancer EST 14 Weighted mode 1.32 ( 1.02 - 1.72 ) 0.06 

Oral cavity cancer E2 12 Inverse variance weighted 1.21 ( 0.84 - 1.74 ) 0.3 

Oral cavity cancer E2 12 MR Egger 0.95 ( 0.31 - 2.94 ) 0.93 

Oral cavity cancer E2 12 Weighted median 1.16 ( 0.79 - 1.72 ) 0.45 

Oral cavity cancer E2 12 Weighted mode 1.15 ( 0.72 - 1.83 ) 0.57 

Oral cavity cancer E2 (adjusted) 11 Inverse variance weighted 1.45 ( 1.06 - 1.97 ) 0.02 

Oral cavity cancer E2 (adjusted) 11 MR Egger 1.19 ( 0.48 - 2.95 ) 0.72 

Oral cavity cancer E2 (adjusted) 11 Weighted median 1.21 ( 0.81 - 1.79 ) 0.35 

Oral cavity cancer E2 (adjusted) 11 Weighted mode 1.17 ( 0.76 - 1.79 ) 0.5 

Oral cavity cancer BCAR3 7 Inverse variance weighted 1.38 ( 1.14 - 1.68 ) 0 

Oral cavity cancer BCAR3 7 MR Egger 1.5 ( 1.07 - 2.13 ) 0.07 
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Oral cavity cancer BCAR3 7 Weighted median 1.45 ( 1.17 - 1.8 ) 0 

Oral cavity cancer BCAR3 7 Weighted mode 1.47 ( 1.17 - 1.85 ) 0.02 

Oral cavity cancer ESR 7 Inverse variance weighted 1.31 ( 0.94 - 1.83 ) 0.11 

Oral cavity cancer ESR 7 MR Egger 1.32 ( 0.38 - 4.66 ) 0.68 

Oral cavity cancer ESR 7 Weighted median 1.33 ( 0.86 - 2.04 ) 0.2 

Oral cavity cancer ESR 7 Weighted mode 1.44 ( 0.79 - 2.63 ) 0.28 

Oral cavity cancer TT 151 Inverse variance weighted 1.17 ( 0.53 - 2.6 ) 0.7 

Oral cavity cancer TT 151 MR Egger 1.02 ( 0.19 - 5.53 ) 0.98 

Oral cavity cancer TT 151 Weighted median 2.2 ( 0.52 - 9.24 ) 0.28 

Oral cavity cancer TT 151 Weighted mode 2.44 ( 0.4 - 14.73 ) 0.33 

Oral cavity cancer SHBG 333 Inverse variance weighted 0.89 ( 0.5 - 1.58 ) 0.69 

Oral cavity cancer SHBG 333 MR Egger 1.5 ( 0.51 - 4.37 ) 0.46 

Oral cavity cancer SHBG 333 Weighted median 0.93 ( 0.35 - 2.44 ) 0.88 

Oral cavity cancer SHBG 333 Weighted mode 1.69 ( 0.5 - 5.71 ) 0.4 
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Figure 1. Description of the study design for the two-sample Mendelian randomization
analysis.
This schematic illustrates the overall workflow, including the selection of genetic variants
(Single Nucleotide Polymorphisms, SNPs) as instrumental variables (IVs) for sex hormone-
related exposures, and their use to estimate the causal effect on oral cavity cancer. The
three core assumptions of MR (relevance, independence, and exclusion restriction) are also
depicted.
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Figure 2. Scatter plots illustrating the causal association between genetically predicted sex
hormone levels and oral cavity cancer risk.  A: EST; B: BCAR3; C: E2; D: E2(adjusted)
Each point represents a single instrumental SNP, with the x-axis showing the SNP effect size
on the respective exposure (EST, BCAR3 and E2) and the y-axis showing the SNP effect
size on oral cavity cancer. The slopes of the fitted lines represent the causal estimate from
different MR methods: inverse variance weighted (IVW), MR-Egger, weighted median, and
weighted mode. A steeper slope indicates a larger estimated causal effect.
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Figure 3. Forest plots of the Mendelian randomization estimates for the association between
sex hormones and oral cavity cancer. A: EST; B: BCAR3; C: E2; D: E2(adjusted)
Each horizontal black line represents the causal effect estimate (odds ratio and 95%
confidence interval) of an individual SNP on oral cavity cancer for the respective exposure
(EST, BCAR3 and E2)  The red horizontal lines at the bottom represent the overall causal
estimates derived from the IVW method and the MR-Egger method, respectively, with their
95% confidence intervals. The vertical dashed line indicates an odds ratio of 1 (no effect).
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Figure 4. Funnel plots for assessing small-study bias or directional pleiotropy in the
Mendelian randomization analyses. A: EST; B: BCAR3; C: E2; D: E2(adjusted).
For each exposure (EST, BCAR3 and E2), the plot displays the causal effect estimate of
individual SNPs (x-axis) against their precision (1/Standard Error, y-axis). In the absence of
bias or pleiotropy, the points are expected to form a symmetrical inverted funnel shape
around the summary estimate.

Powered by TCPDF (www.tcpdf.org)

Prep
rin

t



Figure 5. Leave-one-out sensitivity analysis plots for the association between sex hormones
and oral cavity cancer. A: EST; B: BCAR3; C: E2; D: E2(adjusted)
For each exposure (EST, BCAR3 and E2), the plot displays the causal effect estimate of
individual SNPs (βIV, x-axis) against the inverse of their standard error (1/SEIV, y-axis).
Each black point represents an individual SNP. In the absence of bias, the points are
expected to form a symmetrical inverted funnel shape. The vertical solid lines indicate the
overall causal estimates from the IVW method and the MR-Egger method.
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