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 Abstract
Introduction
Atherosclerosis is a leading cause of cardiovascular events, requiring accurate risk stratification.
Traditional methods rely on subjective imaging and clinical scores, limiting precision.

Material and methods
We developed a deep learning (DL) model combining U-Net for lesion segmentation, ResNet for
classification, and an attention mechanism to enhance detection of high-risk plaques. Multimodal
data—including ultrasound, CTA, and clinical variables—underwent standard preprocessing. The
dataset was split (8:1:1) and evaluated using 5-fold cross-validation.

Results
The U-Net achieved a Dice coefficient of 0.88. The ResNet, integrated with clinical features, reached
92% classification accuracy and an AUC of 0.97. The attention mechanism improved vulnerable
plaque detection by 10%. Grad-CAM visualizations showed 85% agreement with expert annotations.
Processing time was reduced by 70% compared to traditional assessment methods. Multicenter
validation confirmed strong generalizability.

Conclusions
This study constructed a multimodal DL model that significantly enhances the clinical value of
atherosclerosis risk stratification, the prediction accuracy increased to 92% with an AUC of 0.97, and
the average processing time per case was reduced from 6.3 ± 1.4 minutes to 1.9 ± 0.4 minutes (a
reduction of approximately 70%). The model demonstrated higher precision in both lesion
segmentation and high-risk plaque identification, providing clinicians with a rapid and reliable decision-
support tool that is expected to further optimize individualized intervention strategies and improve
patient prognosis. Prep
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Abstract 

Introduction: Atherosclerosis is a leading cause of cardiovascular events, requiring accurate risk 

stratification. Traditional methods rely on subjective imaging and clinical scores, limiting precision. 

Methods: We developed a deep learning (DL) model combining U-Net for lesion segmentation, 

ResNet for classification, and an attention mechanism to enhance detection of high-risk plaques. 

Multimodal data—including ultrasound, CTA, and clinical variables—underwent standard 

preprocessing. The dataset was split (8:1:1) and evaluated using 5-fold cross-validation. 

Results: The U-Net achieved a Dice coefficient of 0.88. The ResNet, integrated with clinical 

features, reached 92% classification accuracy and an AUC of 0.97. The attention mechanism 

improved vulnerable plaque detection by 10%. Grad-CAM visualizations showed 85% agreement 

with expert annotations. Processing time was reduced by 70% compared to traditional assessment 

methods. Multicenter validation confirmed strong generalizability. 

Conclusion: This study constructed a multimodal DL model that significantly enhances the clinical 

value of atherosclerosis risk stratification, the prediction accuracy increased to 92% with an AUC of 

0.97, and the average processing time per case was reduced from 6.3 ± 1.4 minutes to 1.9 ± 0.4 

minutes (a reduction of approximately 70%). The model demonstrated higher precision in both lesion 

segmentation and high-risk plaque identification, providing clinicians with a rapid and reliable 

decision-support tool that is expected to further optimize individualized intervention strategies and 

improve patient prognosis. 

Keywords: Deep Learning; Atherosclerosis; Risk Stratification; U-Net; ResNet 
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Introduction 

Cardiovascular disease remains one of the leading causes of mortality and morbidity worldwide, 

with atherosclerosis serving as its primary pathological basis. Early detection of atherosclerosis and 

precise risk stratification are critical for preventing cardiovascular events and reducing patient 

mortality [1-3]. However, currently used cardiovascular risk assessment methods in clinical practice 

(such as the Framingham score and the ASCVD 10-year risk calculator) mainly integrate clinical and 

laboratory indicators. While they perform well at the population level, they do not fully utilize plaque 

imaging phenotypes and still rely on manual interpretation. Therefore, both accuracy and efficiency 

have room for improvement, making it difficult to meet the demands for rapid and individualized risk 

assessment [4, 5]. Consequently, developing automated and intelligent assessment techniques for 

atherosclerosis risk has become an urgent challenge in cardiovascular disease management [6, 7]. 

In recent years, deep learning (DL) has emerged as a cutting-edge technology in artificial 

intelligence, achieving significant breakthroughs in medical image analysis and data mining [8]. 

Convolutional Neural Networks (CNNs), in particular, have demonstrated exceptional performance 

in image segmentation and classification, offering innovative solutions for the precise identification 

and quantification of pathological lesions in medical images [9]. Additionally, attention mechanisms 

have further improved model performance by emphasizing critical lesion regions, especially in the 

analysis of complex images and multimodal data [10-12]. These rapid technological advances open 

new avenues for addressing the current limitations in atherosclerosis risk evaluation [13]. 

DL has already been applied to the diagnosis and prediction of cardiovascular diseases, but it 

still faces challenges in the specific area of atherosclerosis risk stratification, including multimodal 

data fusion, interpretability, and the accurate identification of high-risk lesions [14-16]. First, the 

integration and synergistic analysis of multimodal data—including Computed Tomography 

Angiography (CTA), ultrasound imaging, and clinical information—remain in an immature stage 

[17]. Second, the lack of interpretability and clinical usability of these models limits their practical 

application [18]. Finally, current approaches still struggle to accurately identify high-risk lesions, 
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which is essential for meeting clinical demands for precise risk assessment [19]. 

Against this backdrop, the present study proposes a DL-based risk stratification model for 

atherosclerosis. By integrating U-Net and Residual Network (ResNet) frameworks, this research 

aims to achieve high-precision segmentation of lesions and accurate risk classification. The 

incorporation of an attention mechanism further enhances the model's ability to capture key 

pathological features, thereby improving the identification of high-risk lesions. In this study, we 

further integrated multimodal medical imaging data with clinical features and designed a model 

training and validation pipeline characterized by high scalability and stability. This pipeline lays a 

solid foundation for the practical implementation of the model in real-world clinical scenarios. 

The primary objective of this study is to develop an efficient and precise tool for atherosclerosis 

risk stratification that provides reliable decision support for clinicians. Through comprehensive 

analysis of multimodal data, the model is expected to furnish a scientific basis for personalized 

treatment strategies, ultimately optimizing early prevention and therapeutic interventions for 

cardiovascular disease. We anticipate that this work will not only advance the application of DL in 

medical image analysis but also contribute to improved prognostic outcomes for patients with 

cardiovascular disease. 
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Materials and Methods 

Data Collection and Quality Control 

All data used in this study were obtained from publicly accessible and de-identified 

multimodal medical imaging databases, including ultrasound images and CTA. All datasets 

contained no personally identifiable information, and the institutional ethics committee confirmed 

that no additional informed consent or IRB approval was required for this research. All imaging 

data underwent a rigorous preprocessing pipeline after download to ensure the stability and 

generalizability of subsequent model training. However, the study populations included in public 

databases often follow specific inclusion and exclusion criteria, which may underestimate certain 

high-risk or rare phenotypes, leading to selection bias and partially limiting the model’s 

generalizability to real-world populations. 

To enhance data quality, images that were blurry, low-resolution, or lacked critical information 

were excluded. Furthermore, all images were resampled to a standardized resolution to ensure 

consistency across the dataset. Initial denoising and contrast enhancement were performed to meet 

the requirements of subsequent DL model training (Figure S1). 

 

Image Preprocessing and Annotation 

During the preprocessing phase, various data augmentation techniques—including random 

rotation, scaling, and cropping—are applied to enhance image quality and improve the model's 

generalizability across different scenarios. Image pixel values are normalized using a 

standardization method to ensure consistency in feature distribution. Annotation is performed 

collaboratively by multiple experienced radiologists, who focus on marking atherosclerotic plaque 

lesions, categorizing lesion types, and documenting distribution characteristics. A semi-automated 

segmentation tool based on a DL model assists the experts in improving both efficiency and 

annotation quality. The annotated data are subjected to cross-validation to ensure the accuracy of 

lesion boundaries and features (Figure S2). 
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DL Model Design 

This study employs an ensemble DL framework that integrates multiple models: U-Net is used 

for high-precision segmentation of lesions, ResNet is used for feature extraction and classification, 

and an attention mechanism to enhance the identification of critical pathological regions. U-Net's 

encoder-decoder architecture facilitates precise pixel-level segmentation, capturing detailed plaque 

features; ResNet extracts high-level imaging features through multiple convolutional layers to 

assess lesion severity. The self-attention module focuses on regions likely associated with high-risk 

events, thereby increasing the model's sensitivity to lesion characteristics. Additionally, the model 

fuses imaging features with clinical data for integrated multimodal analysis (Figure S3). 

 

Data Partitioning and Model Training 

The dataset is randomly divided into training, validation, and test sets in an 8:1:1 ratio for 

model training, hyperparameter tuning, and performance evaluation, respectively. To mitigate 

overfitting, 5-fold cross-validation is implemented during training, with a random subset of data 

designated as the validation set in each fold (Figure S4). The model is optimized using 

cross-entropy loss and the Adaptive Moment Estimation (Adam) optimizer with an initial learning 

rate of 0.001, which is dynamically adjusted during training to accelerate convergence. An early 

stopping mechanism is incorporated to halt training if the validation loss fails to improve 

significantly over several epochs. Each training session consists of 20 epochs, and weight decay is 

employed to further prevent overfitting. 

 

Performance Evaluation and Interpretability Analysis 

Model performance is evaluated using multiple metrics: for segmentation tasks, the Dice 

coefficient and Intersection over Union (IoU) are calculated; for classification tasks, accuracy, 

sensitivity, specificity, F1 score, and the Area Under the Curve (AUC) of the Receiver Operating 
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Characteristic (ROC) curve are computed. A confusion matrix is used to analyze misclassification 

rates between high-risk and low-risk categories, thereby quantifying the model's reliability and 

clinical utility. To enhance interpretability, Gradient-weighted Class Activation Mapping 

(Grad-CAM) visualization generates heatmaps that highlight the key lesion regions attended to by 

the model; these results are validated by clinical experts (Figure S5). 

 

Data Analysis and Model Optimization 

Subsequent statistical analysis explores the correlation between imaging features and clinical 

data to identify key variables significantly associated with high-risk events. Dimensionality 

reduction techniques, such as principal component analysis (PCA), are used to isolate core variables 

that impact prediction accuracy. The attention mechanism is further refined to optimize the 

identification of high-risk lesion areas, and iterative improvements to the model architecture—such 

as the inclusion of deeper convolutional networks or enhanced feature fusion modules—are 

implemented to boost overall performance (Figure S6). 

 

Multicenter Clinical Data Validation 

The developed DL model is applied in real-world clinical settings to compare its efficiency and 

accuracy with traditional expert assessments. Performance is validated using patient datasets to test 

the model's generalizability and to examine its effectiveness in differentiating between stable and 

vulnerable plaques. Ultimately, the model is intended to serve as a clinical decision-support tool for 

early atherosclerosis risk screening and for guiding personalized treatment strategies. 
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Results 

Data Preprocessing and Distribution Analysis 

In this study, the quality of multimodal images (ultrasound and CTA) of atherosclerosis 

directly impacts the performance of the DL model. Therefore, preprocessing techniques including 

denoising, contrast enhancement, and image normalization are employed. Gaussian filtering reduces 

unnecessary noise, while histogram equalization improves the visibility of plaque lesions. To ensure 

consistency among the multimodal images used as model inputs, normalization is applied so that 

the input features share a unified distribution range. Figure 1 compares raw and preprocessed 

images, clearly illustrating the improved detail in lesion areas. All images are annotated by 

experienced radiologists, focusing on plaque shape, location, and type. The annotation data are 

cross-validated to ensure consistent boundaries and accurate feature delineation. Table 1 

summarizes the sample distribution across the training, validation, and test sets, thereby providing 

balanced support for subsequent model development. In addition, Table 2 systematically compares 

the differences between the model developed in this study and current mainstream methods in terms 

of data modalities, multi-task design, and performance metrics, further highlighting the innovative 

aspects of this model. 

 

Precise Segmentation of Arterial Lesions with the U-Net Model 

The U-Net model is applied to segment arterial lesions, achieving an 88% segmentation 

accuracy (Dice coefficient) on the test set. The results demonstrate the model's effectiveness in 

identifying both the core and peripheral areas of atherosclerotic plaques. The introduction of an 

attention mechanism further enhances the model's ability to capture subtle lesion details, 

particularly in complex vascular structures. Figure 2 illustrates the segmentation performance of the 

U-Net model, with the overlap between the model-generated results and expert annotations 

exceeding 85%. 
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Effective Identification of High-Risk Patients by the Classification Model 

By combining the segmented lesion results with clinical features, the ResNet classification 

model demonstrates excellent performance in stratifying the risk of CVEs. As shown in Figure 3, 

the AUC of the ROC curve reaches 0.97, indicating high discrimination between high-risk and 

low-risk patients. The model exhibits a sensitivity of 90% and a specificity of 87% in predicting 

high-risk events such as myocardial infarction or stroke, substantially outperforming traditional 

imaging diagnostic methods. 

 

Key Region Identification Using Grad-CAM Technology 

Grad-CAM is utilized to visualize the model's decision-making process. Figure 4 shows that 

the model focuses on areas with dense plaque accumulation and critical regions of vascular 

narrowing. Clinical validation confirms that these highlighted high-risk areas correspond closely 

with regions targeted in clinical interventions, significantly enhancing the model's interpretability. 

This visualization tool not only increases clinicians' confidence in AI-assisted diagnosis but also 

provides important feedback for further model optimization. 

 

Enhanced High-Risk Plaque Detection with an Attention Mechanism 

Experimental results indicate that incorporating an attention mechanism significantly improves 

the model's performance in detecting high-risk plaques compared to models without this feature 

(Figure 5). Analyzing the weight distribution shows that the attention mechanism increases the 

accuracy of identifying vulnerable plaques by 10 percentage points over traditional models. By 

focusing on important regions, the attention module reduces information redundancy and supports 

personalized risk assessments. 

 

Data Augmentation and Optimization Strategies to Improve Model Performance 
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Data augmentation techniques, such as rotation and cropping, in combination with 

optimization strategies (learning rate adjustment and early stopping), greatly enhance the model's 

generalizability and robustness. Figure 6 presents the results of 5-fold cross-validation, with the 

model achieving an average accuracy above 90% across different data splits. The introduction of 

weight decay and dropout layers effectively mitigates overfitting, resulting in more reliable 

performance on the test set. 

 

Clinical Applicability and Multicenter Validation 

The model demonstrates strong applicability and generalizability in multicenter clinical 

datasets (Figure 7). It accurately identifies and classifies both stable and vulnerable plaques. 

Compared with traditional physician evaluations, the model reduces processing time by over 70%, 

significantly enhancing clinical diagnostic efficiency. These results support the model's role as an 

auxiliary tool in clinical workflows, providing reliable early warning for CVEs. 

This study also systematically compared the performance of the proposed model with 

traditional clinical assessments (such as the Framingham risk score and the ASCVD 10-year risk 

calculator) in terms of accuracy, sensitivity, AUC, and average processing time, further 

demonstrating the model’s clinical practicality. As shown in Table 3, the model’s accuracy on the 

test set improved from 78% to 92%, sensitivity increased from 75% to 90%, and AUC rose from 

0.81 to 0.97. Moreover, the average processing time per case decreased from 6.3 ± 1.4 minutes to 

1.9 ± 0.4 minutes (a reduction of 70%, p < 0.001). These results provide strong evidence for the dual 

advantages of the DL model in both precision and efficiency. 

 

High-Risk Event Prediction and Personalized Treatment Guidance 

Further analysis of the model's predictions reveals that high-risk patient characteristics—such 

as plaque volume and distribution—are highly correlated with predicted risk values. These insights 

can inform personalized treatment strategies, such as targeted interventional procedures or 
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pharmacological interventions for high-risk areas. The study validates the model's potential in 

formulating precision medicine strategies, offering a novel approach to managing cardiovascular 

risk. 
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Discussion 

Atherosclerosis is a primary pathological basis of cardiovascular disease, characterized by lipid 

deposition in the vascular wall, chronic inflammation, and vascular remodeling. Accurate risk 

stratification of atherosclerotic lesions is essential for early intervention and personalized treatment. 

Traditional risk assessment methods rely heavily on clinical expertise and imaging interpretation, 

making them susceptible to subjectivity and limiting their ability to quantify lesion characteristics. A 

recent systematic review further emphasized that fibrous cap thinning, lipid core expansion, and 

positive remodeling of high-risk plaques are significantly associated with major adverse 

cardiovascular events (Gallone G et al., 2023; Sarraju A & Nissen SE, 2024); however, these imaging 

indicators still have not been fully quantified within traditional risk scoring systems [20, 21]. 

In recent years, DL has shown remarkable progress in medical imaging analysis, particularly in 

automated lesion segmentation and precise classification [12, 22]. However, fully leveraging 

multimodal data—including imaging and clinical features—to enhance predictive performance and 

interpretability remains a major research challenge [23, 24]. This study successfully develops a DL–

based risk stratification model for atherosclerosis that excels in lesion segmentation and high-risk 

event prediction. Specifically, the U-Net model achieves an 88% segmentation accuracy, effectively 

delineating both the core and peripheral regions of atherosclerotic plaques, while the ResNet 

classification model—enhanced with an attention mechanism—attains an AUC of 0.97 on the test set. 

The above results confirm the effectiveness of the proposed model. In comparison, DenseNet can 

achieve feature reuse under scenarios with low parameter counts, and EfficientNet demonstrates 

excellent performance in natural image tasks such as ImageNet through compound scaling. However, 

they are prone to gradient vanishing or overfitting on small medical imaging datasets and have 

limited capability in capturing high-resolution vascular wall textures. Considering that U-Net’s skip 

connections can preserve spatial details and ResNet’s residual structure can stabilize deep network 

training—both of which have been well validated in various medical imaging tasks—we ultimately 

selected a U-Net+ResNet architecture as the backbone while introducing an attention module to 
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compensate for the lack of long-range dependency information. This decision is quantitatively 

supported by ablation experiments conducted in this study. 

Compared with the current standard risk assessment workflow, which relies on Framingham, 

ASCVD, and other standardized clinical scoring systems supplemented by expert imaging 

interpretation, the automated DL framework proposed in this study significantly improves both 

assessment efficiency and accuracy. Traditional scoring systems focus on systemic risk factors such 

as lipid levels and blood pressure but inadequately quantify plaque burden and vulnerability factors 

on imaging. In contrast, our model can automatically perform plaque segmentation and high-risk 

feature identification without adding extra manual workload, providing imaging-level 

supplementation to standardized algorithms and thus enabling more refined individualized risk 

stratification [25, 26]. 

In comparison with existing DL studies, this work introduces an attention mechanism to focus 

on high-risk plaque regions while integrating multimodal data (including ultrasound imaging, CTA, 

and clinical features) to achieve more comprehensive risk stratification. Notably, Lewandowski et al. 

recently developed a machine learning model to predict in-hospital mortality based on multicenter 

data from over 3,000 patients with out-of-hospital cardiac arrest [27], validating the clinical value of 

ML approaches in acute cardiovascular contexts. This finding corroborates and further strengthens 

the generalizability and external applicability of our model. These innovations not only enhance the 

predictive performance of the model but also demonstrate excellent interpretability and potential for 

clinical application. 

The study's findings indicate that the model is highly suitable for clinical practice, serving as an 

auxiliary diagnostic tool that helps physicians rapidly identify high-risk patients and formulate 

personalized treatment plans. Notably, the attention mechanism significantly increases sensitivity for 

early detection of high-risk, vulnerable plaques. Additionally, compared with traditional methods, the 

model improves analytical efficiency by more than 70%, substantially saving time in clinical 

workflows. Validation using multicenter data confirms the model's robustness across diverse lesion 
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types and patient populations, further enhancing its potential for widespread adoption. 

In clinical practice, cardiovascular risk prediction emphasizes multidimensional integration 

rather than relying solely on imaging parameters. In addition to the traditional indicators already 

included in this study, such as lipid levels, future work should systematically incorporate other 

conventional risk factors—including family history, personal medical history, blood pressure, 

diabetes status, and smoking/alcohol consumption history—and combine them with emerging 

biomarkers such as inflammatory markers (e.g., hs-CRP), high-sensitivity cardiac troponin I, and 

NT-proBNP to construct a more comprehensive risk feature space. It is noteworthy that with the rapid 

development of Photon-Counting Computed Tomography (PCCT), its high spectral resolution and 

low radiation dose advantages in quantifying calcified and soft plaques, combined with the AI 

framework proposed in this study, are expected to enable non-invasive, refined, full-chain 

cardiovascular risk assessment, providing more reliable evidence for precision interventions. 

Despite the significant progress achieved in multimodal data analysis, some limitations remain. 

First, because this study only used publicly available databases, there may be systematic differences 

in sample composition compared with real-world clinical populations (selection bias), which could 

limit the external validity of the model for broader populations. Second, the model’s reliance on 

high-quality annotated data may restrict its application in environments with limited or suboptimal 

annotations. Third, its performance still requires further optimization in certain patient groups, such 

as those with poor image quality or subtle lesion characteristics. In addition, especially for CTA 

imaging, factors such as equipment costs, radiation exposure, and clinical indications may limit its 

accessibility in some regions, posing significant barriers to the model’s global deployment. 

Future research will explore incorporating lower-cost, radiation-free, and more accessible 

imaging modalities such as carotid ultrasound into the training process and assess their combined 

predictive performance with existing clinical scoring systems to expand the model’s applicability and 

verify its cross-modal transferability. To address these challenges, upcoming studies should introduce 

real-world clinical data and prospective cohorts, adopt strategies such as transfer learning and 
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semi-supervised learning to mitigate selection bias, and further enhance model robustness through 

improved data augmentation and feature fusion techniques. 

Model interpretability is critical for clinical acceptance of AI tools [28]. This study employs 

Grad-CAM to visualize the model's focus on key lesion regions, generating heatmaps that closely 

correspond with expert annotations. This feature not only reinforces the credibility of the model's 

outputs but also provides clinicians with clear insight into the model's decision-making process. 

Feedback from medical professionals indicates that the model's highlighted lesion areas and high-risk 

predictions are highly consistent with actual clinical findings, thereby increasing its acceptance in a 

clinical setting. 

To further enhance the model's practical utility and adaptability, future work could incorporate 

self-supervised or transfer learning approaches to reduce the reliance on large-scale annotated 

datasets. Additionally, combining the strengths of conventional statistical methods with DL may 

further improve high-risk event prediction. Exploring advanced feature fusion techniques for 

multimodal data and optimizing the model for resource-limited settings—thereby reducing hardware 

and data demands—could accelerate its global adoption. 

This study offers an innovative solution for atherosclerosis risk stratification, fully 

demonstrating the potential of DL in medical image analysis. With further optimization and broader 

implementation, the model is expected to become an essential tool for cardiovascular risk assessment 

and to drive personalized medicine. Future research will focus on extending the application scope and 

optimizing performance, ultimately providing clinicians with a more reliable and efficient diagnostic 

aid to improve patient outcomes. 
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Abbreviations 

Adam: Adaptive Moment Estimation 

AUC: Area Under the Curve 

CNN: Convolutional Neural Network 

CTA: Computed Tomography Angiography 

DL: Deep Learning 

Grad-CAM: Gradient-weighted Class Activation Mapping 

IoU: Intersection over Union 

ResNet: Residual Network 

ROC: Receiver Operating Characteristic 
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Figure Legends 

Figure 1. Comparison of Image Preprocessing Effects. 

Note: (A) Original image: lesion areas appear blurred and noisy; (B) After denoising: noise is 

reduced and vessel boundaries are clear; (C) After contrast enhancement: plaque regions are 

significantly enhanced; (D) After normalization: image details are uniformly presented. 

Figure 2. U-Net Segmentation Model Results. 

Note: (A) Original image; (B) Expert-annotated lesion areas; (C) U-Net segmentation result, 

demonstrating significantly improved segmentation accuracy. 

Figure 3. Classification Model ROC Curve. 

Note: The ROC curve displays the model's sensitivity and specificity at various thresholds. 

Figure 4. Grad-CAM Visualization Analysis. 

Note: The model's focus aligns closely with the lesion areas, significantly enhancing its 

interpretability. 

Figure 5. Comparison of Model Performance With and Without the Attention Mechanism. 

Note: (A) Performance metrics for the model without the attention mechanism; (B) Performance 

metrics for the model with the attention mechanism, showing a significant improvement in accuracy. 

Figure 6. Analysis of Model Stability and Generalizability. 

Note: The Figure shows accuracy variations during 5-fold cross-validation; The blue line represents 

the training set; The red line represents the validation set. The model demonstrates stable 

performance with minimal fluctuations across different data splits. 

Figure 7. Analysis of Multicenter Dataset Test Results. 

Note: The Figure displays classification accuracies for different lesion types (stable and vulnerable 

plaques); It compares the model's processing time with that of traditional physician assessments; It 

highlights the differences between the model's performance and conventional evaluations. The curves 

and bar charts indicate that the model demonstrates stable performance across all centers, with 

significantly higher efficiency and accuracy than traditional methods. 
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Table 1. Distribution of Multimodal Data Samples. 

Dataset Ultrasound Images CTA Images 
Clinical 

Feature Data 
Total 

Training 5000 3000 2000 10000 

Validation 1000 600 400 2000 

Test 1000 600 400 2000 

Total 7000 4200 2800 14000 

Note: This table presents the quantity and distribution of multimodal data (including imaging data 

and clinical feature data) across the training, validation, and test sets. 
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Table 2. Model Performance Comparison. 

Method Data Modalities Multi-Task M³-Net (ours)  AUC Accuracy 

M³-Net (ours) US + CTA + Clinical Yes 0.88 ± 0.03 0.94 0.92 

U-Net  CTA No (Seg) 0.82 ± 0.04 – – 

TransUNet  CTA No (Seg) 0.84 ± 0.03 – – 

ResNet50  US No (Cls) – 0.85 0.83 

EfficientNet-B0 + Clin CTA + Clinical No (Cls) – 0.88 0.86 

Radiomics + SVM CTA + Clinical No (Cls) – 0.81 0.78 

Note: M³-Net (ours) stands for Multimodal Multi-task Network, which fuses ultrasound (US), CTA, 

and clinical data through an attention-enhanced U-Net segmenter and a ResNet-based classifier to 

perform joint plaque segmentation and classification. Dice = segmentation Dice coefficient; AUC = 

area under the ROC curve; Acc = classification accuracy; “–” indicates the metric is not applicable. 
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Table 3. Model vs. Scores Clinical Comparison. 

Method Acc (%) Sens (%) AUC 
Time 

(min) 

Clinical Scores 78 75 0.81 6.3 ± 1.4 

M³-Net 92 90 0.94 1.9 ± 0.4 

Note: Metrics are from the multicenter test cohort. “Clinical Scores” combines Framingham and 

ASCVD risk tools; “M³-Net” is our multimodal deep-learning model. *p < 0.001 vs. Clinical Scores 

(processing time). 
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