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Abstract

Introduction: Atherosclerosis is a leading cause of cardiovascular events,
requiring accurate risk stratification. Traditional methods rely on subjective
imaging and clinical scores, limiting precision.

Material and methods: We developed a deep learning (DL) model combin-
ing U-Net for lesion segmentation, ResNet for classification, and an atten-
tion mechanism to enhance detection of high-risk plaques. Multimodal data
— including ultrasound, CTA, and clinical variables — underwent standard
preprocessing. The dataset was split (8 : 1 : 1) and evaluated using 5-fold
cross-validation.

Results: The U-Net achieved a Dice coefficient of 0.88. The ResNet, integrat-
ed with clinical features, reached 92% classification accuracy and an AUC
of 0.97. The attention mechanism improved vulnerable plaque detection by
10%. Grad-CAM visualizations showed 85% agreement with expert anno-
tations. Processing time was reduced by 70% compared to traditional as-
sessment methods. Multicenter validation confirmed strong generalizability.
Conclusions: This study constructed a multimodal DL model that signifi-
cantly enhances the clinical value of atherosclerosis risk stratification. The
prediction accuracy increased to 92% with an AUC of 0.97, and the average
processing time per case was reduced from 6.3 £1.4 minutes to 1.9 £0.4 min-
utes (a reduction of approximately 70%). The model demonstrated higher
precision in both lesion segmentation and high-risk plaque identification,
providing clinicians with a rapid and reliable decision-support tool that is
expected to further optimize individualized intervention strategies and im-
prove patient prognosis.
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Introduction

Cardiovascular disease remains one of the leading causes of mortal-
ity and morbidity worldwide, with atherosclerosis serving as its prima-
ry pathological basis. Early detection of atherosclerosis and precise risk
stratification are critical for preventing cardiovascular events and reducing
patient mortality [1-3]. However, currently used cardiovascular risk assess-
ment methods in clinical practice (such as the Framingham score and the
ASCVD 10-year risk calculator) mainly integrate clinical and laboratory in-
dicators. While they perform well at the population level, they do not fully
utilize plaque imaging phenotypes and still rely on manual interpretation.
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Therefore, both accuracy and efficiency have room
forimprovement, making it difficult to meet the de-
mands for rapid and individualized risk assessment
[4, 5]. Consequently, developing automated and in-
telligent assessment techniques for atherosclerosis
risk has become an urgent challenge in cardiovas-
cular disease management [6, 7].

In recent years, deep learning (DL) has emerged
as a cutting-edge technology in artificial intel-
ligence, achieving significant breakthroughs in
medical image analysis and data mining [8]. Con-
volutional neural networks (CNNs), in particular,
have demonstrated exceptional performance in
image segmentation and classification, offering
innovative solutions for the precise identification
and quantification of pathological lesions in medi-
cal images [9]. Additionally, attention mechanisms
have further improved model performance by em-
phasizing critical lesion regions, especially in the
analysis of complex images and multimodal data
[10-12]. These rapid technological advances open
new avenues for addressing the current limita-
tions in atherosclerosis risk evaluation [13].

DL has already been applied to the diagnosis
and prediction of cardiovascular diseases, but it
still faces challenges in the specific area of ath-
erosclerosis risk stratification, including multi-
modal data fusion, interpretability, and the ac-
curate identification of high-risk lesions [14-16].
First, the integration and synergistic analysis of
multimodal data — including computed tomogra-
phy angiography (CTA), ultrasound imaging, and
clinical information — remain in an immature stage
[17]. Second, the lack of interpretability and clini-
cal usability of these models limits their practical
application [18]. Finally, current approaches still
struggle to accurately identify high-risk lesions,
which is essential for meeting clinical demands
for precise risk assessment [19].

Against this backdrop, the present study pro-
poses a DL-based risk stratification model for
atherosclerosis. By integrating U-Net and Residual
Network (ResNet) frameworks, this research aims
to achieve high-precision segmentation of lesions
and accurate risk classification. The incorpora-
tion of an attention mechanism further enhanc-
es the model’s ability to capture key pathological
features, thereby improving the identification of
high-risk lesions. In this study, we further integrat-
ed multimodal medical imaging data with clinical
features and designed a model training and val-
idation pipeline characterized by high scalability
and stability. This pipeline lays a solid foundation
for the practical implementation of the model in
real-world clinical scenarios.

The primary objective of this study is to devel-
op an efficient and precise tool for atherosclerosis
risk stratification that provides reliable decision

support for clinicians. Through comprehensive
analysis of multimodal data, the model is expect-
ed to furnish a scientific basis for personalized
treatment strategies, ultimately optimizing ear-
ly prevention and therapeutic interventions for
cardiovascular disease. We anticipate that this
work will not only advance the application of DL
in medical image analysis but also contribute to
improved prognostic outcomes for patients with
cardiovascular disease.

Material and methods
Data collection and quality control

All data used in this study were obtained from
publicly accessible and de-identified multimod-
al medical imaging databases, including ultra-
sound images and CTA. All datasets contained
no personally identifiable information, and the
institutional ethics committee confirmed that no
additional informed consent or IRB approval was
required for this research. All imaging data under-
went a rigorous preprocessing pipeline to ensure
the stability and generalizability of model training.
However, the study populations included in public
databases often follow specific inclusion and ex-
clusion criteria, which may underestimate certain
high-risk or rare phenotypes, leading to selection
bias and partially limiting the model’s generaliz-
ability to real-world populations.

To enhance data quality, images that were blur-
ry, low-resolution, or lacked critical information
were excluded. Furthermore, all images were re-
sampled to a standardized resolution to ensure
consistency across the dataset. Initial denoising
and contrast enhancement were performed to
meet the requirements of subsequent DL model
training (Supplementary Figure S1).

Image preprocessing and annotation

During the preprocessing phase, various data
augmentation techniques — including random
rotation, scaling, and cropping — were applied to
enhance image quality and improve the model’s
generalizability across different scenarios. Image
pixel values were normalized using a standard-
ization method to ensure consistency in feature
distribution. Annotation was performed collab-
oratively by multiple experienced radiologists,
who focused on marking atherosclerotic plaque
lesions, categorizing lesion types, and document-
ing distribution characteristics. A semi-automat-
ed segmentation tool based on a DL model assist-
ed the experts in improving both efficiency and
annotation quality. The annotated data were sub-
jected to cross-validation to ensure the accuracy
of lesion boundaries and features (Supplementa-
ry Figure S2).
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DL model design

This study employed an ensemble DL frame-
work integrating multiple models: U-Net was used
for high-precision segmentation of lesions, ResNet
was used for feature extraction and classification,
and an attention mechanism was used to enhance
the identification of critical pathological regions.
U-Net’s encoder-decoder architecture facilitates
precise pixel-level segmentation, capturing de-
tailed plaque features; ResNet extracts high-level
imaging features through multiple convolutional
layers to assess lesion severity. The self-attention
module focuses on regions likely associated with
high-risk events, thereby increasing the model’s
sensitivity to lesion characteristics. Additionally,
the model fuses imaging features with clinical
data for integrated multimodal analysis (Supple-
mentary Figure S3).

Data partitioning and model training

The dataset was randomly divided into train-
ing, validation, and test sets inan 8 : 1 : 1 ratio
for model training, hyperparameter tuning, and
performance evaluation, respectively. To mitigate
overfitting, 5-fold cross-validation was imple-
mented during training, with a random subset
of data designated as the validation set in each
fold (Supplementary Figure S4). The model was
optimized using cross-entropy loss and the Adap-
tive Moment Estimation (Adam) optimizer with
an initial learning rate of 0.001, which was dy-
namically adjusted during training to accelerate
convergence. An early stopping mechanism was
incorporated to halt training if the validation loss
failed to improve significantly over several epochs.
Each training session consisted of 20 epochs, and
weight decay was employed to further prevent
overfitting.

Performance evaluation and interpretability
analysis

Model performance was evaluated using mul-
tiple metrics: for segmentation tasks, the Dice
coefficient and intersection over union (loU) were
calculated; for classification tasks, accuracy, sen-
sitivity, specificity, F1 score, and the area under
the curve (AUC) of the receiver operating charac-
teristic (ROC) curve were computed. A confusion
matrix was used to analyze misclassification rates
between high-risk and low-risk categories, thereby
quantifying the model’s reliability and clinical util-
ity. To enhance interpretability, gradient-weighted
class activation mapping (Grad-CAM) visualiza-
tion generated heatmaps highlighting the key le-
sion regions identified by the model; these results
were validated by clinical experts (Supplementary
Figure S5).

Data analysis and model optimization

Subsequent statistical analysis explored the
correlation between imaging features and clinical
data to identify key variables significantly asso-
ciated with high-risk events. Dimensionality re-
duction techniques, such as principal component
analysis (PCA), were used to isolate core variables
that impact prediction accuracy. The attention
mechanism was further refined to optimize the
identification of high-risk lesion areas, and iter-
ative improvements to the model architecture
— such as the inclusion of deeper convolutional
networks or enhanced feature fusion modules —
were implemented to boost overall performance
(Supplementary Figure S6).

Multicenter clinical data validation

The developed DL model was applied in re-
al-world clinical settings to compare its efficiency
and accuracy with traditional expert assessments.
Performance was validated using patient datasets
to test the model’s generalizability and to examine
its effectiveness in differentiating between stable
and vulnerable plaques. Ultimately, the model is
intended to serve as a clinical decision-support
tool for early atherosclerosis risk screening and for
guiding personalized treatment strategies.

Results

Data preprocessing and distribution
analysis

In this study, the quality of multimodal images
(ultrasound and CTA) of atherosclerosis was found
to directly impact the performance of the DL mod-
el. Therefore, preprocessing techniques including
denoising, contrast enhancement, and image nor-
malization were employed. Gaussian filtering re-
duced unnecessary noise, while histogram equal-
ization improved the visibility of plague lesions.
To ensure consistency among the multimodal
images used as model inputs, normalization was
applied so that the input features shared a uni-
fied distribution range. Figure 1 compares raw
and preprocessed images, clearly illustrating the
improved detail in lesion areas. All images were
annotated by experienced radiologists, focusing
on plaque shape, location, and type. The annota-
tion data were cross-validated to ensure consis-
tent boundaries and accurate feature delineation.
Table | summarizes the sample distribution across
the training, validation, and test sets, thereby pro-
viding balanced support for subsequent model
development. In addition, Table Il systematical-
ly compares the differences between the model
developed in this study and current mainstream
methods in terms of data modalities, multi-task
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Figure 1. Comparison of image preprocessing effects. A — Original image: lesion areas appear blurred and noisy.
B — After denoising: noise is reduced and vessel boundaries are clear (Gaussian blur denoised). C — After contrast
enhancement: plaque regions are significantly enhanced (histogram equalized). D — After normalization: image
details are uniformly presented

design, and performance metrics, further high-
lighting the innovative aspects of this model.

Precise segmentation of arterial lesions
with the U-Net model

The U-Net model was applied to segment ar-
terial lesions, achieving an 88% segmentation
accuracy (Dice coefficient) on the test set. The
results demonstrate the model’s effectiveness in
identifying both the core and peripheral areas of
atherosclerotic plaques. The introduction of an at-
tention mechanism further enhances the model’s
ability to capture subtle lesion details, particularly
in complex vascular structures. Figure 2 illustrates
the segmentation performance of the U-Net mod-
el, with the overlap between the model-generated
results and expert annotations exceeding 85%.

Effective identification of high-risk patients
by the classification model

By combining the segmented lesion results with
clinical features, the ResNet classification model
demonstrated excellent performance in stratifying
the risk of CVEs. As shown in Figure 3, the AUC of
the ROC curve was 0.97, indicating high discrimina-
tion between high-risk and low-risk patients. The
model exhibited a sensitivity of 90% and a speci-
ficity of 87% in predicting high-risk events such as
myocardial infarction or stroke, substantially out-
performing traditional imaging diagnostic methods.

Key region identification using Grad-CAM
technology

Grad-CAM was used to visualize the model’s
decision-making process. Figure 4 shows that the
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Table 1. Distribution of multimodal data samples

Dataset Ultrasound images CTA images Clinical feature data Total
Training 5000 3000 2000 10000
Validation 1000 600 400 2000
Test 1000 600 400 2000
Total 7000 4200 2800 14000

Note: This table presents the quantity and distribution of multimodal data (including imaging data and clinical feature data) across the

training, validation, and test sets.

Table Il. Model performance comparison.

Method Data modalities Multi-task M3-Net (ours) AUC Accuracy
M3-Net (ours) US + CTA + Clinical Yes 0.88 +0.03 0.94 0.92
U-Net CTA No (Seg) 0.82 +0.04 - -
TransUNet CTA No (Seg) 0.84 +0.03 - -
ResNet50 us No (Cls) - 0.85 0.83
EfficientNet-BO + Clin CTA + Clinical No (Cls) - 0.88 0.86
Radiomics + SVM CTA + Clinical No (Cls) - 0.81 0.78

Note: M3-Net (ours) stands for multimodal multi-task network, which fuses ultrasound (US), CTA, and clinical data through an attention-
enhanced U-Net segmenter and a ResNet-based classifier to perform joint plague segmentation and classification. Dice — segmentation
Dice coefficient; AUC — area under the ROC curve; Acc - classification accuracy; “~” indicates that the metric is not applicable.

Figure 2. U-Net segmentation model results.
A - Original image. B — Expert-annotated lesion ar-
eas. C — U-Net segmentation result, demonstrating
significantly improved segmentation accuracy

Arch Med Sci



Min Xu, Yaosheng Mei, Chengnan Liu, Yanxia Ly, Yifan Pan, Zhenzhong Zhu, Yunxiang Wang

1.0 A S
eth

of
f‘ﬂ;

0.8 A

Positive rate
o

[e)}

.

N
IS
1

0.2

T T T T T T
0 0.2 0.4 0.6 0.8 1.0
False positive rate
— Cancer (AUC = 0.97) Normal (AUC = 0.97)
== Micro-average (AUC = 0.97)
== Macro-average (AUC = 0.98)

Figure 3. Classification model ROC curve. The ROC
curve displays the model’s sensitivity and specifici-
ty at various thresholds

model focuses on areas with dense plaque accu-
mulation and critical regions of vascular narrow-
ing. Clinical validation confirmed that these high-
lighted high-risk areas correspond closely with
regions targeted in clinical interventions, signifi-
cantly enhancing the model’s interpretability. This
visualization tool not only increases clinicians’
confidence in Al-assisted diagnosis but also pro-
vides important feedback for further model opti-
mization.

Enhanced high-risk plaque detection with
an attention mechanism

The experimental results demonstrated that in-
corporating an attention mechanism significantly
improved the model’s performance in detecting
high-risk plagues compared to models without
this feature (Figure 5). Analyzing the weight dis-
tribution showed that the attention mechanism

increases the accuracy of identifying vulnerable
plagues by 10 percentage points over traditional
models. By focusing on important regions, the at-

Figure 4. Grad-CAM visualization analysis. The
model’s focus aligns closely with the lesion areas,
significantly enhancing its interpretability
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Figure 5. Comparison of model performance with and without the attention mechanism. A — Performance metrics
for the model without the attention mechanism. B — Performance metrics for the model with the attention mech-

anism, showing a significant improvement in accuracy

tention module reduces information redundancy
and supports personalized risk assessments.

Data augmentation and optimization
strategies to improve model performance

Data augmentation techniques, such as rota-
tion and cropping, in combination with optimi-
zation strategies (learning rate adjustment and
early stopping), greatly enhance the model’s gen-
eralizability and robustness. Figure 6 presents the
results of 5-fold cross-validation, with the model
achieving an average accuracy above 90% across
different data splits. The introduction of weight
decay and dropout layers effectively mitigates
overfitting, resulting in more reliable performance
on the test set.

Clinical applicability and multicenter
validation

The model demonstrated strong applicability
and generalizability in multicenter clinical data-
sets (Figure 7). It accurately identified and clas-
sified both stable and vulnerable plagques. Com-
pared with traditional physician evaluations, the
model reduces processing time by over 70%, sig-
nificantly enhancing clinical diagnostic efficiency.
These results support the model’s role as an aux-
iliary tool in clinical workflows, providing reliable
early warning for CVEs.

This study also systematically compared the
performance of the proposed model with tradition-
al clinical assessments (such as the Framingham
risk score and the ASCVD 10-year risk calculator)
in terms of accuracy, sensitivity, AUC, and aver-
age processing time, further demonstrating the
model’s clinical practicality. As shown in Table Il
the model’s accuracy on the test set improved
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Figure 6. Analysis of model stability and generaliz-
ability. The figure shows accuracy variations during
5-fold cross-validation. The blue line represents the
training set; the red line represents the validation
set. The model demonstrates stable performance
with minimal fluctuations across different data
splits

from 78% to 92%, sensitivity increased from 75%
to 90%, and AUC rose from 0.81 to 0.97. Moreover,
the average processing time per case decreased
from 6.3 +1.4 min to 1.9 +0.4 min (a reduction of
70%, p < 0.001). These results provide strong evi-
dence for the dual advantages of the DL model in
both precision and efficiency.

High-risk event prediction and personalized
treatment guidance

Further analysis of the model’s predictions re-
vealed that high-risk patient characteristics — such
as plaque volume and distribution — are highly cor-
related with predicted risk values. These insights
can inform personalized treatment strategies, such
as targeted interventional procedures or pharma-
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Figure 7. Analysis of multicenter dataset test re-
sults. The figure displays classification accuracies
for different lesion types (stable and vulnerable
plagues). It compares the model’s processing time
with that of traditional physician assessments. It
highlights the differences between the model’s
performance and conventional evaluations. The
curves and bar charts indicate that the model
demonstrates stable performance across all cen-
ters, with significantly higher efficiency and accu-
racy than traditional methods

Method Acc (%) Sens (%) AUC Time [min]
Clinical scores 78 75 0.81 6.3+1.4
M3-Net 92 90 0.94 1.9 +0.4

Note: Metrics are from the multicenter test cohort. “Clinical scores” combines Framingham and ASCVD risk tools; “M3-Net” is our
multimodal deep-learning model. *p < 0.001 vs. clinical scores (processing time).

cological interventions for high-risk areas. The
study validates the model’s potential in formulat-
ing precision medicine strategies, offering a novel
approach to managing cardiovascular risk.

Discussion

Atherosclerosis is a primary pathological basis
of cardiovascular disease, characterized by lipid
deposition in the vascular wall, chronic inflam-
mation, and vascular remodeling. Accurate risk
stratification of atherosclerotic lesions is essential
for early intervention and personalized treatment.
Traditional risk assessment methods rely heavily
on clinical expertise and imaging interpretation,
making them susceptible to subjectivity and limit-
ing their ability to quantify lesion characteristics.

A recent systematic review further emphasized
that fibrous cap thinning, lipid core expansion,
and positive remodeling of high-risk plaques are
significantly associated with major adverse car-
diovascular events (Gallone et al., 2023; Sarraju
and Nissen, 2024); however, these imaging indi-
cators still have not been fully quantified within
traditional risk scoring systems [20, 21].

In recent years, DL has shown remarkable
progress in medical imaging analysis, particular-
ly in automated lesion segmentation and precise
classification [12, 22]. However, fully leveraging
multimodal data — including imaging and clinical
features — to enhance predictive performance
and interpretability remains a major research
challenge [23, 24]. This study successfully de-
veloped a DL-based risk stratification model for
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atherosclerosis that excels in lesion segmenta-
tion and high-risk event prediction. Specifically,
the U-Net model achieved an 88% segmenta-
tion accuracy, effectively delineating both the
core and peripheral regions of atherosclerotic
plaques, while the ResNet classification model
— enhanced with an attention mechanism — at-
tained an AUC of 0.97 on the test set. The above
results confirm the effectiveness of the proposed
model. In comparison, DenseNet can achieve
feature reuse under scenarios with low parame-
ter counts, and EfficientNet demonstrates excel-
lent performance in natural image tasks such as
ImageNet through compound scaling. However,
they are prone to gradient vanishing or over-
fitting on small medical imaging datasets and
have limited capability in capturing high-reso-
lution vascular wall textures. Considering that
U-Net’s skip connections can preserve spatial
details and ResNet’s residual structure can stabi-
lize deep network training — both of which have
been well validated in various medical imaging
tasks — we ultimately selected a U-Net + ResNet
architecture as the backbone while introducing
an attention module to compensate for the lack
of long-range dependency information. This de-
cision is quantitatively supported by ablation ex-
periments conducted in this study.

Compared with the current standard risk as-
sessment workflow, which relies on Framingham,
ASCVD, and other standardized clinical scoring
systems supplemented by expert imaging inter-
pretation, the automated DL framework proposed
in this study significantly improves both assess-
ment efficiency and accuracy. Traditional scoring
systems focus on systemic risk factors such as
lipid levels and blood pressure but inadequately
quantify plaque burden and vulnerability factors
on imaging. In contrast, our model can automat-
ically perform plaque segmentation and high-risk
feature identification without adding extra man-
ual workload, providing imaging-level supple-
mentation to standardized algorithms and thus
enabling more refined individualized risk stratifi-
cation [25, 26].

In comparison with existing DL studies, this
work introduced an attention mechanism to focus
on high-risk plaque regions while integrating mul-
timodal data (including ultrasound imaging, CTA,
and clinical features) to achieve more comprehen-
sive risk stratification. Notably, Lewandowski et al.
recently developed a machine learning model to
predict in-hospital mortality based on multicenter
data from over 3,000 patients with out-of-hospital
cardiac arrest [27], validating the clinical value of
ML approaches in acute cardiovascular contexts.
This finding corroborates and further strengthens
the generalizability and external applicability of

our model. These innovations not only enhance
the predictive performance of the model but also
demonstrate excellent interpretability and poten-
tial for clinical application.

The study’s findings indicate that the model
is highly suitable for clinical practice, serving as
an auxiliary diagnostic tool that helps physicians
rapidly identify high-risk patients and formulate
personalized treatment plans. Notably, the at-
tention mechanism significantly increases sensi-
tivity for early detection of high-risk, vulnerable
plagues. Additionally, compared with traditional
methods, the model improves analytical effi-
ciency by more than 70%, substantially saving
time in clinical workflows. Validation using mul-
ticenter data confirmed the model’s robustness
across diverse lesion types and patient popula-
tions, further enhancing its potential for wide-
spread adoption.

In clinical practice, cardiovascular risk predic-
tion emphasizes multidimensional integration
rather than relying solely on imaging parame-
ters. In addition to the traditional indicators al-
ready included in this study, such as lipid levels,
future work should systematically incorporate
other conventional risk factors — including family
history, personal medical history, blood pressure,
diabetes status, and smoking/alcohol consump-
tion history — and combine them with emerging
biomarkers such as inflammatory markers (e.g.,
hs-CRP), high-sensitivity cardiac troponin I, and
NT-proBNP to construct a more comprehensive
risk feature space. It is noteworthy that with the
rapid development of photon-counting computed
tomography (PCCT), its high spectral resolution
and low radiation dose advantages in quantifying
calcified and soft plagues, combined with the Al
framework proposed in this study, are expected
to enable non-invasive, refined, full-chain cardio-
vascular risk assessment, providing more reliable
evidence for precision interventions.

Despite the significant progress achieved in
multimodal data analysis, some limitations re-
main. First, because this study only used public-
ly available databases, there may be systematic
differences in sample composition compared
with real-world clinical populations (selection
bias), which could limit the external validity of
the model for broader populations. Second, the
model’s reliance on high-quality annotated data
may restrict its application in environments with
limited or suboptimal annotations. Third, its per-
formance still requires further optimization in
certain patient groups, such as those with poor
image quality or subtle lesion characteristics. In
addition, especially for CTA imaging, factors such
as equipment costs, radiation exposure, and clin-
ical indications may limit its accessibility in some
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regions, posing significant barriers to the model’s
global deployment.

Future research will explore incorporating low-
er-cost, radiation-free, and more accessible imag-
ing modalities such as carotid ultrasound into the
training process and assess their combined pre-
dictive performance with existing clinical scoring
systems to expand the model’s applicability and
verify its cross-modal transferability. To address
these challenges, upcoming studies should intro-
duce real-world clinical data and prospective co-
horts, adopt strategies such as transfer learning
and semi-supervised learning to mitigate selec-
tion bias, and further enhance model robustness
through improved data augmentation and feature
fusion techniques.

Model interpretability is critical for clinical ac-
ceptance of Al tools [28]. This study employed
Grad-CAM to visualize the model’s focus on key
lesion regions, generating heatmaps that closely
correspond with expert annotations. This feature
not only reinforces the credibility of the model’s
outputs but also provides clinicians with clear in-
sight into the model’s decision-making process.
Feedback from medical professionals indicates
that the model’s highlighted lesion areas and
high-risk predictions are highly consistent with
actual clinical findings, thereby increasing its ac-
ceptance in a clinical setting.

To further enhance the model’s practical utili-
ty and adaptability, future work could incorporate
self-supervised or transfer learning approaches
to reduce the reliance on large-scale annotated
datasets. Additionally, combining the strengths
of conventional statistical methods with DL
may further improve high-risk event prediction.
Exploring advanced feature fusion techniques
for multimodal data and optimizing the model
for resource-limited settings — thereby reducing
hardware and data demands — could accelerate
its global adoption.

This study offers an innovative solution for ath-
erosclerosis risk stratification, fully demonstrating
the potential of DL in medical image analysis. With
further optimization and broader implementation,
the model is expected to become an essential tool
for cardiovascular risk assessment and to drive
personalized medicine. Future research will focus
on extending the application scope and optimiz-
ing performance, ultimately providing clinicians
with a more reliable and efficient diagnostic aid to
improve patient outcomes.
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